1
|
Shang J, Zhao F, Xie L, Wang Y, Li B, Jin C. Trends and future directions of autophagy in osteosarcoma: A bibliometric analysis. Open Med (Wars) 2024; 19:20241080. [PMID: 39655055 PMCID: PMC11627063 DOI: 10.1515/med-2024-1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
Background Osteosarcoma, a highly malignant skeletal tumor, primarily affects children and adolescents. Autophagy plays a crucial role in osteosarcoma pathophysiology. This study utilizes bibliometric analysis to evaluate current research on autophagy in osteosarcoma and forecast future directions. Methods We conducted a comprehensive search of publications in the Web of Science Core Collection database from January 1, 2008, to March 15, 2024. Tools like VOSviewer, CiteSpace, R software, Excel, and Scimago were used for analysis and visualization. Results Publications increased steadily over 17 years, indicating rising interest. Zhang Yuan was the most influential author, with Shanghai Jiao Tong University leading. Cell Death & Disease was the top journal. "HMGB1 Promotes Drug Resistance in Osteosarcoma" was the most cited paper. Co-cited articles focused on drug resistance, therapeutic targets, autophagy in cancer, and genomic impacts on immunotherapy. Keywords highlighted invasion, migration, cell death, and breast cancer as research hotspots. Future studies will likely focus on therapeutic innovations and integrated management strategies. Conclusion This bibliometric analysis offers an overview of current knowledge and emerging trends in autophagy and osteosarcoma, emphasizing key areas like invasion, migration, and cell death. It serves as a valuable resource for researchers developing novel therapies for osteosarcoma.
Collapse
Affiliation(s)
- JinXiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - FeiYing Zhao
- Department of Sterilization and Supply Center, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, Zhejiang, China
| | - Lu Xie
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - YaQing Wang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, 100000, China
| | - Cong Jin
- Department of Orthopedics, Shaoxing People’s Hospital, Shaoxing, 312000, Zhejiang, China
| |
Collapse
|
2
|
Liu S, Liu C, Wang Y, Chen J, He Y, Hu K, Li T, Yang J, Peng J, Hao L. The role of programmed cell death in osteosarcoma: From pathogenesis to therapy. Cancer Med 2024; 13:e7303. [PMID: 38800967 PMCID: PMC11129166 DOI: 10.1002/cam4.7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/β-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Chengtao Liu
- Shandong Wendeng Osteopathic HospitalWeihaiChina
| | - Yian Wang
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Jiewen Chen
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Yujin He
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Kaibo Hu
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Li
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Junmei Yang
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
3
|
Twenhafel L, Moreno D, Punt T, Kinney M, Ryznar R. Epigenetic Changes Associated with Osteosarcoma: A Comprehensive Review. Cells 2023; 12:1595. [PMID: 37371065 DOI: 10.3390/cells12121595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Osteosarcoma is the most common malignant primary bone tumor in children and adolescents. While clinical outcomes have improved, the 5-year survival rate is only around 60% if discovered early and can require debilitating treatments, such as amputations. A better understanding of the disease could lead to better clinical outcomes for patients with osteosarcoma. One promising avenue of osteosarcoma research is in the field of epigenetics. This research investigates changes in genetic expression that occur above the genome rather than in the genetic code itself. The epigenetics of osteosarcoma is an active area of research that is still not fully understood. In a narrative review, we examine recent advances in the epigenetics of osteosarcoma by reporting biomarkers of DNA methylation, histone modifications, and non-coding RNA associated with disease progression. We also show how cancer tumor epigenetic profiles are being used to predict and improve patient outcomes. The papers in this review cover a large range of epigenetic target genes and pathways that modulate many aspects of osteosarcoma, including but not limited to metastases and chemotherapy resistance. Ultimately, this review will shed light on the recent advances in the epigenetics of osteosarcoma and illustrate the clinical benefits of this field of research.
