1
|
Kafkaletos A, Sachpazidis I, Mix M, Carles M, Schäfer H, Rühle A, Nicolay NH, Lazzeroni M, Toma-Dasu I, Grosu AL, Baltas D. Implications of the partial volume effect correction on the spatial quantification of hypoxia based on [ 18F]FMISO PET/CT data. Phys Med 2024; 128:104853. [PMID: 39522364 DOI: 10.1016/j.ejmp.2024.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE This study evaluates the impact of partial volume effect (PVE) correction on [18F]fluoromisonidazole (FMISO) PET images, focusing on the conversion of standardized uptake values (SUV) to partial oxygen pressure (pO2) and the subsequent determination of hypoxic tumor volume (HTV). METHODS FMISO PET images from 49 head and neck squamous cell carcinoma cases were retrospectively corrected for PVE and converted to pO2. A pO2 threshold of 10 mmHg was used to delineate the HTV (HTVpO2). Comparisons of pO2 distribution and HTVpO2 between corrected and uncorrected images were made, with pO2 distributions evaluated against published polarographic data. HTVpO2 was compared to HTV defined by the conventional tumor-to-muscle ratio (TMR) method (HTVTMR) in terms of volume and topography (DICE coefficient, Hausdorff distance, and center-of-gravity distance) across different TMR cutoff levels. The cutoff level where the segmentation results from both methods were most similar was identified (TMRbest). RESULTS The PVE correction led to decreased minimum pO2, increased HTVpO2 and the identification of more hypoxic cases (HTV > 0). The pO2 distribution demonstrated improved alignment with published polarographic data. At TMRbest 1.6, the center-of-gravity distance between HTVTMR and HTVpO2 demonstrated a low median at 1.5 mm, while the wide range (0.0 to 9.6 mm) indicated high interpatient variability. The shape of HTV exhibited considerable variation with DICE 0.74 (0.03 to 1.00) and Hausdorff distance 8.5 mm (2.0 to 42.8 mm). CONCLUSIONS PVE correction is recommended before converting SUV to pO2 for the spatially resolved quantification of hypoxia.
Collapse
Affiliation(s)
- Athanasios Kafkaletos
- Division of Medical Physics, Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany.
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany
| | - Montserrat Carles
- La Fe Health Research Institute, Biomedical Imaging Research Group (GIBI230-PREBI) and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
| | - Henning Schäfer
- Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany; Department of Radiation Oncology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Marta Lazzeroni
- Physics Department, Stockholm University, Sweden; Oncology-Pathology Department, Karolinska Institute, Stockholm, Sweden
| | - Iuliana Toma-Dasu
- Physics Department, Stockholm University, Sweden; Oncology-Pathology Department, Karolinska Institute, Stockholm, Sweden
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site DKTK-Freiburg, Germany
| |
Collapse
|
2
|
Lazzeroni M, Ureba A, Rosenberg V, Schäfer H, Rühle A, Baltas D, Toma-Dasu I, Grosu AL. Evaluating the impact of a rigid and a deformable registration method of pre-treatment images for hypoxia-based dose painting. Phys Med 2024; 122:103376. [PMID: 38772061 DOI: 10.1016/j.ejmp.2024.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE To assess the impact of rigid and deformable image registration methods (RIR, DIR) on the outcome of a hypoxia-based dose painting strategy. MATERIALS AND METHODS Thirty head and neck cancer patients were imaged with [18F]FMISO-PET/CT before radiotherapy. [18F]FMISO-PET/CT images were registered to the planning-CT by RIR or DIR. The [18F]FMISO uptake was converted into oxygen partial pressure (pO2) maps. Hypoxic Target Volumes were contoured on pO2 maps for the deformed (HTVdef) and non-deformed (HTV) cases. A dose escalation strategy by contours, aiming at 95 % tumour control probability (TCP), was applied. HTVs were characterised based on geometry-related metrics, the underlying pO2 distribution, and the dose boost level. A dosimetric and radiobiological evaluation of selected treatment plans made considering RIR and DIR was performed. Moreover, the TCP of the RIR dose distribution was evaluated when considering the deformed [18F]FMISO-PET image as an indicator of the actual target radiosensitivity to determine the potential impact of an unalignment. RESULTS Statistically significant differences were found between HTV and HTVdef for volume-based metrics and underlying pO2 distribution. Eight out of nine treatment plans for HTV and HTVdef showed differences on the level 10 %/3 mm on a gamma analysis. The TCP difference, however, between RIR and the case when the RIR dose distribution was used with the deformed radiosensitivity map was below 2 pp. CONCLUSIONS Although the choice of the CTplan-to-PET registration method pre-treatment impacts the HTV localisation and morphology and the corresponding dose distribution, it negligibly affects the TCP in the proposed dose escalation strategy by contours.
