1
|
Braun VZ, Karbon G, Schuler F, Schapfl MA, Weiss JG, Petermann PY, Spierings DC, Tijhuis AE, Foijer F, Labi V, Villunger A. Extra centrosomes delay DNA damage-driven tumorigenesis. SCIENCE ADVANCES 2024; 10:eadk0564. [PMID: 38552015 PMCID: PMC10980279 DOI: 10.1126/sciadv.adk0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Deregulated centrosome numbers are frequently found in human cancer and can promote malignancies in model organisms. Current research aims to clarify if extra centrosomes are cause or consequence of malignant transformation, and if their biogenesis can be targeted for therapy. Here, we show that oncogene-driven blood cancer is inert to genetic manipulation of centrosome numbers, whereas the formation of DNA damage-induced malignancies is delayed. We provide first evidence that this unexpected phenomenon is connected to extra centrosomes eliciting a pro-death signal engaging the apoptotic machinery. Apoptosis induction requires the PIDDosome multi-protein complex, as it can be abrogated by loss of any of its three components, Caspase-2, Raidd/Cradd, or Pidd1. BCL2 overexpression equally blocks cell death, documenting for the first time induction of mitochondrial apoptosis downstream of extra centrosomes. Our findings demonstrate context-dependent effects of centrosome amplification during transformation and ask to adjust current belief that extra centrosomes are intrinsically pro-tumorigenic.
Collapse
Affiliation(s)
- Vincent Z. Braun
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerlinde Karbon
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina A. Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes G. Weiss
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Y. Petermann
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Andrea E. Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Verena Labi
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
2
|
Li Z, Li J, Wu Z, Zhu Y, Zhuo T, Nong J, Qian J, Peng H, Dai L, Wang Y, Chen M, Zeng X. Upregulation of POC1A in lung adenocarcinoma promotes tumour progression and predicts poor prognosis. J Cell Mol Med 2024; 28:e18135. [PMID: 38429900 PMCID: PMC10907829 DOI: 10.1111/jcmm.18135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Zi‐Hao Li
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jia‐Yi Li
- Geriatrics Department of Endocrinology and MetabolismThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Zuo‐Tao Wu
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Yong‐Jie Zhu
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ting Zhuo
- Department of Respiratory MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ju‐Sen Nong
- Department of Pediatric SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jing Qian
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Hua‐Jian Peng
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Lei Dai
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Yong‐Yong Wang
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Ming‐Wu Chen
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Xiao‐Chun Zeng
- Department of Cardio‐Thoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| |
Collapse
|
3
|
Sharma N, Setiawan D, Hamelberg D, Narayan R, Aneja R. Computational benchmarking of putative KIFC1 inhibitors. Med Res Rev 2023; 43:293-318. [PMID: 36104980 DOI: 10.1002/med.21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023]
Abstract
The centrosome in animal cells is instrumental in spindle pole formation, nucleation, proper alignment of microtubules during cell division, and distribution of chromosomes in each daughter cell. Centrosome amplification involving structural and numerical abnormalities in the centrosome can cause chromosomal instability and dysregulation of the cell cycle, leading to cancer development and metastasis. However, disturbances caused by centrosome amplification can also limit cancer cell survival by activating mitotic checkpoints and promoting mitotic catastrophe. As a smart escape, cancer cells cluster their surplus of centrosomes into pseudo-bipolar spindles and progress through the cell cycle. This phenomenon, known as centrosome clustering (CC), involves many proteins and has garnered considerable attention as a specific cancer cell-targeting weapon. The kinesin-14 motor protein KIFC1 is a minus end-directed motor protein that is involved in CC. Because KIFC1 is upregulated in various cancers and modulates oncogenic signaling cascades, it has emerged as a potential chemotherapeutic target. Many molecules have been identified as KIFC1 inhibitors because of their centrosome declustering activity in cancer cells. Despite the ever-increasing literature in this field, there have been few efforts to review the progress. The current review aims to collate and present an in-depth analysis of known KIFC1 inhibitors and their biological activities. Additionally, we present computational docking data of putative KIFC1 inhibitors with their binding sites and binding affinities. This first-of-kind comparative analysis involving experimental biology, chemistry, and computational docking of different KIFC1 inhibitors may help guide decision-making in the selection and design of potent inhibitors.
