1
|
Xie YQ, Yan FN, Yu LH, Yan HW, Kong YX, Yang ZY. Mechanism of Shashen-Maidong herb pair in treating hepatocellular carcinoma using network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118954. [PMID: 39419302 DOI: 10.1016/j.jep.2024.118954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is among the most prevalent malignant tumors globally and represents a significant public health issue worldwide. Immune cell dysfunction is the crucial factor for the formation of immunosuppression microenvironment of HCC. Glehnia littoralis (A.Gray) F.Schmidt ex Miq. (Shashen) and Ophiopogon japonicus (Thunb.) Ker Gawl. (Maidong) are classic herb pair in traditional Chinese medicine (TCM) of nourishing Yin, and is widely applied in the treatment of HCC and possesses multiple immunomodulatory functions. However, the role of the Shashen-Maidong herb pair (SS-MD) for the management of HCC and the potential mechanisms has not been explicated. AIM OF THE STUDY The purpose of the research is to investigate the potential mechanism of the SS-MD herb pair for the management of HCC. MATERIALS AND METHODS The known components of the SS-MD herb pair were preliminarily identified using UPLC-Q-Orbitrap-MS/MS. The active ingredients of SS-MD herb pair in treating HCC were screened by constructing herb-component-target network, and the key therapeutic targets were explored by constructing a protein-protein interaction (PPI) network. The binding affinity of the key targets and components were validated through molecular docking and molecular dynamics simulations. GO biological function and KEGG pathway analyses were operated to elucidate the potential mechanisms of the SS-MD herb pair for the management of HCC. And the mechanism was verified in the tumor bearing mice model and cell co-culture experiments. RESULTS Network pharmacology prediction revealed 39 active components and 138 targets of the SS-MD herb pair for the treatment of HCC. KEGG analysis mainly focused on Notch signaling pathway and Apoptosis signaling pathway. The targets were enriched in biological functions of lymphocyte effector function and lymphocyte apoptosis. In vivo and in vitro experiments proved that the SS-MD herb pair can improve the proportion of CD8+T cells in the HCC immune microenvironment, regulate its subgroup distribution. SS-MD herb pair promoted CD8+T cells to secrete IL-2, TNF-α, IFN-γ, Granzyme B and Perforin, and inhibited apoptosis by regulating Notch signaling pathway. CONCLUSIONS This study identified the key components, targets, and signaling pathways of the SS-MD herb pair, confirm that SS-MD herb pair play an immunomodulatory role in treating HCC, provides theoretical support for the collaborative treatment of HCC with TCM.
Collapse
Affiliation(s)
- Yu-Qing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Feng-Na Yan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Li-Hua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Hui-Wen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Ya-Xian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Zhi-Yun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
2
|
Sun Y, Weng X, Chen W, Ge J, Ding B, Ru J, Lei Y, Hu X, Man D, Cheng S, Duan R, Ren J, Yang B. MYBBP1A‑mediated IGFBP4 promoter methylation promotes epithelial‑mesenchymal transition and metastasis through activation of NOTCH pathway in liver cancer. Int J Oncol 2025; 66:4. [PMID: 39611481 PMCID: PMC11637501 DOI: 10.3892/ijo.2024.5710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Metastatic hepatocellular carcinoma (HCC) seriously threatens patients' prognosis. It was previously suggested that the insulin growth factor binding protein (IGFBP) family could serve as cancer suppressors in the development and metastasis of HCC. However, the role of IGFBP4 and its underlying molecular mechanism in HCC metastasis is elusive. In the present study, it was found that IGFBP4 is significantly downregulated in HCC, whose expression is positively correlated with the prognosis of patients with HCC. Overexpression of IGFBP4 restrained migration abilities and cancer metastasis of HCC cells both in vitro and in vivo. Furthermore, it was found that IGFBP4 represses HCC metastasis by inhibiting epithelial‑mesenchymal transition. Molecular mechanism studies showed that overexpression of IGFBP4 obviously suppresses NOTCH1 signaling in HCC. As for the upstream regulatory mechanism, it was revealed that downregulation of IGFBP4 in HCC was caused by CpG islands' hyper‑methylation‑dependent degradation mediated by MYBBP1A. Inhibition of MYBBP1A limited HCC metastatic ability and silence of IGFBP4 at the same time restored HCC metastatic potentials. Clinical data demonstrated that low expression of IGFBP4 was found in patients with HCC, especially with lymphatic metastasis. High MYBBP1A expression and low IGFBP4 expression in HCC were correlated with poor survival of patients with HCC. Summarily, in the present study, it was revealed that MYBBP1A/IGFBP4/NOTCH1 pathway could play a crucial role in the progression and metastasis of HCC, which stimulates novel therapeutic and diagnostic strategies against metastatic HCC.
