1
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2024:10.1007/s13346-024-01756-x. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
2
|
Yetisgin AA, Durak S, Kutlu O, Cetinel S. Hyaluronan-Sphingosine Polymersomes for Treatment of Ocular Neovascularization: Synthesis and Evaluation. Macromol Biosci 2024; 24:e2300531. [PMID: 38318988 DOI: 10.1002/mabi.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Ocular neovascularization is a hallmark of several sight-threatening diseases, including diabetic retinopathy and age-related macular degeneration. Currently, available treatments are limited and often associated with side effects. Therefore, a novel approach to ocular neovascularization treatment through utilization of polymersomes from self-assembled sphingosine-grafted hyaluronic acid (HA-Sph) amphiphilic polymers is presented. The polymersomes are generated in spherical morphologies and sizes between 97.95 - 161.9 nm with homogenous size distributions. Experiments reveal that HA-Sph polymersomes, with concentrations ≥150 µg mL-1, significantly inhibit the proliferation of human umbilical vein endothelial cells (HUVECs), while concurrently promoting the proliferation of retinal pigment epithelial cells. The polymersomes demonstrate gradual disintegration in vitro, leading to sustained release of sphingosine, which prolongs the inhibition of HUVEC proliferation (from 87.5% at 24 h to 35.2% viability at 96 h). The efficacy of polymersomes in inhibiting angiogenesis is confirmed through tube formation assay, revealing a substantial reduction in tube length compared to the control group. The findings also validate the ocular penetration capability of polymersomes through ex vivo whole porcine eye ocular penetration study, indicating their suitability for topical administration. Potentially, HA-Sph polymersomes can be harnessed to develop intricate drug delivery systems that protect the retina and effectively treat ocular diseases.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Saliha Durak
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
3
|
Mendez K, Lains I, Kelly RS, Gil J, Silva R, Miller J, Vavvas DG, Kim I, Miller J, Liang L, Lasky-Su JA, Husain D. Metabolomic-derived endotypes of age-related macular degeneration (AMD): a step towards identification of disease subgroups. Sci Rep 2024; 14:12145. [PMID: 38802406 PMCID: PMC11130126 DOI: 10.1038/s41598-024-59045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/05/2024] [Indexed: 05/29/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide, with a complex pathophysiology and phenotypic diversity. Here, we apply Similarity Network Fusion (SNF) to cluster AMD patients into putative metabolomics-derived endotypes. Using a discovery cohort of 163 AMD patients from Boston, US, and a validation cohort of 214 patients from Coimbra, Portugal, we identified four distinct metabolomics-derived endotypes with varying retinal structural and functional characteristics, confirmed across both cohorts. Patients clustered into Endotype 1 exhibited a milder form of AMD and were characterized by low levels of amino acids in specific metabolic pathways. Meanwhile, patients clustered into both Endotype 3 and 4 were associated with more severe AMD and exhibited low levels of fatty acid metabolites and elevated levels of sphingomyelins and fatty acid metabolites, respectively. These preliminary findings indicate that metabolomics-derived endotyping may offer a refined strategy for categorizing AMD patients based on their specific pathophysiological underpinnings, rather than relying solely on traditional observational clinical indicators.
Collapse
Affiliation(s)
- Kevin Mendez
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, WA, Australia
| | - Ines Lains
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - João Gil
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rufino Silva
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Ophthalmology, Coimbra Hospital and University Center, Coimbra, Portugal
- Association for Innovation and Biomedical Research in Light and Image (AIBILI), Coimbra, Portugal
| | - John Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Demetrios G Vavvas
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Ivana Kim
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Joan Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deeba Husain
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
He M, Hou G, Liu M, Peng Z, Guo H, Wang Y, Sui J, Liu H, Yin X, Zhang M, Chen Z, Rensen PCN, Lin L, Wang Y, Shi B. Lipidomic studies revealing serological markers associated with the occurrence of retinopathy in type 2 diabetes. J Transl Med 2024; 22:448. [PMID: 38741137 DOI: 10.1186/s12967-024-05274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
PURPOSE The duration of type 2 diabetes mellitus (T2DM) and blood glucose levels have a significant impact on the development of T2DM complications. However, currently known risk factors are not good predictors of the onset or progression of diabetic retinopathy (DR). Therefore, we aimed to investigate the differences in the serum lipid composition in patients with T2DM, without and with DR, and search for potential serological indicators associated with the development of DR. METHODS A total of 622 patients with T2DM hospitalized in the Department of Endocrinology of the First Affiliated Hospital of Xi'an JiaoTong University were selected as the discovery set. One-to-one case-control matching was performed according to the traditional risk factors for DR (i.e., age, duration of diabetes, HbA1c level, and hypertension). All cases with comorbid chronic kidney disease were excluded to eliminate confounding factors. A total of 42 pairs were successfully matched. T2DM patients with DR (DR group) were the case group, and T2DM patients without DR (NDR group) served as control subjects. Ultra-performance liquid chromatography-mass spectrometry (LC-MS/MS) was used for untargeted lipidomics analysis on serum, and a partial least squares discriminant analysis (PLS-DA) model was established to screen differential lipid molecules based on variable importance in the projection (VIP) > 1. An additional 531 T2DM patients were selected as the validation set. Next, 1:1 propensity score matching (PSM) was performed for the traditional risk factors for DR, and a combined 95 pairings in the NDR and DR groups were successfully matched. The screened differential lipid molecules were validated by multiple reaction monitoring (MRM) quantification based on mass spectrometry. RESULTS The discovery set showed no differences in traditional risk factors associated with the development of DR (i.e., age, disease duration, HbA1c, blood pressure, and glomerular filtration rate). In the DR group compared with the NDR group, the levels of three ceramides (Cer) and seven sphingomyelins (SM) were significantly lower, and one phosphatidylcholine (PC), two lysophosphatidylcholines (LPC), and two SMs were significantly higher. Furthermore, evaluation of these 15 differential lipid molecules in the validation sample set showed that three Cer and SM(d18:1/24:1) molecules were substantially lower in the DR group. After excluding other confounding factors (e.g., sex, BMI, lipid-lowering drug therapy, and lipid levels), multifactorial logistic regression analysis revealed that a lower abundance of two ceramides, i.e., Cer(d18:0/22:0) and Cer(d18:0/24:0), was an independent risk factor for the occurrence of DR in T2DM patients. CONCLUSION Disturbances in lipid metabolism are closely associated with the occurrence of DR in patients with T2DM, especially in ceramides. Our study revealed for the first time that Cer(d18:0/22:0) and Cer(d18:0/24:0) might be potential serological markers for the diagnosis of DR occurrence in T2DM patients, providing new ideas for the early diagnosis of DR.