Collapse
Affiliation(s)
- Nivya Sharma
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Dani Setiawan
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa, India.,School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Goa, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA.,Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Tilwani S, Gandhi K, Narayan S, Ainavarapu SRK, Dalal SN. Disruption of desmosome function leads to increased centrosome clustering in 14-3-3γ-knockout cells with supernumerary centrosomes. FEBS Lett 2021; 595:2675-2690. [PMID: 34626438 DOI: 10.1002/1873-3468.14204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
14-3-3 proteins are conserved, dimeric, acidic proteins that regulate multiple cellular pathways. Loss of either 14-3-3ε or 14-3-3γ leads to centrosome amplification. However, we find that while the knockout of 14-3-3ε leads to multipolar mitoses, the knockout of 14-3-3γ results in centrosome clustering and pseudo-bipolar mitoses. 14-3-3γ knockouts demonstrate compromised desmosome function and a decrease in keratin levels, leading to decreased cell stiffness and an increase in centrosome clustering. Restoration of desmosome function increased multipolar mitoses, whereas knockdown of either plakoglobin or keratin 5 led to decreased cell stiffness and increased pseudo-bipolar mitoses. These results suggest that the ability of the desmosome to anchor keratin filaments maintains cell stiffness, thus inhibiting centrosome clustering, and that phenotypes observed upon 14-3-3 loss reflect the dysregulation of multiple pathways.
Collapse
Affiliation(s)
- Sarika Tilwani
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Karan Gandhi
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Satya Narayan
- Department of Chemical Sciences, TIFR, Mumbai, India
| | | | - Sorab Nariman Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
5
|
Xu Y, Zhu K, Chen J, Lin L, Huang Z, Zhang J, Chen Y. SASS6 promotes proliferation of esophageal squamous carcinoma cells by inhibiting the p53 signaling pathway. Carcinogenesis 2021; 42:254-262. [PMID: 32671379 DOI: 10.1093/carcin/bgaa067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/21/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
SASS6 encodes for the Homo sapiens SAS-6 centriolar assembly protein and is important for proper centrosome formation. Although centrosomes are amplified in a wide variety of tumor types, abnormally high SASS6 expression had previously only been identified in colon cancer. Moreover, the role of SASS6 in esophageal squamous cell carcinoma (ESCC) pathogenesis has not yet been elucidated. The aim of this study was to investigate the role and mechanisms of SASS6 in ESCC. In this study, we found that the mRNA and protein levels of SASS6 were increased in human ESCC samples. In addition, SASS6 protein expression was associated with the esophageal cancer stage and negatively affected survival of patients with ESCC. Furthermore, silencing of SASS6 inhibited cell growth and promoted apoptosis of ESCC cells in vitro and inhibited xenograft tumor formation in vivo. A genetic cluster and pathway analysis showed that SASS6 regulated the p53 signaling pathway. Western blot demonstrated that CCND2, GADD45A and EIF4EBP1 protein expression decreased and that TP53 protein expression increased after the knockdown of SASS6 in ESCC cells. Therefore, SASS6 promoted the proliferation of esophageal cancer by inhibiting the p53 signaling pathway. SASS6 has potential as a novel tumor marker and a therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yuanji Xu
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Kunshou Zhu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Junqiang Chen
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Liyan Lin
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Zhengrong Huang
- Department of Integrative Traditional Chinese and Western Medicine, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jiulong Zhang
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yuanmei Chen
- Department of Thoracic Surgery, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
6
|
Garvey DR, Chhabra G, Ndiaye MA, Ahmad N. Role of Polo-Like Kinase 4 (PLK4) in Epithelial Cancers and Recent Progress in its Small Molecule Targeting for Cancer Management. Mol Cancer Ther 2021; 20:632-640. [PMID: 33402398 PMCID: PMC8026525 DOI: 10.1158/1535-7163.mct-20-0741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/02/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
The polo-like kinases (PLKs) are a family of serine/threonine kinases traditionally linked to cell-cycle regulation. A structurally unique member of this family, PLK4, has been shown to regulate centriole duplication during the cell cycle via interactions with a variety of centrosomal proteins. Recent findings suggest that PLK4 is overexpressed in various human cancers and associated with poor cancer prognosis. Although several studies have shown that PLK4 inhibition may lead to cancer cell death, the underlying mechanisms are largely unknown. In this review, we discuss the structure, localization, and function of PLK4, along with the functional significance of PLK4 in epithelial cancers and some preliminary work suggesting a role for PLK4 in the key cancer progression process epithelial-mesenchymal transition. We also discuss the potential of PLK4 as a druggable target for anticancer drug development based on critical analysis of the available data of PLK4 inhibitors in preclinical development and clinical trials. Overall, the emerging data suggest that PLK4 plays an essential role in epithelial cancers and should be further explored as a potential biomarker and/or therapeutic target. Continued detailed exploration of available and next-generation PLK4 inhibitors may provide a new dimension for novel cancer therapeutics following successful clinical trials.
Collapse
Affiliation(s)
- Debra R Garvey
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin.
