1
|
Holt WV. Biobanks, offspring fitness and the influence of developmental plasticity in conservation biology. Anim Reprod 2023; 20:e20230026. [PMID: 37700907 PMCID: PMC10494884 DOI: 10.1590/1984-3143-ar2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
Mitigation of the widely known threats to the world's biodiversity is difficult, despite the strategies and actions proposed by international agreements such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Convention on Biological Diversity (CBD). Nevertheless, many scientists devote their time and effort to finding and implementing various solutions to the problem. One potential way forward that is gaining popularity involves the establishment of biobank programs aimed at preserving and storing germplasm from threatened species, and then using it to support the future viability and health of threatened populations. This involves developing and using assisted reproductive technologies to achieve their goals. Despite considerable advances in the effectiveness of reproductive technologies, differences between the reproductive behavior and physiology of widely differing taxonomic groups mean that this approach cannot be applied with equal success to many species. Moreover, evidence that epigenetic influences and developmental plasticity, whereby it is now understood that embryonic development, and subsequent health in later life, can be affected by peri-conceptional environmental conditions, is raising the possibility that cryopreservation methods themselves may have to be reviewed and revised when planning the biobanks. Here, I describe the benefits and problems associated with germplasm biobanking across various species, but also offer some realistic assessments of current progress and applications.
Collapse
Affiliation(s)
- William Vincent Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Howell LG, Mawson PR, Comizzoli P, Witt RR, Frankham R, Clulow S, O'Brien JK, Clulow J, Marinari P, Rodger JC. Modeling genetic benefits and financial costs of integrating biobanking into the conservation breeding of managed marsupials. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14010. [PMID: 36178038 DOI: 10.1111/cobi.14010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Managed breeding programs are an important tool in marsupial conservation efforts but may be costly and have adverse genetic effects in unavoidably small captive colonies. Biobanking and assisted reproductive technologies (ARTs) could help overcome these challenges, but further demonstration of their potential is required to improve uptake. We used genetic and economic models to examine whether supplementing hypothetical captive populations of dibblers (Parantechinus apicalis) and numbats (Myrmecobius fasciatus) with biobanked founder sperm through ARTs could reduce inbreeding, lower required colony sizes, and reduce program costs. We also asked practitioners of the black-footed ferret (Mustela nigripes) captive recovery program to complete a questionnaire to examine the resources and model species research pathways required to develop an optimized biobanking protocol in the black-footed ferret. We used data from this questionnaire to devise similar costed research pathways for Australian marsupials. With biobanking and assisted reproduction, inbreeding was reduced on average by between 80% and 98%, colony sizes were on average 99% smaller, and program costs were 69- to 83-fold lower. Integrating biobanking made long-standing captive genetic retention targets possible in marsupials (90% source population heterozygosity for a minimum of 100 years) within realistic cost frameworks. Lessons from the use of biobanking technology that contributed to the recovery of the black-footed ferret include the importance of adequate research funding (US$4.2 million), extensive partnerships that provide access to facilities and equipment, colony animals, appropriate research model species, and professional and technical staff required to address knowledge gaps to deliver an optimized biobanking protocol. Applied research investment of A$133 million across marsupial research pathways could deliver biobanking protocols for 15 of Australia's most at-risk marsupial species and 7 model species. The technical expertise and ex situ facilities exist to emulate the success of the black-footed ferret recovery program in threatened marsupials using these research pathways. All that is needed now for significant and cost-effective conservation gains is greater investment by policy makers in marsupial ARTs.
Collapse
Affiliation(s)
- Lachlan G Howell
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
- FAUNA Research Alliance, Kahibah, New South Wales, Australia
| | - Peter R Mawson
- Perth Zoo, Department of Biodiversity, Conservation and Attractions, South Perth, Western Australia, Australia
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Ryan R Witt
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- FAUNA Research Alliance, Kahibah, New South Wales, Australia
| | - Richard Frankham
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- Australian Museum, Sydney, New South Wales, Australia
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society, Mosman, New South Wales, Australia
| | - John Clulow
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- FAUNA Research Alliance, Kahibah, New South Wales, Australia
| | - Paul Marinari
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, Virginia, USA
| | - John C Rodger
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- FAUNA Research Alliance, Kahibah, New South Wales, Australia
| |
Collapse
|
3
|
Howell LG, Johnston SD, O’Brien JK, Frankham R, Rodger JC, Ryan SA, Beranek CT, Clulow J, Hudson DS, Witt RR. Modelling Genetic Benefits and Financial Costs of Integrating Biobanking into the Captive Management of Koalas. Animals (Basel) 2022; 12:990. [PMID: 35454237 PMCID: PMC9028793 DOI: 10.3390/ani12080990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022] Open
Abstract
Zoo and wildlife hospital networks are set to become a vital component of Australia's contemporary efforts to conserve the iconic and imperiled koala (Phascolarctos cinereus). Managed breeding programs held across zoo-based networks typically face high economic costs and can be at risk of adverse genetic effects typical of unavoidably small captive colonies. Emerging evidence suggests that biobanking and associated assisted reproductive technologies could address these economic and genetic challenges. We present a modelled scenario, supported by detailed costings, where these technologies are optimized and could be integrated into conservation breeding programs of koalas across the established zoo and wildlife hospital network. Genetic and economic modelling comparing closed captive koala populations suggest that supplementing them with cryopreserved founder sperm using artificial insemination or intracytoplasmic sperm injection could substantially reduce inbreeding, lower the required colony sizes of conservation breeding programs, and greatly reduce program costs. Ambitious genetic retention targets (maintaining 90%, 95% and 99% of source population heterozygosity for 100 years) could be possible within realistic cost frameworks, with output koalas suited for wild release. Integrating biobanking into the zoo and wildlife hospital network presents a cost-effective and financially feasible model for the uptake of these tools due to the technical and research expertise, captive koala colonies, and ex situ facilities that already exist across these networks.