Collapse
Affiliation(s)
- Mingqian He
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Guixue Hou
- BGI-SHENZHEN, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China
| | - Mengmeng Liu
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Zhaoyi Peng
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Hui Guo
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Yue Wang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Jing Sui
- Department of Endocrinology and International Medical Center, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Hui Liu
- Biobank, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoming Yin
- Chengdu HuiXin Life Technology, Chengdu, Sichuan, 610091, P.R. China
| | - Meng Zhang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Ziyi Chen
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Patrick C N Rensen
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RA, The Netherlands
| | - Liang Lin
- BGI-SHENZHEN, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China.
- , Building NO.7, BGI Park, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China.
| | - Yanan Wang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China.
- Med-X institute, Center for Immunological and Metabolic Diseases, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an JiaoTong university, Xi'an, Shaanxi, 710061, P.R. China.
| | - Bingyin Shi
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China.
| |
Collapse
|
5
|
Mathew DJ, Sivak JM. Lipid mediators in glaucoma: Unraveling their diverse roles and untapped therapeutic potential. Prostaglandins Other Lipid Mediat 2024; 171:106815. [PMID: 38280539 DOI: 10.1016/j.prostaglandins.2024.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and visual field loss, and remains a leading cause of irreversible blindness. Elevated intraocular pressure (IOP) is a critical risk factor that requires effective management. Emerging research underscores dual roles of bioactive lipid mediators in both IOP regulation, and the modulation of neurodegeneration and neuroinflammation in glaucoma. Bioactive lipids, encompassing eicosanoids, specialized pro-resolving mediators (SPMs), sphingolipids, and endocannabinoids, have emerged as crucial players in these processes, orchestrating inflammation and diverse effects on aqueous humor dynamics and tissue remodeling. Perturbations in these lipid mediators contribute to retinal ganglion cell loss, vascular dysfunction, oxidative stress, and neuroinflammation. Glaucoma management primarily targets IOP reduction via pharmacological agents and surgical interventions, with prostaglandin analogues at the forefront. Intriguingly, additional lipid mediators offer promise in attenuating inflammation and providing neuroprotection. Here we explore these pathways to shed light on their intricate roles, and to unveil novel therapeutic avenues for glaucoma management.
Collapse
Affiliation(s)
- D J Mathew
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - J M Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada.
| |
Collapse
|
6
|
Zhou Y, Yue S, Li L, Zhang J, Chen L, Chen J. SMPDL3B is palmitoylated and stabilized by ZDHHC5, and its silencing aggravates diabetic retinopathy of db/db mice: Activation of NLRP3/NF-κB pathway. Cell Signal 2024; 116:111064. [PMID: 38266744 DOI: 10.1016/j.cellsig.2024.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Abnormal inflammation of vascular endothelial cells occurs frequently in diabetic retinopathy (DR). Sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B) is a lipid raft enzyme and plays an anti-inflammatory role in various diseases but its function in DR-related vascular endothelial dysfunction remains unknown. We first found that SMPDL3B expression was upregulated from week 10 to 18 in the retinal tissues of db/db mice. Particularly, the high expression of SMPDL3B was mainly observed in retinal vascular endothelium of DR mice. To interfere retinal SMPDL3B expression, adeno-associated viruses 2 (AAV-2) containing SMPDL3B specific shRNA (1233-1253 bp) were injected into the vitreous cavity of db/db mice. SMPDL3B silencing exacerbated the spontaneous DR by further activating the NF-κB/NLRP3 pro-inflammatory pathway. In vitro, human retinal microvascular endothelial cells (HRVECs) were infected with SMPDL3B-shRNA lentiviruses and then stimulated with 30 mM glucose (HG) for 24 h. SMPDL3B-silenced HRVECs secreted more interleukin-1β and had enhanced nuclear p65 translocation. Notably, HG treatment induced the palmitoylation of SMPDL3B. Zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) is a palmitoyltransferase that catalyzes the palmitoylation of its substrates, HG exposure increased the interaction between ZDHHC5 and SMPDL3B in HRVECs. 2-BP, a palmitoylation inhibitor, accelerated the protein degradation of SMPDL3B, whereas palmostatin B, a depalmitoylation inhibitor, decreased its turnover rate in HRVECs. Collectively, the present study suggests a compensatory increase of SMPDL3B in HG-treated HRVECs and the retinal tissues of DR mice, indicating that SMPDL3B may be a potential target for DR treatment.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Song Yue
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lihua Li
- Eye Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Jiahua Zhang
- Department of Ophthalmology (Diabetic Eye Disease Prevention and Treatment Center), The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lei Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jun Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
7
|
Ahmad Z, Singh S, Lee TJ, Sharma A, Lydic TA, Giri S, Kumar A. Untargeted and temporal analysis of retinal lipidome in bacterial endophthalmitis. Prostaglandins Other Lipid Mediat 2024; 171:106806. [PMID: 38185280 PMCID: PMC10939753 DOI: 10.1016/j.prostaglandins.2023.106806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/22/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