Collapse
Affiliation(s)
- Luke Twenhafel
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - DiAnna Moreno
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Trista Punt
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Madeline Kinney
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Rebecca Ryznar
- Department of Biomedical Sciences, Rocky Vista University, Englewood, CO 80112, USA
| |
Collapse
|
4
|
Ning B, Liu Y, Xu T, Li Y, Wei D, Huang T, Wei Y. Construction and validation of a prognostic model for osteosarcoma patients based on autophagy-related genes. Discov Oncol 2022; 13:146. [PMID: 36586072 PMCID: PMC9805482 DOI: 10.1007/s12672-022-00608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Osteosarcoma is the most frequent primary bone malignancy with a poor prognosis because of pulmonary metastasis. Autophagy is strongly associated with tumor metastasis, and it is valuable to construct an autophagy-related gene risk model for predicting the prognosis of osteosarcoma. METHODS We obtained ARGs from the Human Autophagy Database and RNA-sequencing data of osteosarcoma patients from the Gene Expression Omnibus (GEO) database. Subsequently, univariate and multivariate cox regression analyses were performed to construct a three-gene prognostic model and its accuracy was further confirmed in the Therapeutic Applications Research to Generate Effective Treatments (TARGET) database. Afterward, we detected the expression levels and effects on osteosarcoma cells metastasis of MYC and MBTPS2, which were involved in the model. RESULTS In both training and verification cohorts, patients with lower risk scores had longer OS, and the model was identified as an independent prognostic factor in osteosarcoma. Besides, the ROC curve demonstrated the reliability of the model. Furthermore, RT-qPCR, Western Blotting and IHC results indicated that MYC and MBTPS2 were differently expressed in osteosarcoma tissues and cell lines. MYC knockdown or MBTPS2 overexpression prevented the capacity of migration and invasion in osteosarcoma cell lines through inhibiting cellular autophagy. CONCLUSION The risk model based on three ARGs had a strong ability to predict the prognosis of osteosarcoma patients. Our findings also suggested that MYC and MBTPS2 were two major factors regulating autophagy in osteosarcoma, and could serve as potential therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Tianzi Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Yi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Dongyi Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China.
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430072, Hubei Province, People's Republic of China.
| |
Collapse
|
5
|
Giatagana EM, Berdiaki A, Gaardløs M, Tsatsakis AM, Samsonov SA, Nikitovic D. Rapamycin-induced autophagy in osteosarcoma cells is mediated via the biglycan/Wnt/β-catenin signaling axis. Am J Physiol Cell Physiol 2022; 323:C1740-C1756. [PMID: 36280393 DOI: 10.1152/ajpcell.00368.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biglycan is a class I secreted small leucine-rich proteoglycan (SLRP), which regulates signaling pathways connected to bone pathologies. Autophagy is a vital catabolic process with a dual role in cancer progression. Here, we show that biglycan inhibits autophagy in two osteosarcoma cell lines (P ≤ 0.001), while rapamycin-induced autophagy decreases biglycan expression in MG63 osteosarcoma cells and abrogates the biglycan-induced cell growth increase (P ≤ 0.001). Rapamycin also inhibits β-catenin translocation to the nucleus, inhibiting the Wnt pathway (P ≤ 0.001) and reducing biglycan's colocalization with the Wnt coreceptor LRP6 (P ≤ 0.05). Furthermore, biglycan exhibits protective effects against the chemotherapeutic drug doxorubicin in MG63 OS cells through an autophagy-dependent manner (P ≤ 0.05). Cotreatment of these cells with rapamycin and doxorubicin enhances cells response to doxorubicin by decreasing biglycan (P ≤ 0.001) and β-catenin (P ≤ 0.05) expression. Biglycan deficiency leads to increased caspase-3 activation (P ≤ 0.05), suggesting increased apoptosis of biglycan-deficient cells treated with doxorubicin. Computational models of LRP6 and biglycan complexes suggest that biglycan changes the receptor's ability to interact with other signaling molecules by affecting the interdomain bending angles in the receptor structure. Biglycan binding to LRP6 activates the Wnt pathway and β-catenin nuclear translocation by disrupting β-catenin degradation complex (P ≤ 0.01 and P ≤ 0.05). Interestingly, this mechanism is not followed in moderately differentiated, biglycan-nonexpressing U-2OS OS cells. To sum up, biglycan exhibits protective effects against the doxorubicin in MG63 OS cells by activating the Wnt signaling pathway and inhibiting autophagy.
Collapse
Affiliation(s)
- Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| | - Margrethe Gaardløs
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - Sergey A Samsonov
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| |
Collapse
|
6
|
Yu L, Zhang J, Li Y. Effects of microenvironment in osteosarcoma on chemoresistance and the promise of immunotherapy as an osteosarcoma therapeutic modality. Front Immunol 2022; 13:871076. [PMID: 36311748 PMCID: PMC9608329 DOI: 10.3389/fimmu.2022.871076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common primary malignant tumors originating in bones. Its high malignancy typically manifests in lung metastasis leading to high mortality. Although remarkable advances in surgical resection and neoadjuvant chemotherapy have lengthened life expectancy and greatly improved the survival rate among OS patients, no further breakthroughs have been achieved. It is challenging to treat patients with chemoresistant tumors and distant metastases. Recent studies have identified a compelling set of links between hypoxia and chemotherapy failure. Here, we review the evidence supporting the positive effects of hypoxia in the tumor microenvironment (TME). In addition, certain anticancer effects of immune checkpoint inhibitors have been demonstrated in OS preclinical models. Continued long-term observation in clinical trials is required. In the present review, we discuss the mutualistic effects of the TME in OS treatment and summarize the mechanisms of immunotherapy and their interaction with TME when used to treat OS. We also suggest that immunotherapy, a new comprehensive and potential antitumor approach that stimulates an immune response to eliminate tumor cells, may represent an innovative approach for the development of a novel treatment regimen for OS patients.
