1
|
Mulenge F, Gern OL, Busker LM, Aringo A, Ghita L, Waltl I, Pavlou A, Kalinke U. Transcriptomic analysis unveils bona fide molecular signatures of microglia under conditions of homeostasis and viral encephalitis. J Neuroinflammation 2024; 21:203. [PMID: 39153993 PMCID: PMC11330067 DOI: 10.1186/s12974-024-03197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Microglia serve as a front-line defense against neuroinvasive viral infection, however, determination of their actual transcriptional profiles under conditions of health and disease is challenging. Here, we used various experimental approaches to delineate the transcriptional landscape of microglia during viral infection. Intriguingly, multiple activation genes were found to be artificially induced in sorted microglia and we demonstrated that shear stress encountered during cell sorting was one of the key inducers. Post-hoc analysis revealed that publicly available large-scale single-cell RNA sequencing datasets were significantly tainted by aberrant signatures that are associated with cell sorting. By exploiting the ribosomal tagging approach, we developed a strategy to enrich microglia-specific transcripts by comparing immunoprecipitated RNA with total RNA. Such enriched transcripts were instrumental in defining bona fide signatures of microglia under conditions of health and virus infection. These unified microglial signatures may serve as a benchmark to retrospectively assess ex vivo artefacts from available atlases. Leveraging the microglial translatome, we found enrichment of genes implicated in T-cell activation and cytokine production during the course of VSV infection. These data linked microglia with T-cell re-stimulation and further underscored that microglia are involved in shaping antiviral T-cell responses in the brain. Collectively, our study defines the transcriptional landscape of microglia under steady state and during viral encephalitis and highlights cellular interactions between microglia and T cells that contribute to the control of virus dissemination.
Collapse
Affiliation(s)
- Felix Mulenge
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, 30559, Foundation, Hannover, Germany
| | - Angela Aringo
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
- , Genentech, South San Francisco, CA, 94080, USA
| | - Inken Waltl
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, a joint venture between The Helmholtz-Centre for Infection Research, Hannover Medical School, TWINCORE, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Lin Z, Wang L, Niu Y, Xie Z, Zhao X. Interaction between microglial cells and CD1C+ B dendritic cells leads to CD8+ T cells depletion during the early stages of renal clear cell carcinoma. Medicine (Baltimore) 2024; 103:e38691. [PMID: 39093774 PMCID: PMC11296472 DOI: 10.1097/md.0000000000038691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Renal clear cell carcinoma (RCC) is a type of malignant tumor, which, in addition to surgical resection, radiotherapy, and chemotherapy, has been widely treated through immunotherapy recently. However, the influence of the tumor microenvironment and the infiltrating immune cells within it on immunotherapy remains unclear. It is imperative to study the interactions between various immune cells of RCC. The scRNA-seq dataset from GEO's database was used to analyze the immune cells present in tumor tissue and peripheral blood samples. Through quality control, clustering, and identification, the types and proportions of infiltrating immune cells were determined. The cellular differences were determined, and gene expression levels of the differentially present cells were investigated. A protein-protein interaction network analysis was performed using string. KEGG and GO analyses were performed to investigate abnormal activities. The microglia marker CD68 and CD1C+ B dendritic cells marker CD11C were detected using multiplex immunofluorescence staining. Many depleted CD8+ T cells (exhausted CD8+ T cells) appeared in tumor tissues as well as microglia. CD1C+ B dendritic cells did not infiltrate tumor tissues. HSPA1A was correlated with DNAJB1 in microglia. Compared with Paracancer tissues, microglia increased while CD1C+ B dendritic cells decreased in pathological stages I and I-II in cancerous tissues. An altered tumor microenvironment caused by increases in microglia in RCC in the early stage resulted in an inability of CD1C+ B dendritic cells to infiltrate, resulting in CD8+ T cells being unable to receive the antigens presented by them, and in turn being depleted in large quantities.