Bacterial endophthalmitis is a blinding infectious disease typically acquired during ocular surgery. We previously reported significant alterations in retinal metabolism during Staphylococcus (S) aureus endophthalmitis. However, the changes in retinal lipid composition during endophthalmitis are unknown. Here, using a mouse model of S. aureus endophthalmitis and an untargeted lipidomic approach, we comprehensively analyzed temporal alterations in total lipids and oxylipin in retina. Our data showed a time-dependent increase in the levels of lipid classes, sphingolipids, glycerolipids, sterols, and non-esterified fatty acids, whereas levels of phospholipids decreased. Among lipid subclasses, phosphatidylcholine decreased over time. The oxylipin analysis revealed increased prostaglandin-E2, hydroxyeicosatetraenoic acids, docosahexaenoic acid, eicosapentaenoic acid, and α-linolenic acid. In-vitro studies using mouse bone marrow-derived macrophages showed increased lipid droplets and lipid-peroxide formation in response to S. aureus infection. Collectively, these findings suggest that S. aureus-infection alters the retinal lipid profile, which may contribute to the pathogenesis of bacterial endophthalmitis.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tae Jin Lee
- Augusta University, Augusta, GA, USA. 4 Department of Ophthalmology, Augusta University, Augusta, GA, USA
| | - Ashok Sharma
- Augusta University, Augusta, GA, USA. 4 Department of Ophthalmology, Augusta University, Augusta, GA, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
8
|
Khade OS, Sasidharan S, Jain A, Maradani BS, Chatterjee A, Gopal D, Ravi Kumar RK, Krishnakumar S, Pandey A, Janakiraman N, Elchuri SV, Gundimeda S. Identification of dysregulation of sphingolipids in retinoblastoma using liquid chromatography-mass spectrometry. Exp Eye Res 2024; 240:109798. [PMID: 38246332 DOI: 10.1016/j.exer.2024.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Retinoblastoma (RB) is a rare ocular cancer seen in children that counts for approximately 3% of all childhood cancers. It is found that mutation in RB1, a tumour Suppressor Gene on chromosome 13 as the cause of malignancy. Retinoblastoma protein is the target for ceramide to cause apoptosis. We studied lipidomics of two RB cell lines, one aggressive cell line (NCC-RbC-51) derived from a metastatic site and one non aggressive cell line (WERI-Rb1) in comparison with a control cell line (MIO-M1). Lipid profiles of all the cell lines were studied using high resolution mass spectrometer coupled to high performance liquid chromatography. Data acquired from all the three cell lines in positive mode were analyzed to identify differentially expressed metabolites. Several phospholipids and lysophospholipids were found to be dysregulated. We observed upregulation of hexosyl ceramides, and down regulation of dihydroceramides and higher order sphingoglycolipids hinting at a hindered sphingolipid biosynthesis. The results obtained from liquid chromatography-mass spectrometry are validated by using qPCR and it was observed that genes involved in ceramide biosynthesis pathway are getting down regulated.
Collapse
Affiliation(s)
- Omkar Surendra Khade
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Sruthy Sasidharan
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Ankit Jain
- Institute of Bioinformatics, Bangalore, Karnataka, India
| | | | - Amit Chatterjee
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Divya Gopal
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Subramaniyan Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India; Department of Histopathology, Radheshyam Stem Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India; Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.
| | - Seetaramanjaneyulu Gundimeda
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India.
| |
Collapse
|
9
|
Kolko M, Mouhammad ZA, Cvenkel B. Is fat the future for saving sight? Bioactive lipids and their impact on glaucoma. Pharmacol Ther 2023; 245:108412. [PMID: 37037408 DOI: 10.1016/j.pharmthera.2023.108412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Glaucoma is characterized by a continuous loss of retinal ganglion cells. The cause of glaucoma is associated with an increase in intraocular pressure (IOP), but the underlying pathophysiology is diverse and, in most cases, unknown. There is an indisputable unmet need to identify new pathways involved in glaucoma pathogenesis. Increasing evidence suggests that bioactive lipids may be critical in the development and progression of glaucoma. Preclinical and clinical bioactive lipid targets exist and are being developed. In this review, we aim to shed light on the potential of bioactive lipids for the prevention, diagnosis, prognosis, and treatment of glaucoma by asking the question "is fat the future for saving sight".
Collapse
Affiliation(s)
- Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| | | | - Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
He S, Gu C, Su T, Zhou C, Lhamo T, Draga D, Yin L, Qiu Q. Exploration of the Potential Mechanisms of Lingqihuangban Granule for Treating Diabetic Retinopathy Based on Network Pharmacology. Comb Chem High Throughput Screen 2023; 26:14-29. [PMID: 35392781 DOI: 10.2174/1386207325666220407112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Lingqihuangban Granule (LQHBG), a remarkable Chinese herbal compound, has been used for decades to treat diabetic retinopathy (DR) in the Department of Ophthalmology, Shanghai General Hospital (National Clinical Research Center for Eye Diseases) with obvious effects. Through the method of network pharmacology, the present study constructed bioactive component-relative targets and protein-protein interaction network of the LQHBG and implemented gene function analysis and pathway enrichment of targets, discussing the mechanisms of traditional Chinese medicine LQHBG in treating DR. MATERIALS AND METHODS The bioactive ingredients of LQHBG were screened and obtained using TCMSP and ETCM databases, while the potential targets of bioactive ingredients were predicted by SwissTargetPrediction and ETCM databases. Compared with the disease target databases of TTD, Drugbank, OMIM and DisGeNET, the therapeutic targets of LQHBG for DR were extracted. Based on the DAVID platform, GO annotation and KEGG pathway analyses of key targets were explored, combined with the screening of core pathways on the Omicshare database and pathway annotation on the Reactome database. RESULTS A total of 357 bioactive components were screened from LQHBG, involving 86 possible targets of LQHBG treating DR. In the PPI network, INS and ALB were identified as key genes. The effective targets were enriched in multiple signaling pathways, such as PI3K/Akt and MAPK pathways. CONCLUSION This study revealed the possible targets and pathways of LQHBG treating DR, reflecting the characteristics of multicomponent, multitarget and multipathway treatment of a Chinese herbal compound, and provided new ideas for further discussion.