Collapse
Affiliation(s)
- Lachlan G. Howell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University Geelong, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC 3125, Australia
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Stephen D. Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Justine K. O’Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society, Bradleys Head Rd., Mosman, NSW 2088, Australia;
| | - Richard Frankham
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - John C. Rodger
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Shelby A. Ryan
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Chad T. Beranek
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - John Clulow
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| | - Donald S. Hudson
- Port Stephens Koala & Wildlife Preservation Society LTD., t/a Port Stephens Koala Hospital, One Mile, NSW 2316, Australia;
| | - Ryan R. Witt
- School of Environmental and Life Sciences, Biology Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.C.R.); (S.A.R.); (C.T.B.); (J.C.)
- FAUNA Research Alliance, P.O. Box 5092, Kahibah, NSW 2290, Australia
| |
Collapse
|
4
|
Holt WV, Comizzoli P. Opportunities and Limitations for Reproductive Science in Species Conservation. Annu Rev Anim Biosci 2021; 10:491-511. [PMID: 34699258 DOI: 10.1146/annurev-animal-013120-030858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reproductive science in the context of conservation biology is often understood solely in terms of breeding threatened species. Although technologies developed primarily for agriculture or biomedicine have a potentially important role in species conservation, their effectiveness is limited if we regard the main objective of animal conservation as helping to support populations rather than to breed a small number of individuals. The global threats facing wild species include the consequences of climate change, population growth, urbanization, atmospheric and water pollution, and the release of chemicals into the environment, to cite but a few. Reproductive sciences provide important and often unexpected windows into many of these consequences, and our aim here is both to demonstrate the breadth of reproductive science and the importance of basic knowledge and to suggest where some of the insights might be useful in mitigating the problems. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- William V Holt
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology & Metabolism, University of Sheffield, Sheffield, United Kingdom;
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA;
| |
Collapse
|
5
|
Skerrett-Byrne DA, Anderson AL, Hulse L, Wass C, Dun MD, Bromfield EG, De Iuliis GN, Pyne M, Nicolson V, Johnston SD, Nixon B. Proteomic analysis of koala (phascolarctos cinereus) spermatozoa and prostatic bodies. Proteomics 2021; 21:e2100067. [PMID: 34411425 DOI: 10.1002/pmic.202100067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
The aims of this study were to investigate the proteome of koala spermatozoa and that of the prostatic bodies with which they interact during ejaculation. For this purpose, spermatozoa and prostatic bodies were fractionated from the semen of four male koalas and analysed by HPLC MS/MS. This strategy identified 744 sperm and 1297 prostatic body proteins, which were subsequently attributed to 482 and 776 unique gene products, respectively. Gene ontology curation of the sperm proteome revealed an abundance of proteins mapping to the canonical sirtuin and 14-3-3 signalling pathways. By contrast, protein ubiquitination and unfolded protein response pathways dominated the equivalent analysis of proteins uniquely identified in prostatic bodies. Koala sperm proteins featured an enrichment of those mapping to the functional categories of cellular compromise/inflammatory response, whilst those of the prostatic body revealed an over-representation of molecular chaperone and stress-related proteins. Cross-species comparisons demonstrated that the koala sperm proteome displays greater conservation with that of eutherians (human; 93%) as opposed to reptile (crocodile; 39%) and avian (rooster; 27%) spermatozoa. Together, this work contributes to our overall understanding of the core sperm proteome and has identified biomarkers that may contribute to the exceptional longevity of koala spermatozoa during ex vivo storage.
Collapse
Affiliation(s)
- David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lyndal Hulse
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Caillin Wass
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Michael Pyne
- Currumbin Wildlife Sanctuary, Currumbin, Queensland, Australia
| | - Vere Nicolson
- Dreamworld, Dreamworld Parkway, Coomera, Queensland, Australia
| | - Stephen D Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|