Collapse
Affiliation(s)
- M Lazzeroni
- Department of Physics, Stockholm University, Sweden; Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden.
| | - A Ureba
- Department of Physics, Stockholm University, Sweden; Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - V Rosenberg
- Royal Institute of Technology (KTH), Stockholm, Sweden
| | - H Schäfer
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| | - A Rühle
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany; University of Leipzig Medical Center, Department of Radiation Oncology, Leipzig, Germany
| | - D Baltas
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| | - I Toma-Dasu
- Department of Physics, Stockholm University, Sweden; Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - A L Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| |
Collapse
|
3
|
Ramesh P, Ruan D, Liu SJ, Seo Y, Braunstein S, Sheng K. Hypoxia-informed RBE-weighted beam orientation optimization for intensity modulated proton therapy. Med Phys 2024; 51:2320-2333. [PMID: 38345134 PMCID: PMC10940223 DOI: 10.1002/mp.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Variable relative biological effectiveness (RBE) models in treatment planning have been proposed to optimize the therapeutic ratio of proton therapy. It has been reported that proton RBE decreases with increasing tumor oxygen level, offering an opportunity to address hypoxia-related radioresistance with RBE-weighted optimization. PURPOSE Here, we obtain a voxel-level estimation of partial oxygen pressure to weigh RBE values in a single biologically informed beam orientation optimization (BOO) algorithm. METHODS Three glioblastoma patients with [18 F]-fluoromisonidazole (FMISO)-PET/CT images were selected from the institutional database. Oxygen values were derived from tracer uptake using a nonlinear least squares curve fitting. McNamara RBE, calculated from proton dose, was then weighed using oxygen enhancement ratios (OER) for each voxel and incorporated into the dose fidelity term of the BOO algorithm. The nonlinear optimization problem was solved using a split-Bregman approach, with FISTA as the solver. The proposed hypoxia informed RBE-weighted method (HypRBE) was compared to dose fidelity terms using the constant RBE of 1.1 (cRBE) and the normoxic McNamara RBE model (RegRBE). Tumor homogeneity index (HI), maximum biological dose (Dmax), and D95%, as well as OAR therapeutic index (TI = gEUDCTV /gEUDOAR ) were evaluated along with worst-case statistics after normalization to normal tissue isotoxicity. RESULTS Compared to [cRBE, RegRBE], HypRBE increased tumor HI, Dmax, and D95% across all plans by on average [31.3%, 31.8%], [48.6%, 27.1%], and [50.4%, 23.8%], respectively. In the worst-case scenario, the parameters increase on average by [12.5%, 14.7%], [7.3%,-8.9%], and [22.3%, 2.1%]. Despite increased OAR Dmean and Dmax by [8.0%, 3.0%] and [13.1%, -0.1%], HypRBE increased average TI by [22.0%, 21.1%]. Worst-case OAR Dmean, Dmax, and TI worsened by [17.9%, 4.3%], [24.5%, -1.2%], and [9.6%, 10.5%], but in the best cases, HypRBE escalates tumor coverage significantly without compromising OAR dose, increasing the therapeutic ratio. CONCLUSIONS We have developed an optimization algorithm whose dose fidelity term accounts for hypoxia-informed RBE values. We have shown that HypRBE selects bE:\Alok\aaeams better suited to deliver high physical dose to low RBE, hypoxic tumor regions while sparing the radiosensitive normal tissue.
Collapse
Affiliation(s)
- Pavitra Ramesh
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dan Ruan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - S. John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Sokol O, Durante M. Carbon Ions for Hypoxic Tumors: Are We Making the Most of Them? Cancers (Basel) 2023; 15:4494. [PMID: 37760464 PMCID: PMC10526811 DOI: 10.3390/cancers15184494] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoxia, which is associated with abnormal vessel growth, is a characteristic feature of many solid tumors that increases their metastatic potential and resistance to radiotherapy. Carbon-ion radiation therapy, either alone or in combination with other treatments, is one of the most promising treatments for hypoxic tumors because the oxygen enhancement ratio decreases with increasing particle LET. Nevertheless, current clinical practice does not yet fully benefit from the use of carbon ions to tackle hypoxia. Here, we provide an overview of the existing experimental and clinical evidence supporting the efficacy of C-ion radiotherapy in overcoming hypoxia-induced radioresistance, followed by a discussion of the strategies proposed to enhance it, including different approaches to maximize LET in the tumors.
