1
|
Sigulinsky CL, Pfeiffer RL, Jones BW. Retinal Connectomics: A Review. Annu Rev Vis Sci 2024; 10:263-291. [PMID: 39292552 DOI: 10.1146/annurev-vision-102122-110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.
Collapse
Affiliation(s)
- Crystal L Sigulinsky
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Rebecca L Pfeiffer
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Bryan William Jones
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
2
|
Zucker CL, Bernstein PS, Schalek RL, Lichtman JW, Dowling JE. High-throughput ultrastructural analysis of macular telangiectasia type 2. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1428777. [PMID: 39140090 PMCID: PMC11319912 DOI: 10.3389/fopht.2024.1428777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
Introduction Macular Telangiectasia type 2 (MacTel), is an uncommon form of late-onset, slowly-progressive macular degeneration. Associated with regional Müller glial cell loss in the retina and the amino acid serine synthesized by Müller cells, the disease is functionally confined to a central retinal region - the MacTel zone. Methods We have used high-throughput multi-resolution electron microscopy techniques, optimized for disease analysis, to study the retinas from two women, mother and daughter, aged 79 and 48 years respectively, suffering from MacTel. Results In both eyes, the principal observations made were changes specific to mitochondrial structure both outside and within the MacTel zone in all retinal cell types, with the exception of those in the retinal pigment epithelium (RPE). The lesion areas, which are a hallmark of MacTel, extend from Bruch's membrane and the choriocapillaris, through all depths of the retina, and include cells from the RPE, retinal vascular elements, and extensive hypertrophic basement membrane material. Where the Müller glial cells are lost, we have identified a significant population of microglial cells, exclusively within the Henle fiber layer, which appear to ensheathe the Henle fibers, similar to that seen normally by Müller cells. Discussion Since Müller cells synthesize retinal serine, whereas retinal neurons do not, we propose that serine deficiency, required for normal mitochondrial function, may relate to mitochondrial changes that underlie the development of MacTel. With mitochondrial changes occurring retina-wide, the question remains as to why the Müller cells are uniquely susceptible within the MacTel zone.
Collapse
Affiliation(s)
- Charles L. Zucker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - John E. Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
3
|
Bejarano E, Whitcomb EA, Pfeiffer RL, Rose KL, Asensio MJ, Rodríguez-Navarro JA, Ponce-Mora A, Canto A, Almansa I, Schey KL, Jones BW, Taylor A, Rowan S. Unbalanced redox status network as an early pathological event in congenital cataracts. Redox Biol 2023; 66:102869. [PMID: 37677999 PMCID: PMC10495660 DOI: 10.1016/j.redox.2023.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.
Collapse
Affiliation(s)
- Eloy Bejarano
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Elizabeth A Whitcomb
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Rebecca L Pfeiffer
- Moran Eye Center, The University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maria José Asensio
- Servicio de Neurobiología, Departamento de Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - José Antonio Rodríguez-Navarro
- Servicio de Neurobiología, Departamento de Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain; Department of Cell Biology, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Ponce-Mora
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Antolín Canto
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Inma Almansa
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bryan W Jones
- Moran Eye Center, The University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, USA.
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
4
|
Occelli LM, Jones BW, Cervantes TJ, Petersen-Jones SM. Metabolic changes and retinal remodeling in Heterozygous CRX mutant cats (CRX RDY/+). Exp Eye Res 2023; 235:109630. [PMID: 37625575 DOI: 10.1016/j.exer.2023.109630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
CRX is a transcription factor essential for normal photoreceptor development and survival. The CRXRdy cat has a naturally occurring truncating mutation in CRX and is a large animal model for dominant Leber congenital amaurosis. This study investigated retinal remodeling that occurs as photoreceptors degenerate. CRXRdy/+ cats from 6 weeks to 10 years of age were investigated. In vivo structural changes of retinas were analyzed by fundus examination, confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Histologic analyses included immunohistochemistry for computational molecular phenotyping with macromolecules and small molecules. Affected cats had a cone-led photoreceptor degeneration starting in the area centralis. Initially there was preservation of inner retinal cells such as bipolar, amacrine and horizontal cells but with time migration of the deafferented neurons occurred. Early in the process of degeneration glial activation occurs ultimately resulting in formation of a glial seal. With progression the macula-equivalent area centralis developed severe atrophy including loss of retinal pigmentary epithelium. Microneuroma formation occured in advanced stages as more marked retinal remodeling occurred. This study indicates that retinal degeneration in the CrxRdy/+ cat retina follows the progressive, phased revision of retina that have been previously described for retinal remodeling. These findings suggest that therapy dependent on targeting inner retinal cells may be useful in young adults with preserved inner retinas prior to advanced stages of retinal remodeling and neuronal cell loss.