Collapse
Affiliation(s)
- Zixuan Lin
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Liping Wang
- College of Sport and Art, Shandong Sport University, Jinan, China
| | - Yaozong Niu
- College of Sport and Art, Shandong Sport University, Jinan, China
| | - Zhaopeng Xie
- College of Sport and Art, Shandong Sport University, Jinan, China
| | - Xiaohan Zhao
- College of Sport and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
3
|
Scuderi SA, Ardizzone A, Salako AE, Pantò G, De Luca F, Esposito E, Capra AP. Pentraxin 3: A Main Driver of Inflammation and Immune System Dysfunction in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2024; 16:1637. [PMID: 38730589 PMCID: PMC11083335 DOI: 10.3390/cancers16091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Brain tumors are a heterogeneous group of brain neoplasms that are highly prevalent in individuals of all ages worldwide. Within this pathological framework, the most prevalent and aggressive type of primary brain tumor is glioblastoma (GB), a subtype of glioma that falls within the IV-grade astrocytoma group. The death rate for patients with GB remains high, occurring within a few months after diagnosis, even with the gold-standard therapies now available, such as surgery, radiation, or a pharmaceutical approach with Temozolomide. For this reason, it is crucial to continue looking for cutting-edge therapeutic options to raise patients' survival chances. Pentraxin 3 (PTX3) is a multifunctional protein that has a variety of regulatory roles in inflammatory processes related to extracellular matrix (ECM). An increase in PTX3 blood levels is considered a trustworthy factor associated with the beginning of inflammation. Moreover, scientific evidence suggested that PTX3 is a sensitive and earlier inflammation-related marker compared to the short pentraxin C-reactive protein (CRP). In several tumoral subtypes, via regulating complement-dependent and macrophage-associated tumor-promoting inflammation, it has been demonstrated that PTX3 may function as a promoter of cancer metastasis, invasion, and stemness. Our review aims to deeply evaluate the function of PTX3 in the pathological context of GB, considering its pivotal biological activities and its possible role as a molecular target for future therapies.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Ayomide Eniola Salako
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
- University of Florence, 50121 Florence, Italy
| | - Giuseppe Pantò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| |
Collapse
|
4
|
Luo W, Quan Q, Xu Z, Lei J, Peng R. Bioinformatics analysis of MMP14+ myeloid cells affecting endothelial-mesenchymal transformation and immune microenvironment in glioma. Heliyon 2024; 10:e26859. [PMID: 38434278 PMCID: PMC10904238 DOI: 10.1016/j.heliyon.2024.e26859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background Gliomas, known for their complex and aggressive characteristics, are deeply influenced by the tumor microenvironment. Matrix metalloproteinases (MMPs) play a vital role in shaping this environment, presenting an opportunity for novel treatment strategies. Methods We collected six bulk RNA datasets, one single-cell RNA sequencing (scRNA-seq) dataset, and gene sets related to Matrix Metalloproteinases (MMPs), Endothelial-Mesenchymal Transformation (EndMT), and sprouting angiogenesis. We computed enrichment scores using Gene Set Variation Analysis (GSVA) and Single-sample Gene Set Enrichment Analysis (ssGSEA). To analyze immune infiltration, we employed the CIBERSORT method. Data analysis techniques included the log-rank test, Cox regression, Kruskal-Wallis test, and Pearson correlation. For single-cell data, we utilized tools such as Seurat and CellChat for dimensionality reduction, clustering, and cell communication analysis. Results 1. MMP14 was identified as an independent prognostic marker, highly expressed in myeloid cells in recurrent glioblastoma, highlighting these cells as functionally significant. 2. C-C Motif Chemokine Ligand (CCL) signaling from MMP14+ myeloid cells was identified as a critical immune regulatory pathway, with high C-C Motif Chemokine Receptor 1 (CCR1) expression correlating with increased M2 macrophage infiltration and PD-L1 expression. 3. Patients with high MMP14 expression showed better responses to bevacizumab combined chemotherapy. 4. Signaling pathways involving Visfatin, VEGF, and TGFb, emanating from myeloid cells, significantly impact endothelial cells. These pathways facilitate EndMT and angiogenesis in gliomas. 5. Nicotinamide Phosphoribosyltransferase (NAMPT) showed a strong link with angiogenesis and EndMT, and its association with chemotherapy resistance and differential sensitivity to bevacizumab was evident. Conclusions MMP14+ myeloid cells are critical in promoting tumor angiogenesis via EndMT and in mediating immunosuppression through CCL signaling in glioblastoma. MMP14 and NAMPT serve as vital clinical indicators for selecting treatment regimens in recurrent glioma. The study suggests that a combined blockade of CCR1 and CD274 could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Wei Luo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Qi Quan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zihao Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jinju Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Roujun Peng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