Collapse
Affiliation(s)
- Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
5
|
Ferini G, Valenti V, Tripoli A, Illari SI, Molino L, Parisi S, Cacciola A, Lillo S, Giuffrida D, Pergolizzi S. Lattice or Oxygen-Guided Radiotherapy: What If They Converge? Possible Future Directions in the Era of Immunotherapy. Cancers (Basel) 2021; 13:cancers13133290. [PMID: 34209192 PMCID: PMC8268715 DOI: 10.3390/cancers13133290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/31/2022] Open
Abstract
Palliative radiotherapy has a great role in the treatment of large tumor masses. However, treating a bulky disease could be difficult, especially in critical anatomical areas. In daily clinical practice, short course hypofractionated radiotherapy is delivered in order to control the symptomatic disease. Radiation fields generally encompass the entire tumor mass, which is homogeneously irradiated. Recent technological advances enable delivering a higher radiation dose in small areas within a large mass. This goal, previously achieved thanks to the GRID approach, is now achievable using the newest concept of LATTICE radiotherapy (LT-RT). This kind of treatment allows exploiting various radiation effects, such as bystander and abscopal effects. These events may be enhanced by the concomitant use of immunotherapy, with the latter being ever more successfully delivered in cancer patients. Moreover, a critical issue in the treatment of large masses is the inhomogeneous intratumoral distribution of well-oxygenated and hypo-oxygenated areas. It is well known that hypoxic areas are more resistant to the killing effect of radiation, hence the need to target them with higher aggressive doses. This concept introduces the "oxygen-guided radiation therapy" (OGRT), which means looking for suitable hypoxic markers to implement in PET/CT and Magnetic Resonance Imaging. Future treatment strategies are likely to involve combinations of LT-RT, OGRT, and immunotherapy. In this paper, we review the radiobiological rationale behind a potential benefit of LT-RT and OGRT, and we summarize the results reported in the few clinical trials published so far regarding these issues. Lastly, we suggest what future perspectives may emerge by combining immunotherapy with LT-RT/OGRT.
Collapse
Affiliation(s)
- Gianluca Ferini
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
- Correspondence: ; Tel.: +39-095-789-4581
| | - Vito Valenti
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
| | | | | | - Laura Molino
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Silvana Parisi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Alberto Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Sara Lillo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Dario Giuffrida
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy;
| | - Stefano Pergolizzi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| |
Collapse
|
6
|
Castorina P, Castorina L, Ferini G. Non-Homogeneous Tumor Growth and Its Implications for Radiotherapy: A Phenomenological Approach. J Pers Med 2021; 11:jpm11060527. [PMID: 34207503 PMCID: PMC8229245 DOI: 10.3390/jpm11060527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor regrowth and heterogeneity are important clinical parameters during radiotherapy, and the probability of treatment benefit critically depends on the tumor progression pattern in the interval between the fractional irradiation treatments. We propose an analytic, easy-to-use method to take into account clonal subpopulations with different specific growth rates and radiation resistances. The different strain regrowth effects, as described by Gompertz law, require a dose-boost to reproduce the survival probability of the corresponding homogeneous system and for uniform irradiation. However, the estimate of the survival fraction for a tumor with a hypoxic subpopulation is more reliable when there is a slow specific regrowth rate and when the dependence on the oxygen enhancement ratio of radiotherapy is consistently taken into account. The approach is discussed for non-linear two-population dynamics for breast cancer and can be easily generalized to a larger number of components and different tumor phenotypes.
Collapse
Affiliation(s)
- Paolo Castorina
- Istituto Nazionale Fisica Nucleare, 95100 Catania, Italy
- Istituto Oncologico del Mediterraneo, 95029 Viagrande, Italy
- Faculty of Mathematics and Physics, Charles University, 18000 Prague, Czech Republic
- Correspondence:
| | | | | |
Collapse
|
7
|
Lazzeroni M, Ureba A, Wiedenmann N, Nicolay NH, Mix M, Thomann B, Baltas D, Toma-Dasu I, Grosu AL. Evolution of the hypoxic compartment on sequential oxygen partial pressure maps during radiochemotherapy in advanced head and neck cancer. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 17:100-105. [PMID: 33898787 PMCID: PMC8058025 DOI: 10.1016/j.phro.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/01/2022]
Abstract
Repeated PET imaging of hypoxia may be pivotal in radiotherapy outcome prediction. Oxygen partial pressure maps can be non-linearly derived from radiotracer uptake. The hypoxic target volume evolution in extension and severity can be determined. The first two treatment week parameters have potential for outcome prediction. Information may be used for treatment adaptation personalised strategies.