Collapse
Affiliation(s)
- Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Thashi Lhamo
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Xizang, PR China
| | - Deji Draga
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Xizang, PR China
| | - Lili Yin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Xizang, PR China
| |
Collapse
|
11
|
Lee S, Lee EJ, Lee GM, Yun JH, Yoo W. Inhibitory effect of fucoidan on TNF-α-induced inflammation in human retinal pigment epithelium cells. Front Nutr 2023; 10:1162934. [PMID: 37125026 PMCID: PMC10130517 DOI: 10.3389/fnut.2023.1162934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Sargassum horneri (S. horneri) is a brown seaweed that contains a fucose-rich sulfated polysaccharide called fucoidan and is known to possess beneficial bioactivities, such as anti-inflammatory, antiviral, antioxidative, and antitumoral effects. This study aimed to determine the anti-inflammatory effects of AB_SH (hydrothermal extracts from S. horneri) and its bioactive compound (fucoidan) against tumor necrosis factor alpha (TNF-α)-induced inflammation in human retinal pigment epithelial (RPE) cells. AB_SH did not exhibit any cytotoxicity, and it decreased the mRNA expression of interleukin (IL)-6 and IL-8 and the production of the cytokines IL-6 and TNF-α. It also suppressed the expression levels of phosphorylated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), including c-Jun amino-terminal kinases (JNK), p38 protein kinases (p38), and extracellular signal-regulated kinase (ERK) proteins, suggesting that AB_SH inhibits activation of the NF-kB/MAPK signaling pathway. Since fucoidan was identified in the composition analysis of AB_SH, it was additionally shown to be required for its anti-inflammatory effects in TNF-α-stimulated human RPE cells. In line with the AB_SH results, fucoidan reduced the mRNA levels of IL-6, IL-1ß, and IL-8 and production of the cytokines IL-6, TNF-α, and IL-8 through the downregulation of the NF-kB/MAPK signaling pathway in a dose-dependent manner. Collectively, the ability of AB_SH from S. horneri hydrothermal extracts to reduce inflammation indicates that it may be a good functional ingredient for managing ocular disorders.
Collapse
Affiliation(s)
- Sol Lee
- AceBiome Inc., Seoul, Republic of Korea
- R&D Center, AceBiome Inc., Daejeon, Republic of Korea
| | - Eun Jeoung Lee
- AceBiome Inc., Seoul, Republic of Korea
- R&D Center, AceBiome Inc., Daejeon, Republic of Korea
| | - Gyu Min Lee
- AceBiome Inc., Seoul, Republic of Korea
- R&D Center, AceBiome Inc., Daejeon, Republic of Korea
| | - Ji-Hyun Yun
- AceBiome Inc., Seoul, Republic of Korea
- R&D Center, AceBiome Inc., Daejeon, Republic of Korea
| | - Wonbeak Yoo
- AceBiome Inc., Seoul, Republic of Korea
- R&D Center, AceBiome Inc., Daejeon, Republic of Korea
- *Correspondence: Wonbeak Yoo,
| |
Collapse
|
12
|
Fan J, Liu J, Liu J, Angel PM, Drake RR, Wu Y, Fan H, Koutalos Y, Crosson CE. Sphingomyelinases in retinas and optic nerve heads: Effects of ocular hypertension and ischemia. Exp Eye Res 2022; 224:109250. [PMID: 36122624 PMCID: PMC10694736 DOI: 10.1016/j.exer.2022.109250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Sphingomyelinases (SMase), enzymes that catalyze the hydrolysis of sphingomyelin to ceramide, are important sensors for inflammatory cytokines and apoptotic signaling. Studies have provided evidence that increased SMase activity can contribute to retinal injury. In most tissues, two major SMases are responsible for stress-induced increases in ceramide: acid sphingomyelinase (ASMase) and Mg2+-dependent neutral sphingomyelinase (NSMase). The purposes of the current study were to determine the localization of SMases and their substrates in the retina and optic nerve head and to investigate the effects of ocular hypertension and ischemia on ASMase and NSMase activities. Tissue and cellular localization of ASMase and NSMase were determined by immunofluorescence imaging. Tissue localization of sphingomyelin in retinas was further determined by Matrix-Assisted Laser Desorption/Ionization mass spectrometry imaging. Tissue levels of sphingomyelins and ceramide were determined by liquid chromatography with tandem mass spectrometry. Sphingomyelinase activities under basal conditions and following acute ischemic and ocular hypotensive stress were measured using the Amplex Red Sphingomyelinase Assay Kit. Our data show that ASMase is in the optic nerve head and the retinal ganglion cell layer. NSMase is in the optic nerve head, photoreceptor and retinal ganglion cell layers. Both ASMase and NSMase were identified in human induced pluripotent stem cell-derived retinal ganglion cells and optic nerve head astrocytes. The retina and optic nerve head each exhibited unique distribution of sphingomyelins with the abundance of very long chain species being higher in the optic nerve head than in the retina. Basal activities for ASMase in retinas and optic nerve heads were 54.98 ± 2.5 and 95.6 ± 19.5 mU/mg protein, respectively. Ocular ischemia significantly increased ASMase activity to 86.2 ± 15.3 mU/mg protein in retinas (P = 0.03) but not in optic nerve heads (81.1 ± 15.3 mU/mg protein). Ocular hypertension significantly increased ASMase activity to 121.6 ± 7.3 mU/mg protein in retinas (P < 0.001) and 267.0 ± 66.3 mU/mg protein in optic nerve heads (P = 0.03). Basal activities for NSMase in retinas and optic nerve heads were 12.3 ± 2.1 and 37.9 ± 8.7 mU/mg protein, respectively. No significant change in NSMase activity was measured following ocular ischemia or hypertension. Our results provide evidence that both ASMase and NSMase are expressed in retinas and optic nerve heads; however, basal ASMase activity is significantly higher than NSMase activity in retinas and optic nerve heads. In addition, only ASMase activity was significantly increased in ocular ischemia or hypertension. These data support a role for ASMase-mediated sphingolipid metabolism in the development of retinal ischemic and hypertensive injuries.
