1
|
Liu Y, Wang W, Li Y, Lai H, Huang S, Yang X. Geometry-Consistent Adversarial Registration Model for Unsupervised Multi-Modal Medical Image Registration. IEEE J Biomed Health Inform 2023; 27:3455-3466. [PMID: 37099474 DOI: 10.1109/jbhi.2023.3270199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Deformable multi-modal medical image registration aligns the anatomical structures of different modalities to the same coordinate system through a spatial transformation. Due to the difficulties of collecting ground-truth registration labels, existing methods often adopt the unsupervised multi-modal image registration setting. However, it is hard to design satisfactory metrics to measure the similarity of multi-modal images, which heavily limits the multi-modal registration performance. Moreover, due to the contrast difference of the same organ in multi-modal images, it is difficult to extract and fuse the representations of different modal images. To address the above issues, we propose a novel unsupervised multi-modal adversarial registration framework that takes advantage of image-to-image translation to translate the medical image from one modality to another. In this way, we are able to use the well-defined uni-modal metrics to better train the models. Inside our framework, we propose two improvements to promote accurate registration. First, to avoid the translation network learning spatial deformation, we propose a geometry-consistent training scheme to encourage the translation network to learn the modality mapping solely. Second, we propose a novel semi-shared multi-scale registration network that extracts features of multi-modal images effectively and predicts multi-scale registration fields in an coarse-to-fine manner to accurately register the large deformation area. Extensive experiments on brain and pelvic datasets demonstrate the superiority of the proposed method over existing methods, revealing our framework has great potential in clinical application.
Collapse
|
2
|
Liu H, Jiao ML, Xing XY, Ou-Yang HQ, Yuan Y, Liu JF, Li Y, Wang CJ, Lang N, Qian YL, Jiang L, Yuan HS, Wang XD. BgNet: Classification of benign and malignant tumors with MRI multi-plane attention learning. Front Oncol 2022; 12:971871. [DOI: 10.3389/fonc.2022.971871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesTo propose a deep learning-based classification framework, which can carry out patient-level benign and malignant tumors classification according to the patient’s multi-plane images and clinical information.MethodsA total of 430 cases of spinal tumor, including axial and sagittal plane images by MRI, of which 297 cases for training (14072 images), and 133 cases for testing (6161 images) were included. Based on the bipartite graph and attention learning, this study proposed a multi-plane attention learning framework, BgNet, for benign and malignant tumor diagnosis. In a bipartite graph structure, the tumor area in each plane is used as the vertex of the graph, and the matching between different planes is used as the edge of the graph. The tumor areas from different plane images are spliced at the input layer. And based on the convolutional neural network ResNet and visual attention learning model Swin-Transformer, this study proposed a feature fusion model named ResNetST for combining both global and local information to extract the correlation features of multiple planes. The proposed BgNet consists of five modules including a multi-plane fusion module based on the bipartite graph, input layer fusion module, feature layer fusion module, decision layer fusion module, and output module. These modules are respectively used for multi-level fusion of patient multi-plane image data to realize the comprehensive diagnosis of benign and malignant tumors at the patient level.ResultsThe accuracy (ACC: 79.7%) of the proposed BgNet with multi-plane was higher than that with a single plane, and higher than or equal to the four doctors’ ACC (D1: 70.7%, p=0.219; D2: 54.1%, p<0.005; D3: 79.7%, p=0.006; D4: 72.9%, p=0.178). Moreover, the diagnostic accuracy and speed of doctors can be further improved with the aid of BgNet, the ACC of D1, D2, D3, and D4 improved by 4.5%, 21.8%, 0.8%, and 3.8%, respectively.ConclusionsThe proposed deep learning framework BgNet can classify benign and malignant tumors effectively, and can help doctors improve their diagnostic efficiency and accuracy. The code is available at https://github.com/research-med/BgNet.
Collapse
|
3
|
Han R, Jones CK, Lee J, Zhang X, Wu P, Vagdargi P, Uneri A, Helm PA, Luciano M, Anderson WS, Siewerdsen JH. Joint synthesis and registration network for deformable MR-CBCT image registration for neurosurgical guidance. Phys Med Biol 2022; 67:10.1088/1361-6560/ac72ef. [PMID: 35609586 PMCID: PMC9801422 DOI: 10.1088/1361-6560/ac72ef] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/24/2022] [Indexed: 01/03/2023]
Abstract
Objective.The accuracy of navigation in minimally invasive neurosurgery is often challenged by deep brain deformations (up to 10 mm due to egress of cerebrospinal fluid during neuroendoscopic approach). We propose a deep learning-based deformable registration method to address such deformations between preoperative MR and intraoperative CBCT.Approach.The registration method uses a joint image synthesis and registration network (denoted JSR) to simultaneously synthesize MR and CBCT images to the CT domain and perform CT domain registration using a multi-resolution pyramid. JSR was first trained using a simulated dataset (simulated CBCT and simulated deformations) and then refined on real clinical images via transfer learning. The performance of the multi-resolution JSR was compared to a single-resolution architecture as well as a series of alternative registration methods (symmetric normalization (SyN), VoxelMorph, and image synthesis-based registration methods).Main results.JSR achieved median Dice coefficient (DSC) of 0.69 in deep brain structures and median target registration error (TRE) of 1.94 mm in the simulation dataset, with improvement from single-resolution architecture (median DSC = 0.68 and median TRE = 2.14 mm). Additionally, JSR achieved superior registration compared to alternative methods-e.g. SyN (median DSC = 0.54, median TRE = 2.77 mm), VoxelMorph (median DSC = 0.52, median TRE = 2.66 mm) and provided registration runtime of less than 3 s. Similarly in the clinical dataset, JSR achieved median DSC = 0.72 and median TRE = 2.05 mm.Significance.The multi-resolution JSR network resolved deep brain deformations between MR and CBCT images with performance superior to other state-of-the-art methods. The accuracy and runtime support translation of the method to further clinical studies in high-precision neurosurgery.