Collapse
Affiliation(s)
- Laurence M Occelli
- Small Animal Clinical Sciences, Michigan State University, 736 Wilson Road, East Lansing, MI, USA.
| | - Bryan W Jones
- Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| | - Taylor J Cervantes
- Small Animal Clinical Sciences, Michigan State University, 736 Wilson Road, East Lansing, MI, USA.
| | - Simon M Petersen-Jones
- Small Animal Clinical Sciences, Michigan State University, 736 Wilson Road, East Lansing, MI, USA.
| |
Collapse
|
5
|
Nag TC. Müller cell vulnerability in aging human retina: Implications on photoreceptor cell survival. Exp Eye Res 2023; 235:109645. [PMID: 37683797 DOI: 10.1016/j.exer.2023.109645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Müller glial cells (MC) support various metabolic functions of the retinal neurons, and maintain the homeostasis. Oxidative stress is intensified with aging, and in human retina, MC and photoreceptors undergo lipid peroxidation and protein nitration. Information on how MC respond to oxidative stress is vital to understand the fate of aging retinal neurons. This study examined age-related changes in MC of donor human retina (age: 35-98 years; N = 18 donors). Ultrastructural and immunohistochemical observations indicate that MC undergo gliosis and increased lipid peroxidation, and show osmotic changes with advanced aging (>80 years). Photoreceptor cells also undergo oxidative-nitrosative stress with aging, and their synapses also show clear osmotic swelling. MC respond to oxidative stress via proliferation of smooth endoplasmic reticulum in their processes, and increased expression of aquaporin-4 in endfeet and outer retina. In advanced aged retinas (81-98 years), they showed mitochondrial disorganisation, accumulation of lipids and autophagosomes, lipofuscin granules and axonal remnants in phagolysosomes in their inner processes, suggesting a reduced phagocytotic potential in them with aging. Glutamine synthetase expression does not alter until advanced aging, when the retinas show its increased expression in endfeet and Henle fiber layer. It is evident that MC are vulnerable with normal aging and this could be a reason for photoreceptor cell abnormalities reported with aging of the human retina.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
6
|
Shen WC, Huang BQ, Yang J. Regulatory mechanisms of retinal ganglion cell death in normal tension glaucoma and potential therapies. Neural Regen Res 2023; 18:87-93. [PMID: 35799514 PMCID: PMC9241424 DOI: 10.4103/1673-5374.344831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Normal tension glaucoma (NTG) is a multifactorial optic neuropathy characterized by normal intraocular pressure, progressive retinal ganglion cell (RGC) death, and glaucomatous visual field loss. Recent studies have described the mechanisms underlying the pathogenesis of NTG. In addition to controlling intraocular pressure, neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG. In this review, we summarized the main regulatory mechanisms of RGC death in NTG, including autophagy, glutamate neurotoxicity, oxidative stress, neuroinflammation, immunity, and vasoconstriction. Autophagy can be induced by retinal hypoxia and axonal damage. In this process, ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway. Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate, which occurs in RGCs and induces progressive glaucomatous optic neuropathy. Oxidative stress also participates in NTG-related glaucomatous optic neuropathy. It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway. Moreover, it increases inflammation and the immune response of RGCs. Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow, promoting vasospasm and glaucomatous optic neuropathy, as a result of NTG. In conclusion, we discussed research progress on potential options for the protection of RGCs, including TANK binding kinase 1 inhibitors regulating autophagy, N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity, ASK1 inhibitors regulating mitochondrial function, and antioxidants inhibiting oxidative stress. In NTG, RGC death is regulated by a network of mechanisms, while various potential targets protect RGCs. Collectively, these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.
Collapse
|
7
|
Pfeiffer RL, Jones BW. Current perspective on retinal remodeling: Implications for therapeutics. Front Neuroanat 2022; 16:1099348. [PMID: 36620193 PMCID: PMC9813390 DOI: 10.3389/fnana.2022.1099348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degenerative diseases retinitis pigmentosa and age-related macular degeneration are a leading cause of irreversible vision loss. Both present with progressive photoreceptor degeneration that is further complicated by processes of retinal remodeling. In this perspective, we discuss the current state of the field of retinal remodeling and its implications for vision-restoring therapeutics currently in development. Here, we discuss the challenges and pitfalls retinal remodeling poses for each therapeutic strategy under the premise that understanding the features of retinal remodeling in totality will provide a basic framework with which therapeutics can interface. Additionally, we discuss the potential for approaching therapeutics using a combined strategy of using diffusible molecules in tandem with other vision-restoring therapeutics. We end by discussing the potential of the retina and retinal remodeling as a model system for more broadly understanding the progression of neurodegeneration across the central nervous system.