Collapse
Affiliation(s)
- Jie Fan
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, Charleston, SC, USA.
| | - Jian Liu
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, Charleston, SC, USA
| | - Jiali Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Department of Ophthalmology, 274 Middle Zhijiang Road, Jingan District, Shanghai, 200071, China
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC, USA
| | - Yan Wu
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Hongkuan Fan
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Yiannis Koutalos
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, Charleston, SC, USA
| | - Craig E Crosson
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, Charleston, SC, USA
| |
Collapse
|
13
|
Gadziński P, Froelich A, Wojtyłko M, Białek A, Krysztofiak J, Osmałek T. Microneedle-based ocular drug delivery systems - recent advances and challenges. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1167-1184. [PMID: 36348935 PMCID: PMC9623140 DOI: 10.3762/bjnano.13.98] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Eye diseases and injuries constitute a significant clinical problem worldwide. Safe and effective delivery of drugs to the eye is challenging mostly due to the presence of ocular barriers and clearance mechanisms. In everyday practice, the traditional eye drops, gels and ointments are most often used. Unfortunately, they are usually not well tolerated by patients due to the need for frequent use as well as the discomfort during application. Therefore, novel drug delivery systems with improved biopharmaceutical properties are a subject of ongoing scientific investigations. Due to the developments in microtechnology, in recent years, there has been a remarkable advance in the development of microneedle-based systems as an alternative, non-invasive form for administering drugs to the eye. This review summarizes the latest achievements in the field of obtaining microneedle ocular patches. In the manuscript, the most important manufacturing technologies, microneedle classification, and the research studies related to ophthalmic application of microneedles are presented. Finally, the most important advantages and drawbacks, as well as potential challenges related to the unique anatomy and physiology of the eye are summarized and discussed.
Collapse
Affiliation(s)
- Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Antoni Białek
- Student Research Group of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Julia Krysztofiak
- Student Research Group of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| |
Collapse
|
14
|
Paranjpe V, Galor A, Grambergs R, Mandal N. The role of sphingolipids in meibomian gland dysfunction and ocular surface inflammation. Ocul Surf 2022; 26:100-110. [PMID: 35973562 PMCID: PMC10259413 DOI: 10.1016/j.jtos.2022.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Inflammation occurs in response to tissue injury and invasion of microorganisms and is carried out by the innate and adaptive immune systems, which are regulated by numerous chemokines, cytokines, and lipid mediators. There are four major families of bioactive lipid mediators that play an integral role in inflammation - eicosanoids, sphingolipids (SPL), specialized pro-resolving mediators (SPM), and endocannabinoids. SPL have been historically recognized as important structural components of cellular membranes; their roles as bioactive lipids and inflammatory mediators are recent additions. Major SPL metabolites, including sphingomyelin, ceramide, ceramide 1-phosphate (C1P), sphingosine, sphingosine 1-phosphate (S1P), and their respective enzymes have been studied extensively, primarily in cell-culture and animal models, for their roles in cellular signaling and regulating inflammation and apoptosis. Less focus has been given to the involvement of SPL in eye diseases. As such, the aim of this review was to examine relationships between the SPL family and ocular surface diseases, focusing on their role in disease pathophysiology and discussing the potential of therapeutics that disrupt SPL pathways.
Collapse
Affiliation(s)
- Vikram Paranjpe
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| | - Richard Grambergs
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
15
|
A Comprehensive Profiling of Cellular Sphingolipids in Mammalian Endothelial and Microglial Cells Cultured in Normal and High-Glucose Conditions. Cells 2022; 11:cells11193082. [PMID: 36231042 PMCID: PMC9563724 DOI: 10.3390/cells11193082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids (SPLs) play a diverse role in maintaining cellular homeostasis. Dysregulated SPL metabolism is associated with pathological changes in stressed and diseased cells. This study investigates differences in SPL metabolism between cultured human primary retinal endothelial (HREC) and murine microglial cells (BV2) in normal conditions (normal glucose, NG, 5 mM) and under high-glucose (HG, 25 mM)-induced stress by sphingolipidomics, immunohistochemistry, biochemical, and molecular assays. Measurable differences were observed in SPL profiles between HREC and BV2 cells. High-glucose treatment caused a >2.5-fold increase in the levels of Lactosyl-ceramide (LacCer) in HREC, but in BV2 cells, it induced Hexosyl-Ceramides (HexCer) by threefold and a significant increase in Sphingosine-1-phosphate (S1P) compared to NG. Altered SPL profiles coincided with changes in transcript levels of inflammatory and vascular permeability mediators in HREC and inflammatory mediators in BV2 cells. Differences in SPL profiles and differential responses to HG stress between endothelial and microglial cells suggest that SPL metabolism and signaling differ in mammalian cell types and, therefore, their pathological association with those cell types.