Collapse
|
7
|
Bioinformatics Analysis Reveals an Association between Autophagy, Prognosis, Tumor Microenvironment, and Immunotherapy in Osteosarcoma. JOURNAL OF ONCOLOGY 2022; 2022:4220331. [PMID: 35874628 PMCID: PMC9303156 DOI: 10.1155/2022/4220331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Autophagy is a catabolic pathway involved in the regulation of bone homeostasis. We explore clinical correlation of autophagy-related key molecules to establish risk signature for predicting the prognosis, tumor microenvironment (TME), and immunotherapy response of osteosarcoma. Single cell RNA sequencing data from GSE162454 dataset distinguished malignant cells from normal cells in osteosarcoma. Autophagy-related genes (ARGs) were extracted from the established risk signature of the Molecular Signatures Database of Gene Set Enrichment Analysis (GSEA) by univariate Cox and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Overall survival (OS), TME score, abundance of infiltrating immune cells, and response to immune-checkpoint blockade (ICB) treatment in patients with different risks were compared based on risk score. Nine ARGs were identified and risk signature was constructed. In all osteosarcoma datasets, the OS was significantly longer in the high-risk patients than low-risk onset. Risk signature significantly stratified clinical outcomes, including OS, metastatic status, and survival status. Risk signature was an independent variable for predicting osteosarcoma OS and showed high accuracy. A nomogram based on risk signature and metastases was developed. The calibration curve confirmed the consistency in 1-year, 3-year, and 5-year predicted OS and the actual OS. The risk score was related to 6 kinds of T cells and macrophages, myeloid-derived suppressor cell, natural killer cell, immune score, and stromal score in TME. The risk signature helped in predicting patients' response to anti-PD1/anti-PD-L1 treatment. The ARGs-led risk signature has important value for survival prediction, risk stratification, tumor microenvironment, and immune response evaluation of osteosarcoma.
Collapse
|
8
|
Xie W, Chang W, Wang X, Liu F, Wang X, Yuan D, Zhang Y. Allicin Inhibits Osteosarcoma Growth by Promoting Oxidative Stress and Autophagy via the Inactivation of the lncRNA MALAT1-miR-376a-Wnt/ β-Catenin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4857814. [PMID: 35783190 PMCID: PMC9249524 DOI: 10.1155/2022/4857814] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/29/2022]
Abstract
Allicin, an organic sulfur compound extracted from the bulb of Allium sativum, can potentially prevent various tumors. Our previous study found that allicin can effectively suppress the proliferation of osteosarcoma cells. However, the molecular mechanisms have not been illustrated. In this study, Saos-2 and U2OS osteosarcoma cells were used to investigate the underlying mechanisms. A series of experiments were carried out to authenticate the anticancer property of allicin. Knockdown of lncRNA MALAT1 inhibited the proliferation, invasion and migration and promoted apoptosis of osteosarcoma cells. Knockdown of miR-376a increased the proliferation, invasion, and migration and dropped apoptosis of osteosarcoma cells. Furthermore, knockdown of miR-376a reversed the influences of MALAT1 silencing in osteosarcoma cells. Based on our data, MALAT1 could downregulate the expression of miR-376a, subsequently accelerating osteosarcoma. Moreover, oxidative stress and autophagy were identified as the potential key pathway of allicin. Allicin inhibited osteosarcoma growth and promoted oxidative stress and autophagy via MALATI-miR-376a. We also found that allicin promotes oxidative stress and autophagy to inhibit osteosarcoma growth by inhibiting the Wnt/β-catenin pathway in vivo and in vitro. All data showed that allicin promotes oxidative stress and autophagy of osteosarcoma via the MALATI-miR-376a-Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wenpeng Xie
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Wenjie Chang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Xiaole Wang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Fei Liu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Xu Wang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Daotong Yuan
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Yongkui Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Shandong Fupai Pharmaceutical Co., Ltd, Jinan, Shandong, 250000, China
| |
Collapse
|