Collapse
|
8
|
Martínez-Gil N, Maneu V, Kutsyr O, Fernández-Sánchez L, Sánchez-Sáez X, Sánchez-Castillo C, Campello L, Lax P, Pinilla I, Cuenca N. Cellular and molecular alterations in neurons and glial cells in inherited retinal degeneration. Front Neuroanat 2022; 16:984052. [PMID: 36225228 PMCID: PMC9548552 DOI: 10.3389/fnana.2022.984052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple gene mutations have been associated with inherited retinal dystrophies (IRDs). Despite the spectrum of phenotypes caused by the distinct mutations, IRDs display common physiopathology features. Cell death is accompanied by inflammation and oxidative stress. The vertebrate retina has several attributes that make this tissue vulnerable to oxidative and nitrosative imbalance. The high energy demands and active metabolism in retinal cells, as well as their continuous exposure to high oxygen levels and light-induced stress, reveal the importance of tightly regulated homeostatic processes to maintain retinal function, which are compromised in pathological conditions. In addition, the subsequent microglial activation and gliosis, which triggers the secretion of pro-inflammatory cytokines, chemokines, trophic factors, and other molecules, further worsen the degenerative process. As the disease evolves, retinal cells change their morphology and function. In disease stages where photoreceptors are lost, the remaining neurons of the retina to preserve their function seek out for new synaptic partners, which leads to a cascade of morphological alterations in retinal cells that results in a complete remodeling of the tissue. In this review, we describe important molecular and morphological changes in retinal cells that occur in response to oxidative stress and the inflammatory processes underlying IRDs.
Collapse
Affiliation(s)
- Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | | | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Isabel Pinilla
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain
- Department of Surgery, University of Zaragoza, Zaragoza, Spain
- Isabel Pinilla,
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute Ramón Margalef, University of Alicante, Alicante, Spain
- *Correspondence: Nicolás Cuenca,
| |
Collapse
|
9
|
Kosta P, Iseri E, Loizos K, Paknahad J, Pfeiffer RL, Sigulinsky CL, Anderson JR, Jones BW, Lazzi G. Model-based comparison of current flow in rod bipolar cells of healthy and early-stage degenerated retina. Exp Eye Res 2021; 207:108554. [PMID: 33794197 DOI: 10.1016/j.exer.2021.108554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022]
Abstract
Retinal degenerative diseases, such as retinitis pigmentosa, are generally thought to initiate with the loss of photoreceptors, though recent work suggests that plasticity and remodeling occurs prior to photoreceptor cell loss. This degeneration subsequently leads to death of other retinal neurons, creating functional alterations and extensive remodeling of retinal networks. Retinal prosthetic devices stimulate the surviving retinal cells by applying external current using implanted electrodes. Although these devices restore partial vision, the quality of restored vision is limited. Further knowledge about the precise changes in degenerated retina as the disease progresses is essential to understand how current flows in retinas undergoing degenerative disease and to improve the performance of retinal prostheses. We developed computational models that describe current flow from rod photoreceptors to rod bipolar cells (RodBCs) in the healthy and early-stage degenerated retina. Morphologically accurate models of retinal cells with their synapses are constructed based on retinal connectome datasets, created using serial section transmission electron microscopy (TEM) images of 70 nm-thick slices of either healthy (RC1) or early-stage degenerated (RPC1) rabbit retina. The passive membrane and active ion currents of each cell are implemented using conductance-based models in the Neuron simulation environment. In response to photocurrent input at rod photoreceptors, the simulated membrane potential at RodBCs in early degenerate tissue is approximately 10-20 mV lower than that of RodBCs of that observed in wild type retina. Results presented here suggest that although RodBCs in RPC1 show early, altered morphology compared to RC1, the lower membrane potential is primarily a consequence of reduced rod photoreceptor input to RodBCs in the degenerated retina. Frequency response and step input analyses suggest that individual cell responses of RodBCs in either healthy or early-degenerated retina, prior to substantial photoreceptor cell loss, do not differ significantly.
Collapse
Affiliation(s)
- Pragya Kosta
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Ege Iseri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kyle Loizos
- Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Javad Paknahad
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Rebecca L Pfeiffer
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | | | - James R Anderson
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| | - Gianluca Lazzi
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Pfeiffer RL, Anderson JR, Dahal J, Garcia JC, Yang JH, Sigulinsky CL, Rapp K, Emrich DP, Watt CB, Johnstun HA, Houser AR, Marc RE, Jones BW. A pathoconnectome of early neurodegeneration: Network changes in retinal degeneration. Exp Eye Res 2020; 199:108196. [PMID: 32810483 DOI: 10.1016/j.exer.2020.108196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Connectomics has demonstrated that synaptic networks and their topologies are precise and directly correlate with physiology and behavior. The next extension of connectomics is pathoconnectomics: to map neural network synaptology and circuit topologies corrupted by neurological disease in order to identify robust targets for therapeutics. In this report, we characterize a pathoconnectome of early retinal degeneration. This pathoconnectome was generated using serial section transmission electron microscopy to achieve an ultrastructural connectome with 2.18nm/px resolution for accurate identification of all chemical and gap junctional synapses. We observe aberrant connectivity in the rod-network pathway and novel synaptic connections deriving from neurite sprouting. These observations reveal principles of neuron responses to the loss of network components and can be extended to other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| | - James R Anderson
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jeebika Dahal
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jessica C Garcia
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jia-Hui Yang
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | | | - Kevin Rapp
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Daniel P Emrich
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Carl B Watt
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Hope Ab Johnstun
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Alexis R Houser
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Robert E Marc
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA; Signature Immunologics, Torrey, UT, USA
| | - Bryan W Jones
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|