Collapse
|
16
|
Mondal K, Porter H, Cole J, Pandya HK, Basu SK, Khanam S, Chiu CY, Shah V, Stephenson DJ, Chalfant CE, Mandal N. Hydroxychloroquine Causes Early Inner Retinal Toxicity and Affects Autophagosome-Lysosomal Pathway and Sphingolipid Metabolism in the Retina. Mol Neurobiol 2022; 59:3873-3887. [PMID: 35426574 PMCID: PMC10259418 DOI: 10.1007/s12035-022-02825-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 01/21/2023]
Abstract
Hydroxychloroquine (HCQ) is an anti-malarial drug but also widely used to treat autoimmune diseases like arthritis and lupus. Although there have been multiple reports of the adverse effect of prolonged HCQ usage on the outer retina, leading to bull's-eye maculopathy, the effect of HCQ toxicity on the inner retina as well as on overall visual functions has not been explored in detail. Furthermore, lack of an established animal model of HCQ toxicity hinders our understanding of the underlying molecular mechanisms. Here, using a small clinical study, we confirmed the effect of HCQ toxicity on the inner retina, in particular the reduction in central inner retinal thickness, and established a mouse model of chronic HCQ toxicity that recapitulates the effects observed in human retina. Using the mouse model, we demonstrated that chronic HCQ toxicity results in loss of inner retinal neurons and retinal ganglion cells (RGC) and compromises visual functions. We further established that HCQ treatment prevents autophagosome-lysosome fusion and alters the sphingolipid homeostasis in mouse retina. Our results affirm the notion that HCQ treatment causes early damage to the inner retina and affects visual functions before leading to characteristic toxicity in the macular region of the outer retina, 'bull's-eye maculopathy.' We also provide insights into the underlying molecular mechanisms of HCQ retinal toxicity that may involve autophagy-lysosomal defects and alterations in sphingolipid metabolism.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hunter Porter
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA
| | - Jerome Cole
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hemang K Pandya
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA
| | - Sandip K Basu
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sufiya Khanam
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Chi-Yang Chiu
- Division of Biostatistics, Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Vinay Shah
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
- The Moffitt Cancer Center, Tampa, FL, 33620, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
| | - Nawajes Mandal
- Department of Ophthalmology, Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK-73104, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
17
|
Pak VM, Russell K, Shi Z, Zhang Q, Cox J, Uppal K, Yu T, Hertzberg V, Liu K, Ioachimescu OC, Collop N, Bliwise DL, Kutner NG, Rogers A, Dunbar SB. Sphinganine is associated with 24-h MAP in the non-sleepy with OSA. Metabolomics 2022; 18:23. [PMID: 35391564 DOI: 10.1007/s11306-021-01860-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/07/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Excessive daytime sleepiness is a debilitating symptom of obstructive sleep apnea (OSA) linked to cardiovascular disease, and metabolomic mechanisms underlying this relationship remain unknown. We examine whether metabolites from inflammatory and oxidative stress-related pathways that were identified in our prior work could be involved in connecting the two phenomena. METHODS This study included 57 sleepy (Epworth Sleepiness Scale (ESS) ≥ 10) and 37 non-sleepy (ESS < 10) participants newly diagnosed and untreated for OSA that completed an overnight in-lab or at home sleep study who were recruited from the Emory Mechanisms of Sleepiness Symptoms Study (EMOSS). Differences in fasting blood samples of metabolites were explored in participants with sleepiness versus those without and multiple linear regression models were utilized to examine the association between metabolites and mean arterial pressure (MAP). RESULTS The 24-h MAP was higher in sleepy 92.8 mmHg (8.4) as compared to non-sleepy 88.8 mmHg (8.1) individuals (P = 0.03). Although targeted metabolites were not significantly associated with MAP, when we stratified by sleepiness group, we found that sphinganine is significantly associated with MAP (Estimate = 8.7, SE = 3.7, P = 0.045) in non-sleepy patients when controlling for age, BMI, smoking status, and apnea-hypopnea index (AHI). CONCLUSION This is the first study to evaluate the relationship of inflammation and oxidative stress related metabolites in sleepy versus non-sleepy participants with newly diagnosed OSA and their association with 24-h MAP. Our study suggests that Sphinganine is associated with 24 hour MAP in the non-sleepy participants with OSA.
Collapse
Affiliation(s)
- Victoria M Pak
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA.