Collapse
Affiliation(s)
- Yujing Sun
- Department of General Practice, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoyu Weng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Chen
- General Practice Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Jiangzhen Ge
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Junnan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yunguo Lei
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xin Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Da Man
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shaobing Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ruoshu Duan
- Department of General Practice, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jingjing Ren
- Department of General Practice, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
3
|
Abida, Altamimi ASA, Ghaboura N, Balaraman AK, Rajput P, Bansal P, Rawat S, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H, Deb PK. Therapeutic Potential of lncRNAs in Regulating Disulfidptosis for Cancer Treatment. Pathol Res Pract 2024; 263:155657. [PMID: 39437641 DOI: 10.1016/j.prp.2024.155657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Non-coding RNAs (lncRNAs) play critical roles in various cellular processes, including a novel form of regulated cell death known as disulfidptosis, characterized by accumulating protein disulfide bonds and severe endoplasmic reticulum stress. This review highlights the therapeutic potential of lncRNAs in regulating disulfidptosis for cancer treatment, emphasizing their influence on key pathway components such as GPX4, SLC7A11, and PDIA family members. Recent studies have demonstrated that targeting specific lncRNAs can sensitize cancer cells to disulfidptosis, offering a promising approach to cancer therapy. The regulation of disulfidptosis by lncRNAs involves various signaling pathways, including oxidative stress, ER stress, and calcium signaling. This review also discusses the molecular mechanisms underlying lncRNA regulation of disulfidptosis, the challenges of developing lncRNA-based therapies, and the future potential of this rapidly advancing field in cancer research.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Pranchal Rajput
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institue of Technology (BIT), Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
4
|
Chen ZX, Mu MY, Yang G, Qi H, Fu XB, Wang GS, Jiang WW, Huang BJ, Gao F. Hypoxia-induced DTL promotes the proliferation, metastasis, and sorafenib resistance of hepatocellular carcinoma through ubiquitin-mediated degradation of SLTM and subsequent Notch pathway activation. Cell Death Dis 2024; 15:734. [PMID: 39384740 PMCID: PMC11464529 DOI: 10.1038/s41419-024-07089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Denticleless E3 ubiquitin protein ligase homolog (DTL), the substrate receptor of the CRL4A complex, plays a central role in genome stability. Even though the oncogenic function of DTL has been investigated in several cancers, its specific role in hepatocellular carcinoma (HCC) still needs further elucidation. Data from a clinical cohort (n = 209), RNA-sequencing, and public database (TCGA and GEO) were analyzed, indicating that DTL is closely related to patient prognosis and could serve as a promising prognostic indicator in HCC. Functionally, DTL promoted the proliferation, metastasis, and sorafenib resistance of HCC in vitro. In the orthotopic tumor transplantation and tail vein injection model, DTL promoted the growth and metastasis of HCC in vivo. Mechanically, we revealed for the first time that DTL was transcriptionally activated by hypoxia-inducible factor 1α (HIF-1α) under hypoxia and functioned as a downstream effector molecule of HIF-1α. DTL promotes the ubiquitination of SAFB-like transcription modulator (SLTM) and subsequently relieves the transcriptional repression of Notch1. These results suggested that DTL may be a potential biomarker and therapeutic target for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Humans
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Cell Proliferation/drug effects
- Animals
- Drug Resistance, Neoplasm/drug effects
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Mice
- Signal Transduction/drug effects
- Mice, Nude
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Cell Line, Tumor
- Ubiquitination
- Neoplasm Metastasis
- Ubiquitin/metabolism
- Receptors, Notch/metabolism
- Mice, Inbred BALB C
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Hypoxia
Collapse
Affiliation(s)
- Zi-Xiong Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Mao-Yuan Mu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Guang Yang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Han Qi
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiao-Bo Fu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Gui-Song Wang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Wei-Wei Jiang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Fei Gao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
5
|
Zhan P, Lu Y, Lu J, Cheng Y, Luo C, Yang F, Xi W, Wang J, Cen X, Wang F, Xie C, Yin Z. The activation of the Notch signaling pathway by UBE2C promotes the proliferation and metastasis of hepatocellular carcinoma. Sci Rep 2024; 14:22859. [PMID: 39353974 PMCID: PMC11445553 DOI: 10.1038/s41598-024-72714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
UBE2C, a ubiquitin-conjugating enzyme, functions as an oncogene in different types of human cancers. Nonetheless, the exact influence of UBE2C on the development of HCC via regulation of ubiquitination remains uncertain. Here, we found that UBE2C displayed elevated levels of expression in HCC and was associated with an unfavorable prognosis, as evidenced by the analysis of the TCGA database and the examination of clinical specimens. The role of UBE2C in HCC revealed its ability to promote the growth and metastasis of HCC. Mechanistically, UBE2C activated Notch signaling, as evidenced by the upregulation of N1ICD and Hes1, crucial components of the Notch pathway, and activation of the RBP-JK luciferase reporter by UBE2C. Finally, rescue experiments demonstrated that the oncogenic role of UBE2C was eliminated through treatment with the Notch inhibitor DAPT, while overexpression of N1ICD alleviated the anticarcinogenic impact of knockdown of UBE2C. Altogether, the results of our study indicate that UBE2C plays a role in the activation of Notch signaling and could potentially serve as a viable target for therapeutic interventions in HCC.