5
|
Wu Y, Mao M, Wang LJ. Integrated clustering signature of genomic heterogeneity, stemness and tumor microenvironment predicts glioma prognosis and immunotherapy response. Aging (Albany NY) 2023; 15:9086-9104. [PMID: 37698534 PMCID: PMC10522363 DOI: 10.18632/aging.205018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Glioma is the most frequent primary tumor of the central nervous system. The high heterogeneity of glioma tumors enables them to adapt to challenging environments, leading to resistance to treatment. Therefore, to detect the driving factors and improve the prognosis of glioma, it is essential to have a comprehensive understanding of the genomic heterogeneity, stemness, and immune microenvironment of glioma. METHODS We classified gliomas into various subtypes based on stemness, genomic heterogeneity, and immune microenvironment consensus clustering analysis. We identified risk hub genes linked to heterogeneous characteristics using WGCNA, LASSO, and multivariate Cox regression analysis and utilized them to create an effective risk model. RESULTS We thoroughly investigated the genomic heterogeneity, stemness, and immune microenvironment of glioma and identified the risk hub genes RAB42, SH2D4A, and GDF15 based on the TCGA dataset. We developed a risk model utilizing these genes that can reliably predict the prognosis of glioma patients. The risk signature showed a positive correlation with T cell exhaustion and increased infiltration of immunosuppressive cells, and a negative correlation with the response to immunotherapy. Moreover, we discovered that SH2D4A, one of the risk hub genes, could stimulate the migration and proliferation of glioma cells. CONCLUSIONS This study identified risk hub genes and established a risk model by analyzing the genomic heterogeneity, stemness, and immune microenvironment of glioma. Our findings will facilitate the diagnosis and prediction of glioma prognosis and may lead to potential treatment strategies for glioma.
Collapse
Affiliation(s)
- Yangyang Wu
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Meng Mao
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research of Trauma Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Lin-Jian Wang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research of Trauma Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| |
Collapse
|
6
|
Mackert JD, Stirling ER, Wilson AS, Westwood B, Zhao D, Lo HW, Metheny-Barlow L, Cook KL, Lesser GJ, Soto-Pantoja DR. Anti-CD47 immunotherapy as a therapeutic strategy for the treatment of breast cancer brain metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550566. [PMID: 37546807 PMCID: PMC10402073 DOI: 10.1101/2023.07.25.550566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The presence of cell surface protein CD47 allows cancer cells to evade innate and adaptive immune surveillance resulting in metastatic spread. CD47 binds to and activates SIRPα on the surface of myeloid cells, inhibiting their phagocytic activity. On the other hand, CD47 binds the matricellular protein Thrombospondin-1, limiting T-cell activation. Thus, blocking CD47 is a potential therapeutic strategy for preventing brain metastasis. To test this hypothesis, breast cancer patient biopsies were stained with antibodies against CD47 to determine differences in protein expression. An anti-CD47 antibody was used in a syngeneic orthotopic triple-negative breast cancer model, and CD47 null mice were used in a breast cancer brain metastasis model by intracardiac injection of the E0771-Br-Luc cell line. Immunohistochemical staining of patient biopsies revealed an 89% increase in CD47 expression in metastatic brain tumors compared to normal adjacent tissue (p ≤ 0.05). Anti-CD47 treatment in mice bearing brain metastatic 4T1br3 orthotopic tumors reduced tumor volume and tumor weight by over 50% compared to control mice (p ≤ 0.05) and increased IBA1 macrophage/microglia marker 5-fold in tumors compared to control (p ≤ 0.05). Additionally, CD47 blockade increased the M1/M2 macrophage ratio in tumors 2.5-fold (p ≤ 0.05). CD47 null mice had an 89% decrease in metastatic brain burden (p ≤ 0.05) compared to control mice in a brain metastasis model. Additionally, RNA sequencing revealed several uniquely expressed genes and significantly enriched genes related to tissue development, cell death, and cell migration tumors treated with anti-CD47 antibodies. Thus, demonstrating that CD47 blockade affects cancer cell and tumor microenvironment signaling to limit metastatic spread and may be an effective therapeutic for triple-negative breast cancer brain metastasis.