Collapse
Affiliation(s)
- R Han
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - C K Jones
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, United States of America
| | - J Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, United States of America
| | - X Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - P Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - P Vagdargi
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - P A Helm
- Medtronic Inc., Littleton, MA, United States of America
| | - M Luciano
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, United States of America
| | - W S Anderson
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, United States of America
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Casamitjana A, Mancini M, Iglesias JE. Synth-by-Reg (SbR): Contrastive learning for synthesis-based registration of paired images. SIMULATION AND SYNTHESIS IN MEDICAL IMAGING : ... INTERNATIONAL WORKSHOP, SASHIMI ..., HELD IN CONJUNCTION WITH MICCAI ..., PROCEEDINGS. SASHIMI (WORKSHOP) 2021; 12965:44-54. [PMID: 34778892 PMCID: PMC8582976 DOI: 10.1007/978-3-030-87592-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nonlinear inter-modality registration is often challenging due to the lack of objective functions that are good proxies for alignment. Here we propose a synthesis-by-registration method to convert this problem into an easier intra-modality task. We introduce a registration loss for weakly supervised image translation between domains that does not require perfectly aligned training data. This loss capitalises on a registration U-Net with frozen weights, to drive a synthesis CNN towards the desired translation. We complement this loss with a structure preserving constraint based on contrastive learning, which prevents blurring and content shifts due to overfitting. We apply this method to the registration of histological sections to MRI slices, a key step in 3D histology reconstruction. Results on two public datasets show improvements over registration based on mutual information (13% reduction in landmark error) and synthesis-based algorithms such as CycleGAN (11% reduction), and are comparable to registration with label supervision. Code and data are publicly available at https://github.com/acasamitjana/SynthByReg.
Collapse
Affiliation(s)
| | - Matteo Mancini
- Department of Neuroscience, University of Sussex, Brighton, UK
- NeuroPoly Lab, Polytechnique Montreal, Canada
- CUBRIC, Cardiff University, UK
| | - Juan Eugenio Iglesias
- Center for Medical Image Computing, University College London, UK
- Martinos Center for Biomedical Imaging, MGH and Harvard Medical School, USA
- Computer Science and AI Laboratory, Massachusetts Institute of Technology, USA
| |
Collapse
|
5
|
McKenzie EM, Tong N, Ruan D, Cao M, Chin RK, Sheng K. Using neural networks to extend cropped medical images for deformable registration among images with differing scan extents. Med Phys 2021; 48:4459-4471. [PMID: 34101198 DOI: 10.1002/mp.15039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Missing or discrepant imaging volume is a common challenge in deformable image registration (DIR). To minimize the adverse impact, we train a neural network to synthesize cropped portions of head and neck CT's and then test its use in DIR. METHODS Using a training dataset of 409 head and neck CT's, we trained a generative adversarial network to take in a cropped 3D image and output an image with synthesized anatomy in the cropped region. The network used a 3D U-Net generator along with Visual Geometry Group (VGG) deep feature losses. To test our technique, for each of the 53 test volumes, we used Elastix to deformably register combinations of a randomly cropped, full, and synthetically full volume to a single cropped, full, and synthetically full target volume. We additionally tested our method's robustness to crop extent by progressively increasing the amount of cropping, synthesizing the missing anatomy using our network, and then performing the same registration combinations. Registration performance was measured using 95% Hausdorff distance across 16 contours. RESULTS We successfully trained a network to synthesize missing anatomy in superiorly and inferiorly cropped images. The network can estimate large regions in an incomplete image, far from the cropping boundary. Registration using our estimated full images was not significantly different from registration using the original full images. The average contour matching error for full image registration was 9.9 mm, whereas our method was 11.6, 12.1, and 13.6 mm for synthesized-to-full, full-to-synthesized, and synthesized-to-synthesized registrations, respectively. In comparison, registration using the cropped images had errors of 31.7 mm and higher. Plotting the registered image contour error as a function of initial preregistered error shows that our method is robust to registration difficulty. Synthesized-to-full registration was statistically independent of cropping extent up to 18.7 cm superiorly cropped. Synthesized-to-synthesized registration was nearly independent, with a -0.04 mm of change in average contour error for every additional millimeter of cropping. CONCLUSIONS Different or inadequate in scan extent is a major cause of DIR inaccuracies. We address this challenge by training a neural network to complete cropped 3D images. We show that with image completion, the source of DIR inaccuracy is eliminated, and the method is robust to varying crop extent.