Collapse
Affiliation(s)
- Ping Zhan
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Yuyan Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Jing Lu
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Yizhe Cheng
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Changhong Luo
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Fan Yang
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Wenqing Xi
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China
| | - Jinzhu Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xuesong Cen
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China.
| | - Chengrong Xie
- Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, 209 South Hubin Road, Xiamen, 361004, Fujian Province, China.
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 1739 Xianyue Road, Xiamen, 361001, Fujian Province, China.
| |
Collapse
|
6
|
Jen IA, Kuo TBJ, Liaw YP. Sex-specific associations of Notch signaling with chronic HBV infection: a study from Taiwan Biobank. Biol Sex Differ 2024; 15:69. [PMID: 39237981 PMCID: PMC11378497 DOI: 10.1186/s13293-024-00641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Hepatitis B, a liver infection caused by the hepatitis B virus (HBV), can develop into a chronic infection that puts patients at high risk of death from cirrhosis and liver cancer. In this study, we aimed to investigate the difference of reactome pre-Notch expression and processing between males and females by using gene to function analysis in FUMA. METHODS We analyzed Taiwan Biobank (TWB) data pertaining to 48,874 women and 23,178 men individuals which were collected from 2008 to 2019. According to hepatitis B surface antigen (HBsAg) status in hematology, positive and negative were classified into case and control in the genome-wide association study (GWAS) analysis. RESULTS We found 4715 women and 2656 men HBV cases. The genomic risk loci were different between males and females. In male, three risk loci (rs3732421, rs1884575 and Affx-28516147) were detected while eight risk loci (Affx-4564106, rs932745, rs7574865, rs34050244, rs77041685, rs107822, rs2296651 and rs12599402) were found in female. In addition, sex also presented different results. In females, the most significant SNPs are gathered in chromosome 6. However, except for chromosome 6, significant HBV infection SNPs also could be found in chromosome 3 among males. We further investigated gene function in FUMA to identify the difference in reactome pre-Notch expression and processing between males and females. We found that POGLUT1 and HIST1H2BC only appeared in men but not in women. CONCLUSION According to our study, the reactome pre-Notch expression including POGLUT1 and HIST1H2BC was associated with a risk of Hepatitis B in Taiwanese men when compared to women.
Collapse
Affiliation(s)
- I-An Jen
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou, Taipei, 11221, Taiwan
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou, Taipei, 11221, Taiwan.
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung, 40201, Taiwan.