Collapse
|
7
|
Pricl S. The Spicy Science of Dendrimers in the Realm of Cancer Nanomedicine: A Report from the COST Action CA17140 Nano2Clinic. Pharmaceutics 2023; 15:2013. [PMID: 37514199 PMCID: PMC10384593 DOI: 10.3390/pharmaceutics15072013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
COST Action CA17140 Cancer Nanomedicine-from the bench to the bedside (Nano2Clinic,) is the first, pan-European interdisciplinary network of representatives from academic institutions and small and medium enterprises including clinical research organizations (CROs) devoted to the development of nanosystems carrying anticancer drugs from their initial design, preclinical testing of efficacy, pharmacokinetics and toxicity to the preparation of detailed protocols needed for the first phase of their clinical studies. By promoting scientific exchanges, technological implementation, and innovative solutions, the action aims at providing a timely instrument to rationalize and focus research efforts at the European level in dealing with the grand challenge of nanomedicine translation in cancer, one of the major and societal-burdening human pathologies. Within CA17140, dendrimers in all their forms (from covalent to self-assembling dendrons) play a vital role as powerful nanotheranostic agents in oncology; therefore, the purpose of this review work is to gather and summarize the major results in the field stemming from collaborative efforts in the framework of the European Nano2Clinic COST Action.
Collapse
Affiliation(s)
- Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture (DEA), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
8
|
Petrosyan E, Fares J, Fernandez LG, Yeeravalli R, Dmello C, Duffy JT, Zhang P, Lee-Chang C, Miska J, Ahmed AU, Sonabend AM, Balyasnikova IV, Heimberger AB, Lesniak MS. Endoplasmic Reticulum Stress in the Brain Tumor Immune Microenvironment. Mol Cancer Res 2023; 21:389-396. [PMID: 36652630 PMCID: PMC10159901 DOI: 10.1158/1541-7786.mcr-22-0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Immunotherapy has emerged as a powerful strategy for halting cancer progression. However, primary malignancies affecting the brain have been exempt to this success. Indeed, brain tumors continue to portend severe morbidity and remain a globally lethal disease. Extensive efforts have been directed at understanding how tumor cells survive and propagate within the unique microenvironment of the central nervous system (CNS). Cancer genetic aberrations and metabolic abnormalities provoke a state of persistent endoplasmic reticulum (ER) stress that in turn promotes tumor growth, invasion, therapeutic resistance, and the dynamic reprogramming of the infiltrating immune cells. Consequently, targeting ER stress is a potential therapeutic approach. In this work, we provide an overview of how ER stress response is advantageous to brain tumor development, discuss the significance of ER stress in governing antitumor immunity, and put forth therapeutic strategies of regulating ER stress to augment the effect of immunotherapy for primary CNS tumors.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jawad Fares
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Luis G. Fernandez
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Ragini Yeeravalli
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Crismita Dmello
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Joseph T. Duffy
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Peng Zhang
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jason Miska
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Atique U. Ahmed
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Adam M. Sonabend
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Irina V. Balyasnikova
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Maciej S. Lesniak
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
9
|
Lei Q, Yang Y, Zhou W, Liu W, Li Y, Qi N, Li Q, Wen Z, Ding L, Huang X, Li Y, Wu J. MicroRNA-based therapy for glioblastoma: Opportunities and challenges. Eur J Pharmacol 2022; 938:175388. [PMID: 36403686 DOI: 10.1016/j.ejphar.2022.175388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor and is characterized by high mortality and morbidity rates and unpredictable clinical behavior. The disappointing prognosis for patients with GBM even after surgery and postoperative radiation and chemotherapy has fueled the search for specific targets to provide new insights into the development of modern therapies. MicroRNAs (miRNAs/miRs) act as oncomirs and tumor suppressors to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, the cell cycle, apoptosis, invasion, stem cell behavior, angiogenesis, the microenvironment and chemo- and radiotherapy resistance, which makes them attractive candidates as prognostic biomarkers and therapeutic targets or agents to advance GBM therapeutics. However, one of the major challenges of successful miRNA-based therapy is the need for an effective and safe system to deliver therapeutic compounds to specific tumor cells or tissues in vivo, particularly systems that can cross the blood-brain barrier (BBB). This challenge has shifted gradually as progress has been achieved in identifying novel tumor-related miRNAs and their targets, as well as the development of nanoparticles (NPs) as new carriers to deliver therapeutic compounds. Here, we provide an up-to-date summary (in recent 5 years) of the current knowledge of GBM-related oncomirs, tumor suppressors and microenvironmental miRNAs, with a focus on their potential applications as prognostic biomarkers and therapeutic targets, as well as recent advances in the development of carriers for nontoxic miRNA-based therapy delivery systems and how they can be adapted for therapy.