Collapse
Affiliation(s)
- Elizabeth M McKenzie
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nuo Tong
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Dan Ruan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Minsong Cao
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Robert K Chin
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ke Sheng
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Xu Z, Yan J, Luo J, Li X, Jagadeesan J. UNSUPERVISED MULTIMODAL IMAGE REGISTRATION WITH ADAPTATIVE GRADIENT GUIDANCE. PROCEEDINGS OF THE ... IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. ICASSP (CONFERENCE) 2021; 2021:10.1109/icassp39728.2021.9414320. [PMID: 34366715 PMCID: PMC8340619 DOI: 10.1109/icassp39728.2021.9414320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multimodal image registration (MIR) is a fundamental procedure in many image-guided therapies. Recently, unsupervised learning-based methods have demonstrated promising performance over accuracy and efficiency in deformable image registration. However, the estimated deformation fields of the existing methods fully rely on the to-be-registered image pair. It is difficult for the networks to be aware of the mismatched boundaries, resulting in unsatisfactory organ boundary alignment. In this paper, we propose a novel multimodal registration framework, which elegantly leverages the deformation fields estimated from both: (i) the original to-be-registered image pair, (ii) their corresponding gradient intensity maps, and adaptively fuses them with the proposed gated fusion module. With the help of auxiliary gradient-space guidance, the network can concentrate more on the spatial relationship of the organ boundary. Experimental results on two clinically acquired CT-MRI datasets demonstrate the effectiveness of our proposed approach.
Collapse
Affiliation(s)
- Zhe Xu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jiangpeng Yan
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jie Luo
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Xiu Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | | |
Collapse
|
7
|
Deep multispectral image registration network. Comput Med Imaging Graph 2021; 87:101815. [PMID: 33418174 DOI: 10.1016/j.compmedimag.2020.101815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022]
Abstract
Multispectral imaging (MSI) of the ocular fundus provides a sequence of narrow-band images to show the different depths in the retina and choroid. One challenge in analyzing MSI images comes from the image-to-image spatial misalignment, which occurs because the acquisition time of eye MSI images is commonly longer than the natural time scale of the eye's saccadic movement. It is necessary to align images because ophthalmologists usually overlay two of the images to analyze specific features when analyzing MSI images. In this paper, we propose a weakly supervised MSI image registration network, called MSI-R-NET, for multispectral fundus image registration. Compared to other deep-learning-based registration methods, MSI-R-NET utilizes the blood vessel segmentation label to provide spatial correspondence. In addition, we employ a feature equilibrium module to connect the aggregating layers better, and propose a multiresolution auto-context structure to adapt the registration task. In the testing stage, given a new pair of MSI images, the trained model can predict the pixelwise spatial correspondence without labeled blood vessel information. The experimental results demonstrate that the proposed segmentation-driven registration method is highly accurate.
Collapse
|
8
|
Xu Z, Luo J, Yan J, Pulya R, Li X, Wells W, Jagadeesan J. Adversarial Uni- and Multi-modal Stream Networks for Multimodal Image Registration. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2020; 12263:222-232. [PMID: 33283210 DOI: 10.1007/978-3-030-59716-0_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Deformable image registration between Computed Tomography (CT) images and Magnetic Resonance (MR) imaging is essential for many image-guided therapies. In this paper, we propose a novel translation-based unsupervised deformable image registration method. Distinct from other translation-based methods that attempt to convert the multimodal problem (e.g., CT-to-MR) into a unimodal problem (e.g., MR-to-MR) via image-to-image translation, our method leverages the deformation fields estimated from both: (i) the translated MR image and (ii) the original CT image in a dual-stream fashion, and automatically learns how to fuse them to achieve better registration performance. The multimodal registration network can be effectively trained by computationally efficient similarity metrics without any ground-truth deformation. Our method has been evaluated on two clinical datasets and demonstrates promising results compared to state-of-the-art traditional and learning-based methods.
Collapse
Affiliation(s)
- Zhe Xu
- Shenzhen International Graduate School, Tsinghua University, China.,Brigham and Women's Hospital, Harvard Medical School, USA
| | - Jie Luo
- Brigham and Women's Hospital, Harvard Medical School, USA.,Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Jiangpeng Yan
- Shenzhen International Graduate School, Tsinghua University, China
| | - Ritvik Pulya
- Brigham and Women's Hospital, Harvard Medical School, USA
| | - Xiu Li
- Shenzhen International Graduate School, Tsinghua University, China
| | - William Wells
- Brigham and Women's Hospital, Harvard Medical School, USA
| | | |
Collapse
|