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
| |
Collapse
|
7
|
Jiang J, Gareev I, Ilyasova T, Shumadalova A, Du W, Yang B. The role of lncRNA-mediated ceRNA regulatory networks in liver fibrosis. Noncoding RNA Res 2024; 9:463-470. [PMID: 38511056 PMCID: PMC10950566 DOI: 10.1016/j.ncrna.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 01/07/2024] [Indexed: 03/22/2024] Open
Abstract
In the dynamic realm of molecular biology and biomedical research, the significance of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) continues to grow, encompassing a broad spectrum of both physiological and pathological conditions. Particularly noteworthy is their pivotal role in the intricate series of events leading to the development of hepatic fibrosis, where hepatic stellate cells (HSCs) play a central role. Recent strides in scientific exploration have unveiled the intricate involvement of lncRNAs as ceRNAs in orchestrating the activation of HSCs. This not only deepens our comprehension of the functioning of proteins, DNA, and the extensive array of coding and noncoding RNAs but also sheds light on the intricate molecular interactions among these molecules. Furthermore, the well-established ceRNA networks, involving classical interactions between lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs), are not mere bystanders; they actively participate in instigating and advancing liver fibrosis. This underscores the pressing need for additional thorough research to fully grasp the potential of ceRNA. The unyielding pursuit of knowledge in this field remains a potent driving force with the capacity to enhance the quality of life for numerous individuals grappling with such diseases. It holds the promise of ushering in a new era of precision medicine, signifying a relentless dedication to unraveling the intricacies of molecular interactions that could pave the way for transformative advancements in the diagnosis and treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Jianhao Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Weijie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
8
|
Zhang M, Yang J, Liang G, Yuan H, Wu Y, Li L, Yu T, Zhang Y, Wang J. FOXA1-Driven pathways exacerbate Radiotherapy-Induced kidney injury in colorectal cancer. Int Immunopharmacol 2024; 131:111689. [PMID: 38471364 DOI: 10.1016/j.intimp.2024.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of FOXA1 in acute kidney injury (AKI) induced by radiotherapy in colorectal cancer. Although FOXA1 is known to be aberrantly expressed in malignant tumors, its contribution to AKI remains unclear. This study aimed to explore the involvement of FOXA1 in AKI induced by radiotherapy in colorectal cancer and its influence on the regulation of downstream target genes. METHODS Firstly, a transcriptome analysis was performed on mice to establish a radiation-induced AKI model, and qPCR was used to determine the expression of FOXA1 in renal cell injury models induced by X-ray irradiation. Additionally, FOXA1 was silenced using lentiviral vectors to investigate its effects on the apoptosis of mice with radiation-induced AKI and HK-2 cells. Next, bioinformatics analysis and various experimental validation methods such as ChIP assays, co-immunoprecipitation, and dual-luciferase reporter assays were employed to explore the relationship between FOXA1 and the downstream regulatory factors ITCH promoter and the ubiquitin ligase-degradable TXNIP. Finally, lentiviral overexpression or knockout techniques were used to investigate the impact of the FOXA1/ITCH/TXNIP axis on oxidative stress and the activation of inflammatory body NLRP3. RESULTS This study revealed that FOXA1 was significantly upregulated in the renal tissues of mice with radiation-induced AKI and in the injured HK-2 cells. Furthermore, in vitro cell experiments and animal experiments demonstrated that FOXA1 suppressed the transcription of the E3 ubiquitin ligase ITCH, thereby promoting apoptosis of renal tubular cells and causing renal tissue damage. Further in vivo animal experiments confirmed that TXNIP, a protein degraded by ITCH ubiquitination, could inhibit oxidative stress and the activation of NLRP3 inflammasome in the AKI mouse model. CONCLUSION FOXA1 enhances oxidative stress, cell apoptosis, and NLRP3 inflammasome activation by regulating the ITCH/TXNIP axis, thereby exacerbating radiotherapy-induced AKI.
Collapse
Affiliation(s)
- Minhai Zhang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Guodong Liang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Huiqiong Yuan
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanni Wu
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Li Li
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| |
Collapse
|
9
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
10
|