Collapse
Affiliation(s)
- Qingchun Lei
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Yongmin Yang
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Wenhui Zhou
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Wenwen Liu
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China; School of Medicine, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Yixin Li
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Nanchang Qi
- Clinical Laboratory, The First People's Hospital of Kunming, Kunming, 650021, Yunnan, PR China
| | - Qiangfeng Li
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Zhonghui Wen
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, PR China
| | - Yu Li
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223, PR China.
| | - Jin Wu
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China.
| |
Collapse
|
10
|
Mapping the tumor-infiltrating immune cells during glioblastoma progression. Nat Immunol 2022; 23:826-828. [PMID: 35624212 DOI: 10.1038/s41590-022-01223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Wesley UV, Sutton I, Clark PA, Cunningham K, Larrain C, Kuo JS, Dempsey RJ. Enhanced expression of pentraxin-3 in glioblastoma cells correlates with increased invasion and IL8-VEGF signaling axis. Brain Res 2021; 1776:147752. [PMID: 34906547 DOI: 10.1016/j.brainres.2021.147752] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/13/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GB) is highly invasive and resistant to multimodal treatment partly due to distorted vasculature and exacerbated inflammation. The aggressiveness of brain tumors may be attributed to the dysregulated release of angiogenic and inflammatory factors. The glycoprotein pentraxin-3 (PTX3) is correlated with the severity of some cancers. However, the mechanism responsible for the invasive oncogenic role of PTX3 in GB malignancy remains unclear. In this study, we examined the role of PTX3 in GB growth, angiogenesis, and invasion using in vitro and in vivo GB models, proteomic profiling, molecular and biochemical approaches. Under in vitro conditions, PTX3 over-expression in U87 cells correlated with cell cycle progression, increased migratory potential, and proliferation under hypoxic conditions. Conditioned media containing PTX3 enhanced the angiogenic potential of endothelial cells. While silencing of PTX3 by siRNA decreased the proliferation, migration, and angiogenic potential of U87 cells in vitro. Importantly, PTX3 over-expression increased tumor growth, angiogenesis, and invasion in an orthotopic mouse model. Higher levels of PTX3 in these tumors were associated with the upregulation of inflammatory and angiogenic markers including interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), but decreased levels of thrombospondin-1, an anti-angiogenic factor. Mechanistically, exogenous production of PTX3 triggered an IKK/NFκB signaling pathway that enhances the expression of the motility genes AHGEF7 and Rac1. Taken together, PTX3 expression is dysregulated in GB. PTX3 may augment invasion through enhanced angiogenesis in the GB microenvironment through the IL8-VEGF axis. Thus, PTX3 may represent a potential therapeutic target to mitigate the aggressive behavior of gliomas.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States.
