1
|
McManus D, Patton AP, Smyllie NJ, Chin JW, Hastings MH. PERfect Day: reversible and dose-dependent control of circadian time-keeping in the mouse suprachiasmatic nucleus by translational switching of PERIOD2 protein expression. Eur J Neurosci 2024; 60:5537-5552. [PMID: 39300693 PMCID: PMC7617102 DOI: 10.1111/ejn.16537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
The biological clock of the suprachiasmatic nucleus (SCN) orchestrates circadian (approximately daily) rhythms of behaviour and physiology that underpin health. SCN cell-autonomous time-keeping revolves around a transcriptional/translational feedback loop (TTFL) within which PERIOD (PER1,2) and CRYPTOCHROME (CRY1,2) proteins heterodimerise and suppress trans-activation of their encoding genes (Per1,2; Cry1,2). To explore its contribution to SCN time-keeping, we used adeno-associated virus-mediated translational switching to express PER2 (tsPER2) in organotypic SCN slices carrying bioluminescent TTFL circadian reporters. Translational switching requires provision of the non-canonical amino acid, alkyne lysine (AlkK), for protein expression. Correspondingly, AlkK, but not vehicle, induced constitutive expression of tsPER2 in SCN neurons and reversibly and dose-dependently suppressed pPer1-driven transcription in PER-deficient (Per1,2-null) SCN, illustrating the potency of PER2 in negative regulation within the TTFL. Constitutive expression of tsPER2, however, failed to initiate circadian oscillations in arrhythmic PER-deficient SCN. In rhythmic, PER-competent SCN, AlkK dose-dependently reduced the amplitude of PER2-reported oscillations as inhibition by tsPER2 progressively damped the TTFL. tsPER2 also dose-dependently lengthened the period of the SCN TTFL and neuronal calcium rhythms. Following wash-out of AlkK to remove tsPER2, the SCN regained TTFL amplitude and period. Furthermore, SCN retained their pre-washout phase: the removal of tsPER2 did not phase-shift the TTFL. Given that constitutive tsCRY1 can regulate TTFL amplitude and period, but also reset TTFL phase and initiate rhythms in CRY-deficient SCN, these results reveal overlapping and distinct properties of PER2 and CRY1 within the SCN, and emphasise the utility of translational switching to explore the functions of circadian proteins.
Collapse
Affiliation(s)
- David McManus
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew P Patton
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicola J Smyllie
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael H Hastings
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
2
|
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 2024; 21:164-183. [PMID: 38066102 DOI: 10.1038/s41575-023-00867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
3
|
Sinturel F, Chera S, Brulhart-Meynet MC, Montoya JP, Stenvers DJ, Bisschop PH, Kalsbeek A, Guessous I, Jornayvaz FR, Philippe J, Brown SA, D'Angelo G, Riezman H, Dibner C. Circadian organization of lipid landscape is perturbed in type 2 diabetic patients. Cell Rep Med 2023; 4:101299. [PMID: 38016481 PMCID: PMC10772323 DOI: 10.1016/j.xcrm.2023.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/26/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Lipid homeostasis in humans follows a diurnal pattern in muscle and pancreatic islets, altered upon metabolic dysregulation. We employ tandem and liquid-chromatography mass spectrometry to investigate daily regulation of lipid metabolism in subcutaneous white adipose tissue (SAT) and serum of type 2 diabetic (T2D) and non-diabetic (ND) human volunteers (n = 12). Around 8% of ≈440 lipid metabolites exhibit diurnal rhythmicity in serum and SAT from ND and T2D subjects. The spectrum of rhythmic lipids differs between ND and T2D individuals, with the most substantial changes observed early morning, as confirmed by lipidomics in an independent cohort of ND and T2D subjects (n = 32) conducted at a single morning time point. Strikingly, metabolites identified as daily rhythmic in both serum and SAT from T2D subjects exhibit phase differences. Our study reveals massive temporal and tissue-specific alterations of human lipid homeostasis in T2D, providing essential clues for the development of lipid biomarkers in a temporal manner.
Collapse
Affiliation(s)
- Flore Sinturel
- Division of Thoracic and Endocrine Surgery, Department of Surgery, University Hospitals of Geneva, 1211 Geneva, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| | - Simona Chera
- Division of Thoracic and Endocrine Surgery, Department of Surgery, University Hospitals of Geneva, 1211 Geneva, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland; Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Marie-Claude Brulhart-Meynet
- Division of Thoracic and Endocrine Surgery, Department of Surgery, University Hospitals of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Jonathan Paz Montoya
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, 1105 AZ, the Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, 1105 AZ, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, 1105 AZ, the Netherlands; Laboratory for Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ, the Netherlands; Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, 1105 BA, the Netherlands
| | - Idris Guessous
- Department and Division of Primary Care Medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - François R Jornayvaz
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Division of Endocrinology, Diabetes, Nutrition, and Therapeutic Patient Education, Department of Medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - Jacques Philippe
- Division of Endocrinology, Diabetes, Nutrition, and Therapeutic Patient Education, Department of Medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Giovanni D'Angelo
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Howard Riezman
- Department of Biochemistry, Faculty of Science, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Charna Dibner
- Division of Thoracic and Endocrine Surgery, Department of Surgery, University Hospitals of Geneva, 1211 Geneva, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland.
| |
Collapse
|