Chi M, Jie Y, Li Y, Wang D, Li M, Li D, E M, Li Y, Liu N, Gu A, Rong G. Novel structured ADAM17 small-molecule inhibitor represses ADAM17/Notch pathway activation and the NSCLC cells' resistance to anti-tumour drugs. Front Pharmacol 2023; 14:1189245. [PMID: 37456760 PMCID: PMC10338884 DOI: 10.3389/fphar.2023.1189245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Background and aims: The outcomes of current treatment for non-small cell lung cancer (NSCLC) are unsatisfactory and development of new and more efficacious therapeutic strategies are required. The Notch pathway, which is necessary for cell survival to avert apoptosis, induces the resistance of cancer cells to antitumour drugs. Notch pathway activation is controlled by the cleavage of Notch proteins/receptors mediated by A disintegrin and metalloproteinase 17 (ADAM17); therefore, ADAM17 is a reliable intervention target for anti-tumour therapy to overcome the drug resistance of cancer cells. This work aims to develop and elucidate the activation of Compound 2b, a novel-structured small-molecule inhibitor of ADAM17, which was designed and developed and its therapeutic efficacy in NSCLC was assessed via multi-assays. Methods and results: A lead compound for a potential inhibitor of ADAM17 was explored via pharmacophore modelling, molecular docking, and biochemical screening. It was augmented by substituting two important chemical groups [R1 and R2 of the quinoxaline-2,3-diamine (its chemical skeleton)]; subsequently, serial homologs of the lead compound were used to obtain anoptimized compound (2b) with high inhibitory activity compared with leading compound against ADAM17 to inhibit the cleavage of Notch proteins and the accumulation of the Notch intracellular domain in the nuclei of NSCLC cells. The inhibitory activity of compound 2b was demonstrated by quantitative polymerase chain reaction and Western blotting. The specificity of compound 2b on ADAM17 was confirmed via point-mutation. Compound 2b enhanced the activation of antitumor drugs on NSCLC cells, in cell lines and nude mice models, by targeting the ADAM17/Notch pathway. Conclusion: Compound 2b may be a promising strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Meng Chi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yamin Jie
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Duo Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Man Li
- Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Dan Li
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mingyan E
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Yongwu Li
- Department of Nuclear Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Na Liu
- Department of Nuclear Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Anxin Gu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Guanghua Rong
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Feng D, Wang J, Shi X, Li D, Wei W, Han P. Membrane tension-mediated stiff and soft tumor subtypes closely associated with prognosis for prostate cancer patients. Eur J Med Res 2023; 28:172. [PMID: 37179366 PMCID: PMC10182623 DOI: 10.1186/s40001-023-01132-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is usually considered as cold tumor. Malignancy is associated with cell mechanic changes that contribute to extensive cell deformation required for metastatic dissemination. Thus, we established stiff and soft tumor subtypes for PCa patients from perspective of membrane tension. METHODS Nonnegative matrix factorization algorithm was used to identify molecular subtypes. We completed analyses using software R 3.6.3 and its suitable packages. RESULTS We constructed stiff and soft tumor subtypes using eight membrane tension-related genes through lasso regression and nonnegative matrix factorization analyses. We found that patients in stiff subtype were more prone to biochemical recurrence than those in soft subtype (HR 16.18; p < 0.001), which was externally validated in other three cohorts. The top ten mutation genes between stiff and soft subtypes were DNAH, NYNRIN, PTCHD4, WNK1, ARFGEF1, HRAS, ARHGEF2, MYOM1, ITGB6 and CPS1. E2F targets, base excision repair and notch signaling pathway were highly enriched in stiff subtype. Stiff subtype had significantly higher TMB and T cells follicular helper levels than soft subtype, as well as CTLA4, CD276, CD47 and TNFRSF25. CONCLUSIONS From the perspective of cell membrane tension, we found that stiff and soft tumor subtypes were closely associated with BCR-free survival for PCa patients, which might be important for the future research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Wang B, Ma X, Zhang W, Li L, Zan Y, Zhan J, Guo X, Lei M, Ma H. Impact of NOTCH1 polymorphisms on liver cancer in a Chinese Han population. Cell Cycle 2023; 22:1127-1134. [PMID: 36951273 PMCID: PMC10081089 DOI: 10.1080/15384101.2023.2189766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
NOTCH1, a member of the Notch family, is up-expression in advanced liver cancer (LC) patients and is associated with tumor sizes, tumor stage, metastasis, and invasion. A few studies have discovered the contribution of NOTCH1 variants to LC risk. Our purpose was to assess the relationship of NOTCH1 rs10521, rs2229971, and rs4489420 to LC risk. We enrolled 709 LC patients and 708 healthy controls. Genotyping was determined through the Agena MassARRAY system. Multiple genetic models by logistic regression were useful for odds ratios (ORs) with 95% confidence intervals (CIs). Rs10521-G (p = 0.009, OR = 0.75, 95% CI: 0.61-0.93), rs2229971-A (p = 0.023, OR = 0.81, 95% CI: 0.67-0.97), and rs4489420-A (p = 0.014, OR = 0.38, 95% CI: 0.16-0.85) might be protective factors for LC occurrence in the Chinese Han population, especially rs10521 and rs2229971 (false-positive report probability (FPRP) <0.2 and statistical power >90%). Interestingly, stratified analysis displayed that the contribution of NOTCH1 polymorphisms to LC risk might be associated with gender, age, smoking, and drinking. Our data first determined that NOTCH1 rs10521-G, rs2229971-A, and rs4489420-A might be protective factors for LC susceptibility.