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Katherine Russell
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA
| | - Zhenzhen Shi
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Atlanta, GA, 30322, USA
| | - Qiang Zhang
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Gangarosa Department of Environmental Health, Atlanta, GA, 30322, USA
| | - John Cox
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA
| | - Karan Uppal
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tianwei Yu
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Shenzhen Research Institute of Big Data, and School of Data Science, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Vicki Hertzberg
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA
| | - Ken Liu
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Octavian C Ioachimescu
- School of Medicine, Emory University, Atlanta, GA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University - School of Medicine, Atlanta, GA, 30322, USA
- Sleep Medicine Section, Atlanta VA Healthcare System, Atlanta, GA, 30322, USA
| | - Nancy Collop
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Nancy G Kutner
- Gangarosa Department of Environmental Health, Atlanta, GA, 30322, USA
| | - Ann Rogers
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA
| | - Sandra B Dunbar
- School of Nursing, Emory University, 1520 Clifton Road, 243, Atlanta, GA, 30322, USA
| |
Collapse
|
18
|
Mondal K, Takahashi H, Cole J, Del Mar NA, Li C, Stephenson DJ, Allegood J, Cowart LA, Chalfant CE, Reiner A, Mandal N. Systemic Elevation of n-3 Polyunsaturated Fatty Acids (n-3-PUFA) Is Associated with Protection against Visual, Motor, and Emotional Deficits in Mice following Closed-Head Mild Traumatic Brain Injury. Mol Neurobiol 2021; 58:5564-5580. [PMID: 34365584 PMCID: PMC8655834 DOI: 10.1007/s12035-021-02501-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/17/2021] [Indexed: 12/30/2022]
Abstract
Traumatic brain injury (TBI) causes neuroinflammation and neurodegeneration leading to various pathological complications such as motor and sensory (visual) deficits, cognitive impairment, and depression. N-3 polyunsaturated fatty acid (n-3 PUFA) containing lipids are known to be anti-inflammatory, whereas the sphingolipid, ceramide (Cer), is an inducer of neuroinflammation and degeneration. Using Fat1+-transgenic mice that contain elevated levels of systemic n-3 PUFA, we tested whether they are resistant to mild TBI-mediated sensory-motor and emotional deficits by subjecting Fat1-transgenic mice and their WT littermates to focal cranial air blast (50 psi) or sham blast (0 psi, control). We observed that visual function in WT mice was reduced significantly following TBI but not in Fat1+-blast animals. We also found Fat1+-blast mice were resistant to the decline in motor functions, depression, and fear-producing effects of blast, as well as the reduction in the area of oculomotor nucleus and increase in activated microglia in the optic tract in brain sections seen following blast in WT mice. Lipid and gene expression analyses confirmed an elevated level of the n-3 PUFA eicosapentaenoic acid (EPA) in the plasma and brain, blocking of TBI-mediated increase of Cer in the brain, and decrease in TBI-mediated induction of Cer biosynthetic and inflammatory gene expression in the brain of the Fat1+ mice. Our results demonstrate that suppression of ceramide biosynthesis and inflammatory factors in Fat1+-transgenic mice is associated with significant protection against the visual, motor, and emotional deficits caused by mild TBI. This study suggests that n-3 PUFA (especially, EPA) has a promising therapeutic role in preventing neurodegeneration after TBI.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Haruka Takahashi
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
- Department of Animal Science, Iwate University, Morioka, Japan
| | - Jerome Cole
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Chunyan Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23219, USA
- Hunter Holmes McGuire VA Medical Center, Richmond, VA, 23249, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
- The Moffitt Cancer Center, Tampa, FL, 33620, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
| | - Anton Reiner
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Centre, TN, 38163, Memphis, USA.
- Memphis VA Medical Center, Memphis, TN, 38104, USA.
| |
Collapse
|
19
|
Bu Y, Wang H, Ma X, Han C, Jia X, Zhang J, Liu Y, Peng Y, Yang M, Yu K, Wang C. Untargeted Metabolomic Profiling of the Correlation Between Prognosis Differences and PD-1 Expression in Sepsis: A Preliminary Study. Front Immunol 2021; 12:594270. [PMID: 33868224 PMCID: PMC8046931 DOI: 10.3389/fimmu.2021.594270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives: The mortality rate of sepsis remains very high. Metabolomic techniques are playing increasingly important roles in diagnosis and treatment in critical care medicine. The purpose of our research was to use untargeted metabolomics to identify and analyze the common differential metabolites among patients with sepsis with differences in their 7-day prognosis and blood PD-1 expression and analyze their correlations with environmental factors. Methods: Plasma samples from 18 patients with sepsis were analyzed by untargeted LC-MS metabolomics. Based on the 7-day prognoses of the sepsis patients or their levels of PD-1 expression on the surface of CD4+ T cells in the blood, we divided the patients into two groups. We used a combination of multidimensional and monodimensional methods for statistical analysis. At the same time, the Spearman correlation analysis method was used to analyze the correlation between the differential metabolites and inflammatory factors. Results: In the positive and negative ionization modes, 16 and 8 differential metabolites were obtained between the 7-day death and survival groups, respectively; 5 and 8 differential metabolites were obtained between the high PD-1 and low PD-1 groups, respectively. We identified three common differential metabolites from the two groups, namely, PC (P-18:0/14:0), 2-ethyl-2-hydroxybutyric acid and glyceraldehyde. Then, we analyzed the correlations between environmental factors and the common differences in metabolites. Among the identified metabolites, 2-ethyl-2-hydroxybutyric acid was positively correlated with the levels of IL-2 and lactic acid (Lac) (P < 0.01 and P < 0.05, respectively). Conclusions: These three metabolites were identified as common differential metabolites between the 7-day prognosis groups and the PD-1 expression level groups of sepsis patients. They may be involved in regulating the expression of PD-1 on the surface of CD4+ T cells through the action of related environmental factors such as IL-2 or Lac, which in turn affects the 7-day prognosis of sepsis patients.