| | - Ian Sutton
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - Paul A Clark
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States; Department of Human Oncology, University of Wisconsin, Madison, WI 53792, United States
| | - Katelin Cunningham
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - Carolina Larrain
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - John S Kuo
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States; Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, United States; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, TAIWAN
| | - Robert J Dempsey
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States.
| |
Collapse
|
12
|
Barthel L, Hadamitzky M, Dammann P, Schedlowski M, Sure U, Thakur BK, Hetze S. Glioma: molecular signature and crossroads with tumor microenvironment. Cancer Metastasis Rev 2021; 41:53-75. [PMID: 34687436 PMCID: PMC8924130 DOI: 10.1007/s10555-021-09997-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
In patients with glioblastoma, the average survival time with current treatments is short, mainly due to recurrences and resistance to therapy. This insufficient treatment success is, in large parts, due to the tremendous molecular heterogeneity of gliomas, which affects the overall prognosis and response to therapies and plays a vital role in gliomas’ grading. In addition, the tumor microenvironment is a major player for glioma development and resistance to therapy. Active communication between glioma cells and local or neighboring healthy cells and the immune environment promotes the cancerogenic processes and contributes to establishing glioma stem cells, which drives therapy resistance. Besides genetic alterations in the primary tumor, tumor-released factors, cytokines, proteins, extracellular vesicles, and environmental influences like hypoxia provide tumor cells the ability to evade host tumor surveillance machinery and promote disease progression. Moreover, there is increasing evidence that these players affect the molecular biological properties of gliomas and enable inter-cell communication that supports pro-cancerogenic cell properties. Identifying and characterizing these complex mechanisms are inevitably necessary to adapt therapeutic strategies and to develop novel measures. Here we provide an update about these junctions where constant traffic of biomolecules adds complexity in the management of glioblastoma.
Collapse
Affiliation(s)
- Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany. .,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Cancer Exosome Research Lab, Department of Pediatric Hematology and Oncology, University Hospital Essen, 45147, Essen, Germany
| | - Susann Hetze
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
13
|
Lah Turnšek T, Jiao X, Novak M, Jammula S, Cicero G, Ashton AW, Joyce D, Pestell RG. An Update on Glioblastoma Biology, Genetics, and Current Therapies: Novel Inhibitors of the G Protein-Coupled Receptor CCR5. Int J Mol Sci 2021; 22:4464. [PMID: 33923334 PMCID: PMC8123168 DOI: 10.3390/ijms22094464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
The mechanisms governing therapeutic resistance of the most aggressive and lethal primary brain tumor in adults, glioblastoma, have increasingly focused on tumor stem cells. These cells, protected by the periarteriolar hypoxic GSC niche, contribute to the poor efficacy of standard of care treatment of glioblastoma. Integrated proteogenomic and metabolomic analyses of glioblastoma tissues and single cells have revealed insights into the complex heterogeneity of glioblastoma and stromal cells, comprising its tumor microenvironment (TME). An additional factor, which isdriving poor therapy response is the distinct genetic drivers in each patient's tumor, providing the rationale for a more individualized or personalized approach to treatment. We recently reported that the G protein-coupled receptor CCR5, which contributes to stem cell expansion in other cancers, is overexpressed in glioblastoma cells. Overexpression of the CCR5 ligand CCL5 (RANTES) in glioblastoma completes a potential autocrine activation loop to promote tumor proliferation and invasion. CCL5 was not expressed in glioblastoma stem cells, suggesting a need for paracrine activation of CCR5 signaling by the stromal cells. TME-associated immune cells, such as resident microglia, infiltrating macrophages, T cells, and mesenchymal stem cells, possibly release CCR5 ligands, providing heterologous signaling between stromal and glioblastoma stem cells. Herein, we review current therapies for glioblastoma, the role of CCR5 in other cancers, and the potential role for CCR5 inhibitors in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- School of Medicine, Xavier University, Santa Helenastraat #23, Oranjestad, Aruba; (S.J.); (G.C.); (A.W.A.)