- William S. Middleton VA Medical Center, Madison, Wisconsin
| |
Collapse
|
7
|
Lu J, Huang XY, Wang YH, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, Li P, Huang CM, Zheng CH. POC1A acts as a promising prognostic biomarker associated with high tumor immune cell infiltration in gastric cancer. Aging (Albany NY) 2020; 12:18982-19011. [PMID: 33052878 PMCID: PMC7732308 DOI: 10.18632/aging.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/04/2020] [Indexed: 01/24/2023]
Abstract
The effect of POC1 centriolar protein A (POC1A) on gastric cancer (GC) has not been clearly defined. In this study, POC1A expression and clinical information in patients with GC were analyzed. Multiple databases were used to investigate the genes that were co-expressed with POC1A and genes whose changes co-occurred with genetic alternations of POC1A. Moreover, the TISIDB and TIMER databases were used to analyze immune infiltration. The GSE54129 GC dataset and LASSO regression model (tumor vs. normal) were employed, and 6 significant differentially expressed genes (LAMP5, CEBPB, ARMC9, PAOX, VMP1, POC1A) were identified. POC1A was selected for its high expression in adjacent tissues, which was confirmed with IHC. High POC1A expression was related to better overall and recurrence-free survival. GO and KEGG analyses demonstrated that POC1A may regulate the cell cycle, DNA replication and cell growth. Furthermore, POC1A was found to be correlated with immune infiltration levels in GC according to the TISIDB and TIMER databases. These findings indicate that POC1A acts as a tumor suppressor in GC by regulating the cell cycle and cell growth. In addition, POC1A preferentially regulates the immune infiltration of GC via several immune genes. However, the specific mechanism requires further study.
Collapse
Affiliation(s)
- Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xiao-Yan Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yao-Hui Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Murata SI, Kuroda M, Kawamura N, Warigaya K, Musangile FY, Matsuzaki I, Kojima F. Microtubule-organizing center-mediated structural atypia in low- and high-grade urothelial carcinoma. Virchows Arch 2020; 478:327-334. [PMID: 32710188 DOI: 10.1007/s00428-020-02895-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022]
Abstract
Urothelial carcinoma (UC) comprises two subtypes, low grade (LG-UC) and high grade (HG-UC), with different pathological and clinical behavior. LG-UC and HG-UC are classified based on cellular and structural atypia of pathological findings. The mechanisms responsible for maintaining structural atypia, such as the disturbance of nuclear polarity, remain unclear. In this study, we studied microtubule-organizing center (MTOC)-mediated nuclear polarity in UC subtypes. We evaluated six cases with normal urothelium (NU), 10 LG-UC cases, and 10 HG-UC cases by double immunofluorescence staining of γ-tubulin as a marker of MTOC and E-cadherin as a marker of each cell border. The number and position of γ-tubulin dots of expression in more than 100 cells per case were assessed using the spatial relationship with the nucleus and surface-basal axis. We found one γ-tubulin dot in most normal and tumor cells, and more than two γ-tubulin dots in 4.6% of NU cells, 6.1% of LG-UC cells, and 9.8% of HG-UC cells. More than three γ-tubulin dots were found only in 1.2% of HG-UC cells. Surface side positioning of γ-tubulin was found in 77.4% of normal urothelial cells, 63.8% of LG-UC cells, and 39.2% of HG-UC cells, whereas aberrant lateral and basal side positioning of γ-tubulin was found in 22.6% of normal urothelial cells, 36.1% of LG-UC cells, and 60.8% of HG-UC cells. We concluded that numerical and positional aberrations of MTOC in UC cases were strongly correlated with both cellular and structural atypia as well as abnormal cell proliferation.
Collapse
Affiliation(s)
- Shin-Ichi Murata
- Department of Human Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Masayo Kuroda
- School of Medical Technology, Faculty of Health and Medical Care, Saitama Medical University, Saitama, Japan
| | - Naomi Kawamura
- School of Medical Technology, Faculty of Health and Medical Care, Saitama Medical University, Saitama, Japan
| | - Kenji Warigaya
- Department of Human Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | | | - Ibu Matsuzaki
- Department of Human Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Fumiyoshi Kojima
- Department of Human Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
9
|
Riparbelli MG, Persico V, Dallai R, Callaini G. Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models. Cells 2020; 9:E744. [PMID: 32197383 PMCID: PMC7140630 DOI: 10.3390/cells9030744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Centrioles are-widely conserved barrel-shaped organelles present in most organisms. They are indirectly involved in the organization of the cytoplasmic microtubules both in interphase and during the cell division by recruiting the molecules needed for microtubule nucleation. Moreover, the centrioles are required to assemble cilia and flagella by the direct elongation of their microtubule wall. Due to the importance of the cytoplasmic microtubules in several aspects of the cell life, any defect in centriole structure can lead to cell abnormalities that in humans may result in significant diseases. Many aspects of the centriole dynamics and function have been clarified in the last years, but little attention has been paid to the exceptions in centriole structure that occasionally appeared within the animal kingdom. Here, we focused our attention on non-canonical aspects of centriole architecture within the Hexapoda. The Hexapoda is one of the major animal groups and represents a good laboratory in which to examine the evolution and the organization of the centrioles. Although these findings represent obvious exceptions to the established rules of centriole organization, they may contribute to advance our understanding of the formation and the function of these organelles.
Collapse
Affiliation(s)
- Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Veronica Persico
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
- Department of Medical Biotechnologies, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|