Background and purpose Longitudinal Positron Emission Tomography (PET) with hypoxia-specific radiotracers allows monitoring the time evolution of regions of increased radioresistance and may become fundamental in determining the radiochemotherapy outcome in Head-and-Neck Squamous Cell Carcinoma (HNSCC). The aim of this study was to investigate the evolution of the hypoxic target volume on oxygen partial pressure maps (pO2-HTV) derived from 18FMISO-PET images acquired before and during radiochemotherapy and to uncover correlations between extent and severity of hypoxia and treatment outcome. Material and methods 18FMISO-PET/CT images were acquired at three time points (before treatment start, in weeks two and five) for twenty-eight HNSCC patients treated with radiochemotherapy. The images were converted into pO2 maps and corresponding pO2-HTVs (pO2-HTV1, pO2-HTV2, pO2-HTV3) were contoured at 10 mmHg. Different parameters describing the pO2-HTV time evolution were considered, such as the percent and absolute difference between the pO2-HTVs (%HTVi,j and HTVi-HTVj with i,j = 1, 2, 3, respectively) and the slope of the linear regression curve fitting the pO2-HTVs in time. Correlations were sought between the pO2-HTV evolution parameters and loco-regional recurrence (LRR) using the Receiver Operating Characteristic method. Results The Area Under the Curve values for %HTV1,2, HTV1-HTV2, HTV1-HTV3 and the slope of the pO2-HTV linear regression curve were 0.75 (p = 0.04), 0.73 (p = 0.02), 0.73 (p = 0.02) and 0.75 (p = 0.007), respectively. Other parameter combinations were not statistically significant. Conclusions The pO2-HTV evolution during radiochemotherapy showed predictive value for LRR. The changes in the tumour hypoxia during the first two treatment weeks may be used for adaptive personalized treatment approaches.
Collapse
Affiliation(s)
- Marta Lazzeroni
- Department of Physics, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ana Ureba
- Skandion Clinic, Uppsala, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, University Medical Center, Freiburg, Germany
| | - Benedikt Thomann
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| | - Iuliana Toma-Dasu
- Department of Physics, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Busk M, Overgaard J, Horsman MR. Imaging of Tumor Hypoxia for Radiotherapy: Current Status and Future Directions. Semin Nucl Med 2020; 50:562-583. [PMID: 33059825 DOI: 10.1053/j.semnuclmed.2020.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor regions that are transiently or chronically undersupplied with oxygen (hypoxia) and nutrients, and enriched with acidic waste products, are common due to an abnormal and inefficient tumor vasculature, and a deviant highly glycolytic energy metabolism. There is compelling evidence that tumor hypoxia is strongly linked to poor prognosis since oxygen-deprived cells are highly resistant to therapy including radio- and chemotherapy, and survival of such cells is a primary cause of disease relapse. Despite a general improvement in cancer survival rates, hypoxia remains a formidable challenge. Recent progress in radiation delivery systems with improved spatial accuracy that allows dose escalation to hypoxic tumors or even tumor subvolumes, and the development of hypoxia-selective drugs, including bioreductive prodrugs, holds great promise for overcoming this obstacle. However, apart from one notable exception, translation of promising preclinical therapies to the clinic have largely been disappointing. A major obstacle in clinical trials on hypoxia-targeting strategies has been the lack of reliable information on tumor hypoxia, which is crucial for patient stratification into groups of those that are likely to benefit from intervention and those who are not. Further, in many newer trials on hypoxia-selective drugs the choice of cancer disease and combination therapy has not always been ideal, especially not for clinical proof of principle trials. Clearly, there is a pending need for clinical applicable methodologies that may allow us to quantify, map and monitor hypoxia. Molecular imaging may provide the information required for narrowing the gap between potential and actual patient benefit of hypoxia-targeting strategies. The grand majority of preclinical and clinical work has focused on the usefulness of PET-based assessment of hypoxia-selective tracers. Since hypoxia PET has profound inherent weaknesses, the use of other methodologies, including more indirect methods that quantifies blood flow or oxygenation-dependent flux changes through ATP-generating pathways (eg, anaerobic glycolysis) is being extensively studied. In this review, we briefly discuss established and emerging hypoxia-targeting strategies, followed by a more thorough evaluation of strengths and weaknesses of clinical applicable imaging methodologies that may guide timely treatment intensification to overcome hypoxia-driven resistance. Historically, most evidence for the linkage between hypoxia and poor outcome is based on work in the field of radiotherapy. Therefore, main emphasis in this review is on targeting and imaging of hypoxia for improved radiotherapy.
Collapse
Affiliation(s)
- Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark; Danish Centre for Particle Therapy, (AUH), Aarhus, Denmark.
| | - Jens Overgaard
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| |
Collapse
|