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Sriharsha Jammula
- School of Medicine, Xavier University, Santa Helenastraat #23, Oranjestad, Aruba; (S.J.); (G.C.); (A.W.A.)
| | - Gina Cicero
- School of Medicine, Xavier University, Santa Helenastraat #23, Oranjestad, Aruba; (S.J.); (G.C.); (A.W.A.)
| | - Anthony W. Ashton
- School of Medicine, Xavier University, Santa Helenastraat #23, Oranjestad, Aruba; (S.J.); (G.C.); (A.W.A.)
- Division of Perinatal Research, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia
- Lankenau Institute for Medical Research Philadelphia, 100 East Lancaster Ave., Wynnewood, PA 19069, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;
| | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- School of Medicine, Xavier University, Santa Helenastraat #23, Oranjestad, Aruba; (S.J.); (G.C.); (A.W.A.)
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Lanza M, Casili G, Campolo M, Paterniti I, Colarossi C, Mare M, Giuffrida R, Caffo M, Esposito E, Cuzzocrea S. Immunomodulatory Effect of Microglia-Released Cytokines in Gliomas. Brain Sci 2021; 11:brainsci11040466. [PMID: 33917013 PMCID: PMC8067679 DOI: 10.3390/brainsci11040466] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia, a type of differentiated tissue macrophage, are considered to be the most plastic cell population of the central nervous system (CNS). Microglia substantially contribute to the growth and invasion of tumor mass in brain tumors including glioblastoma (GB). In response to pathological conditions, resting microglia undergo a stereotypic activation process and become capable of phagocytosis, antigen presentation, and lymphocyte activation. Considering their immune effector function, it is not surprising to see microglia accumulation in almost every CNS disease process, including malignant brain tumors. Large numbers of glioma associated microglia and macrophages (GAMs) can accumulate within the tumor where they appear to have an important role in prognosis. GAMs constitute the largest portion of tumor infiltrating cells, contributing up to 30% of the entire glioma mass and upon interaction with neoplastic cells. GAMs acquire a unique phenotype of activation, including both M1 and M2 specific markers. It has been demonstrated that microglia possess a dual role: on one hand, microglia may represent a CNS anti-tumor response, which is inactivated by local secretion of immunosuppressive factors by glioma cells. On the other hand, taking into account that microglia are capable of secreting a variety of immunomodulatory cytokines, it is possible that they are attracted by gliomas to promote tumor growth. A better understanding of microglia-glioma interaction will be helpful in designing novel immune-based therapies against these fatal tumors. Concluding, as microglia significantly may contribute to glioma biology, favoring tumor growth and invasiveness, these cells represent a valuable alternative/additional target for the development of more effective treatments for gliomas.
Collapse
Affiliation(s)
- Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| | - Cristina Colarossi
- Mediterranean Institute of Oncology, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | - Marzia Mare
- Mediterranean Institute of Oncology, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | | | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy; (M.L.); (G.C.); (M.C.); (I.P.); (S.C.)
| |
Collapse
|
15
|
Zhang H, Li Z, Li W. M2 Macrophages Serve as Critical Executor of Innate Immunity in Chronic Allograft Rejection. Front Immunol 2021; 12:648539. [PMID: 33815407 PMCID: PMC8010191 DOI: 10.3389/fimmu.2021.648539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Allograft functional failure due to acute or chronic rejection has long been a major concern in the area of solid organ transplantation for decades. As critical component of innate immune system, the macrophages are unlikely to be exclusive for driving acute or chronic sterile inflammation against allografts. Traditionally, macrophages are classified into two types, M1 and M2 like macrophages, based on their functions. M1 macrophages are involved in acute rejection for triggering sterile inflammation thus lead to tissue damage and poor allograft survival, while M2 macrophages represent contradictory features, playing pivotal roles in both anti-inflammation and development of graft fibrosis and resulting in chronic rejection. Macrophages also contribute to allograft vasculopathy, but the phenotypes remain to be identified. Moreover, increasing evidences are challenging traditional identification and classification of macrophage in various diseases. Better understanding the role of macrophage in chronic rejection is fundamental to developing innovative strategies for preventing late graft loss. In this review, we will update the recent progress in our understanding of diversity of macrophage-dominated innate immune response, and reveal the roles of M2 macrophages in chronic allograft rejection as well.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuonan Li
- Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|