Collapse
Affiliation(s)
- Baofeng Wang
- Department of Radiation Therapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaobin Ma
- Department of Oncology, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wenjie Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Liang Li
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital Affiliated to Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Ying Zan
- Department of Oncology, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Jianshui Zhan
- Department of Human Anatomy and Tissue embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xufeng Guo
- Department of Orthopedic, Xi’an Ninth Hospital, Xi’an, China
| | - Ming Lei
- Department of Radiology, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hongbing Ma
- Department of Radiation Therapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Meng H, Jiang L, Jia P, Niu R, Bu F, Zhu Y, Pan X, Li J, Liu J, Zhang Y, Huang C, Lv X, Li J. Inhibition of circular RNA ASPH reduces the proliferation and promotes the apoptosis of hepatic stellate cells in hepatic fibrosis. Biochem Pharmacol 2023; 210:115451. [PMID: 36758707 DOI: 10.1016/j.bcp.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Circular RNAs (circRNAs) are a newly identified form of non-coding RNA that play a crucial role in various pathological processes. However, the expression profile and function of circRNAs in hepatic fibrosis (HF) remain largely unknown. In this study, we showed that a novel circRNA ASPH (circASPH) mediates HF by targeting the miR-139-5p/Notch1 axis. We investigated the expression profile of circRNAs in hepatocyte exosomes of mice with HF using circRNA-sequencing and found significant upregulation of circASPH. Loss- and gain-of-function analysis of circASPH was performed to assess its role in HF. Furthermore, we performed luciferase reporter assay, RNA pull-down, and fluorescence in situ hybridization analyses and confirmed that circASPH directly binds to miR-139-5p. We also found that circASPH was upregulated in liver fibrogenesis. Downregulation of circASPH expression inhibited hepatic stellate cell (HSC) activation and proliferation, induced apoptosis, and attenuated mouse liver fibrogenic injury. Mechanistically, circASPH directly targeted miR-139-5p to regulate the expression of Notch1 in HF. Thus, downregulation of circASPH may suppress the activation of HSCs and HF through the circASPH/miR-139-5p/Notch1 axis. Our findings indicated that circASPH may be a potential biomarker for HF diagnosis and therapy.
Collapse
Affiliation(s)
- Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lingfeng Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengcheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ruowen Niu
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fangtian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xueyin Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juanjuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yilong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
14
|
Yang D, Xiao J, Wan M, Liu J, Huang L, Li X, Zhang L, Liu F, Liang D, Zheng Y, Xie B, Liao X, Xiong G, Lu H, Cao Z, Zhang S. Roxadustat induces hepatotoxicity in zebrafish embryos via inhibiting Notch signaling. J Appl Toxicol 2023. [PMID: 36755374 DOI: 10.1002/jat.4444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Roxadustat is a novel and effective small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PHI). However, little research has been done on its toxicity to vertebrate embryonic development. In this study, we used zebrafish to assess the effects of roxadustat on early embryonic development. Exposure to 14, 28, and 56 μM roxadustat resulted in abnormal embryonic development in zebrafish embryos, such as shortened body length and early liver developmental deficiency. Roxadustat exposure resulted in liver metabolic imbalance and abnormal liver tissue structure in adult zebrafish. In addition, roxadustat could up-regulate oxidative stress, and astaxanthin (AS) could partially rescue liver developmental defects by down-regulation of oxidative stress. After exposure to roxadustat, the Notch signaling is down-regulated, and the use of an activator of Notch signaling can partially rescue hepatotoxicity. Therefore, our research indicates that roxadustat may induce zebrafish hepatotoxicity by down-regulating Notch signaling. This study provides a reference for the clinical use of roxadustat.
Collapse
Affiliation(s)
- Dou Yang
- College of Pharmacy, Nanchang University, Nanchang, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Jieping Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Ling Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Xue Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Li Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Desheng Liang
- College of Pharmacy, Nanchang University, Nanchang, China
| | - Yongliang Zheng
- Affiliated Hospital of Jinggangshan University, Ji'an, China
| | - Baogang Xie
- College of Pharmacy, Nanchang University, Nanchang, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Gan Y, Gao F, Du B, Liu Y, Xue Q, Fu J. Effects of preoperative serum lactate dehydrogenase levels on long-term prognosis in elderly patients with hepatocellular carcinoma undergoing transcatheter arterial chemoembolization. Front Surg 2022; 9:982114. [PMID: 36211260 PMCID: PMC9539260 DOI: 10.3389/fsurg.2022.982114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatic arterial chemoembolization is an effective treatment for primary hepatocellular carcinoma (HCC) and can improve the survival rate of patients. Nevertheless, the long-term prognosis of patients with HCC is not optimistic. In recent years, tumor humoral detection has attracted extensive attention and is expected to become the main examination method for early tumor screening. Studies have found that serum LDH is an indicator with effective potential to predict tumor proliferation and progression, such as pancreatic cancer, esophageal cancer, nasopharyngeal cancer, etc., but the relationship between this indicator and the prognosis of HCC is still unclear. The purpose of this study was to clarify the relationship between serum LDH and the prognosis of patients with HCC, so as to provide an important scientific basis for prognosis judgment of HCC.