Collapse
Affiliation(s)
- Y Bu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - H Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - X Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - C Han
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - X Jia
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - J Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Y Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Y Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - M Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - K Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - C Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
20
|
Chatterjee S, Balram A, Li W. Convergence: Lactosylceramide-Centric Signaling Pathways Induce Inflammation, Oxidative Stress, and Other Phenotypic Outcomes. Int J Mol Sci 2021; 22:ijms22041816. [PMID: 33673027 PMCID: PMC7917694 DOI: 10.3390/ijms22041816] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
Lactosylceramide (LacCer), also known as CD17/CDw17, is a member of a large family of small molecular weight compounds known as glycosphingolipids. It plays a pivotal role in the biosynthesis of glycosphingolipids, primarily by way of serving as a precursor to the majority of its higher homolog sub-families such as gangliosides, sulfatides, fucosylated-glycosphingolipids and complex neutral glycosphingolipids—some of which confer “second-messenger” and receptor functions. LacCer is an integral component of the “lipid rafts,” serving as a conduit to transduce external stimuli into multiple phenotypes, which may contribute to mortality and morbidity in man and in mouse models of human disease. LacCer is synthesized by the action of LacCer synthase (β-1,4 galactosyltransferase), which transfers galactose from uridine diphosphate galactose (UDP-galactose) to glucosylceramide (GlcCer). The convergence of multiple physiologically relevant external stimuli/agonists—platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), stress, cigarette smoke/nicotine, tumor necrosis factor-α (TNF-α), and in particular, oxidized low-density lipoprotein (ox-LDL)—on β-1,4 galactosyltransferase results in its phosphorylation or activation, via a “turn-key” reaction, generating LacCer. This newly synthesized LacCer activates NADPH (nicotinamide adenine dihydrogen phosphate) oxidase to generate reactive oxygen species (ROS) and a highly “oxidative stress” environment, which trigger a cascade of signaling molecules and pathways and initiate diverse phenotypes like inflammation and atherosclerosis. For instance, LacCer activates an enzyme, cytosolic phospholipase A2 (cPLA2), which cleaves arachidonic acid from phosphatidylcholine. In turn, arachidonic acid serves as a precursor to eicosanoids and prostaglandin, which transduce a cascade of reactions leading to inflammation—a major phenotype underscoring the initiation and progression of several debilitating diseases such as atherosclerosis and cancer. Our aim here is to present an updated account of studies made in the field of LacCer metabolism and signaling using multiple animal models of human disease, human tissue, and cell-based studies. These advancements have led us to propose that previously unrelated phenotypes converge in a LacCer-centric manner. This LacCer synthase/LacCer-induced “oxidative stress” environment contributes to inflammation, atherosclerosis, skin conditions, hair greying, cardiovascular disease, and diabetes due to mitochondrial dysfunction. Thus, targeting LacCer synthase may well be the answer to remedy these pathologies.
Collapse
|
21
|
Simon MV, Basu SK, Qaladize B, Grambergs R, Rotstein NP, Mandal N. Sphingolipids as critical players in retinal physiology and pathology. J Lipid Res 2021; 62:100037. [PMID: 32948663 PMCID: PMC7933806 DOI: 10.1194/jlr.tr120000972] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- M Victoria Simon
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Sandip K Basu
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bano Qaladize
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Richard Grambergs
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina.
| | - Nawajes Mandal
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
22
|
Gao Z, Li Q, Zhang Y, Gao X, Li H, Yuan Z. Ripasudil alleviated the inflammation of RPE cells by targeting the miR-136-5p/ROCK/NLRP3 pathway. BMC Ophthalmol 2020; 20:134. [PMID: 32252692 PMCID: PMC7137504 DOI: 10.1186/s12886-020-01400-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/23/2020] [Indexed: 01/03/2023] Open
Abstract
Background Inflammation of RPE cells led to different kinds of eye diseases and affected the normal function of the retina. Furthermore, higher levels of ROCK1 and ROCK2 induced injury of endothelial cells and many inflammatory diseases of the eyes. Ripasudil, which was used for the treatment of glaucoma, was one kind of the inhibitor of ROCK1 and ROCK2, but whether ripasudil could relieve the LPS-induced inflammation and damage of RPE cells was not clear. Methods We used LPS to stimulate ARPE-19 cells, the RPE cell line. After that, we detected the levels of ROCK1 and ROCK2 by western-blotting after the stimulation of LPS and treatment of ripasudil. Then luciferase reporter assays were used to confirm the targeting effect of miR-136-5p on ROCK1 and ROCK2. At last, the levels of NLRP3, ASC, caspase1, IL-1β and IL-18 were detected with the western-blotting after the knockdown of miR-136-5p. Results The levels of ROCK1, ROCK2 and miR-136-5p in ARPE-19 cells were promoted after the stimulation of LPS. After the treatment of ripasudil, the expression levels of ROCK1, ROCK2 and miR-136-5p were suppressed. The expression of ROCK1 and ROCK2 was targeted and inhibited by the miR-136-5p. The levels of inflammation related proteins NLRP3, ASC, caspase1, IL-1β and IL-18 was also inhibited after the treatment of ripasudil. However, the expression of these proteins was rescued after the knockdown of miR-136-5p. Conclusion Ripasudil relieved the inflammatory injury of RPE cells by upregulating miR-136-5p, therefore inhibiting the expression of ROCK1, ROCK2, NLRP3, ASC, caspase1, IL-1β and IL-18.
Collapse
Affiliation(s)
- Zhao Gao
- Department of Vitreoretinopathy, Shanxi Eye Hospital, No.100 Fudong Street, Xinghualing district, Taiyuan city, 030001, Shanxi province, China
| | - Qiang Li
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan city, 030032, Shanxi province, China
| | - Yunda Zhang
- Department of Vitreoretinopathy, Shanxi Eye Hospital, No.100 Fudong Street, Xinghualing district, Taiyuan city, 030001, Shanxi province, China
| | - Xiaohong Gao
- Department of Vitreoretinopathy, Shanxi Eye Hospital, No.100 Fudong Street, Xinghualing district, Taiyuan city, 030001, Shanxi province, China
| | - Haiyan Li
- Department of Pathology, Shanxi Eye Hospital, Taiyuan city, 030001, Shanxi province, China
| | - Zhigang Yuan
- Department of Vitreoretinopathy, Shanxi Eye Hospital, No.100 Fudong Street, Xinghualing district, Taiyuan city, 030001, Shanxi province, China.
| |
Collapse
|