Collapse
|
16
|
Wang Z, Mo S, Han P, Liu L, Liu Z, Fu X, Tian Y. The role of UXT in tumors and prospects for its application in hepatocellular carcinoma. Future Oncol 2022; 18:3335-3348. [PMID: 36000398 DOI: 10.2217/fon-2022-0582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UXT is widely expressed in human and mouse tissues and aberrantly expressed in various tumor tissues. UXT may play a pro-cancer or tumor suppressor role in different tumor types and microenvironments with different mechanisms of action. Studies have shown that UXT can interact with related receptors to exert its functions and affect tumor proliferation and metastasis, leading to a poor prognosis when the biological functions of these tumors are changed. Interestingly, the signaling pathways and mechanism-related molecules that interact with UXT are closely related to the occurrence of hepatocellular carcinoma (HCC) during disease progression. This article reviews the research progress of UXT and prospects for its application in HCC, with the aim of providing possible scientific suggestions for the basic research, diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lu Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
17
|
Wei J, Hou S, Li M, Yao X, Wang L, Zheng Z, Mo H, Chen Y, Yuan X. Necroptosis-Related Genes Signatures Identified Molecular Subtypes and Underlying Mechanisms in Hepatocellular Carcinoma. Front Oncol 2022; 12:875264. [PMID: 35912224 PMCID: PMC9326098 DOI: 10.3389/fonc.2022.875264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAlthough emerging evidence supports the relationship between necroptosis (NEC) related genes and hepatocellular carcinoma (HCC), the contribution of these necroptosis-related genes to the development, prognosis, and immunotherapy of HCC is unclear.MethodsThe expression of genes and relevant clinical information were downloaded from TCGA-LIHC, LIRI-JP, GSE14520/NCI, GSE36376, GSE76427, GSE20140, GSE27150, and IMvigor210 datasets. Next, we used an unsupervised clustering method to assign the samples into phenotype clusters base on 15 necroptosis-related genes. Subsequently, we constructed a NEC score based on NEC phenotype-related prognostic genes to quantify the necroptosis related subtypes of individual patients.ResultsWe divided the samples into the high and low NEC score groups, and the high NEC score showed a poor prognosis. Simultaneously, NEC score is an effective and stable model and had a good performance in predicting the prognosis of HCC patients. A high NEC score was characterized by activation of the stroma and increased levels of immune infiltration. A high NEC score was also related to low expression of immune checkpoint molecules (PD-1/PD-L1). Importantly, the established NEC score would contribute to predicting the response to anti-PD-1/L1 immunotherapy.ConclusionsOur study provide a comprehensive analysis of necroptosis-related genes in HCC. Stratification based on the NEC score may enable HCC patients to benefit more from immunotherapy and help identify new cancer treatment strategies.
Collapse
Affiliation(s)
- Jianguo Wei
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shuqian Hou
- Department of Pathology, Maoming People’s Hospital, Maoming, China
| | - Minhua Li
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xiaofei Yao
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Li Wang
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhen Zheng
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haiqian Mo
- Department of General Medicine, Maoming People’s Hospital, Maoming, China
| | - Yu Chen
- School of Science, Wuhan University of Technology, Wuhan, China
| | - Xiaolu Yuan
- Department of Pathology, Maoming People’s Hospital, Maoming, China
- *Correspondence: Xiaolu Yuan,
| |
Collapse
|
18
|
Yang C, Pan J, Luo X, Li J, Jiang Z. Hypoxia-induced mesenchymal stem cells inhibit corneal fibroblast proliferation by regulating the WWP2/Notch1 axis. Regen Med 2022; 17:375-388. [PMID: 35545948 DOI: 10.2217/rme-2021-0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to explore the role of hypoxic mesenchymal stem cells (MSCs) in corneal alkali burns and the underlying mechanism. Materials & methods: Rat corneal fibroblasts were incubated with IL-6, followed by treatment with hypoxic MSC supernatant. A rat corneal alkali burn model was implemented and processed with hypoxic MSCs. The associated factors were detected by corresponding methods. Results: Hypoxic MSCs reduced the Notch1 level and the proliferation of rat corneal fibroblasts. Hypoxic MSCs or WWP2 overexpression in MSCs enhanced ubiquitination of Notch1. WWP2 interacted with Notch1, and WWP2 silencing reversed the effects of the hypoxic MSCs. Hypoxic MSC treatment in vivo decreased the corneal neovascularization scores and opacity scores. Conclusion: Hypoxic MSCs inhibited inflammation and alleviated corneal injury in alkali burns via the WWP2/Notch1 axis.
Collapse
Affiliation(s)
- Chongmeng Yang
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Jian Pan
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Xu Luo
- Burn & Wound Healing Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,Wound Repair Department, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, China
| | - Zipei Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
19
|
Yu L, Zhang L, Jiang Z, Yu B. Decreasing lncRNA PVT1 causes Treg/Th17 imbalance via NOTCH signaling in immune thrombocytopenia. ACTA ACUST UNITED AC 2021; 26:734-740. [PMID: 34555308 DOI: 10.1080/16078454.2021.1974200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objectives: Immune thrombocytopenia (ITP) is an autoimmune disease. T helper cell 17 (Th17) cells are increased in peripheral blood of ITP patients. NOTCH signaling is involved in Th17 cell differentiation and function. Besides, lncRNA Plasmacytoma variant translocation 1 (PVT1) was decreased in experimental autoimmune encephalomyelitis, and overexpressing PVT1 inhibited Th17 cell differentiation. Here, we aimed to investigate the effect of lncRNA PVT1 on ITP and its related mechanism.Methods: The number of Th17 cells and Treg cells was carried out using flow cytometry. PVT1 levels were detected by quantitative real-time PCR. Interleukin-17 (IL-17) levels and transforming growth factor-β (TGF-β) levels were detected by enzyme-linked immunosorbent assay. Protein levels of retinoid acid-related orphan receptor γ t (RORγt), forkhead box P3 (Foxp3), and NOTCH1 were carried out by western blot. NOTCH1 ubiquitylation was detected by ubiquitination assay.Results: PVT1 was down-regulated and Th17 cells were up-regulated in ITP patients. Overexpression of PVT1 decreased the number of Th17 cells, and also decreased the levels of IL-17, RORγt, and NOTCH1. Besides, PVT1 could bind to NOTCH1 and mediated NOTCH1 degradation by increasing its ubiquitination. Additionally, excessive expression of PVT1 could increase the levels of PVT1, reduce the amount of Th17 cells, as well as the levels of IL-17, RORγt, and NOTCH1, while co-overexpressing NOTCH1 reversed the results.Conclusion: PVT1 was down-regulated in ITP patients. Overexpressing PVT1 might reduce Th17 cell differentiation by down-regulating NOTCH1, and further alleviated the development of ITP.
Collapse
Affiliation(s)
- Ling Yu
- Department of Blood Transfusion, Jinhua People's Hospital, Jinhua, People's Republic of China
| | - Liqin Zhang
- Department of Laboratory, Jinhua People's Hospital, Jinhua, People's Republic of China
| | - Zhiyong Jiang
- Department of hematopathology, Jinhua People's Hospital, Jinhua, People's Republic of China
| | - Beiwei Yu
- Department of Laboratory, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
20
|
Notch Signaling in Prevention And Therapy: Fighting Cancer with a Two-Sided Sword. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:1-7. [PMID: 33034022 DOI: 10.1007/978-3-030-55031-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The evolutionary conserved Notch pathway that first developed in metazoans and that was first discovered in fruit flies (Drosophila melanogaster) governs fundamental cell fate decisions and many other cellular key processes not only in embryonic development but also during initiation, promotion, and progression of cancer. On a first look, the Notch pathway appears remarkably simple, with its key feature representing a direct connection between an extracellular signal and transcriptional output without the need of a long chain of protein intermediaries as known from many other signaling pathways. However, on a second, closer look, this obvious simplicity exerts surprising complexity. There is no doubt that the enormous scientific progress in unraveling the functional mechanisms that underlie this complexity has recently greatly increased our knowledge about the role of Notch signaling for pathogenesis and progression of many types of cancer. Moreover, these new scientific findings have shown promise in opening new avenues for cancer prevention and therapy, although this goal is still challenging. Vol. III of the second edition of the book Notch Signaling in Embryology and Cancer, entitled Notch Signaling in Cancer, summarizes important recent developments in this fast-moving and fascinating field. Here, we give an introduction to this book and a short summary of the individual chapters that are written by leading scientists, covering the latest developments in this intriguing research area.
Collapse
|