1
|
Taylor HP, Thung KH, Huynh KM, Lin W, Ahmad S, Yap PT. Functional Hierarchy of the Human Neocortex from Cradle to Grave. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599109. [PMID: 38915694 PMCID: PMC11195193 DOI: 10.1101/2024.06.14.599109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Recent evidence indicates that the organization of the human neocortex is underpinned by smooth spatial gradients of functional connectivity (FC). These gradients provide crucial insight into the relationship between the brain's topographic organization and the texture of human cognition. However, no studies to date have charted how intrinsic FC gradient architecture develops across the entire human lifespan. In this work, we model developmental trajectories of the three primary gradients of FC using a large, high-quality, and temporally-dense functional MRI dataset spanning from birth to 100 years of age. The gradient axes, denoted as sensorimotor-association (SA), visual-somatosensory (VS), and modulation-representation (MR), encode crucial hierarchical organizing principles of the brain in development and aging. By tracking their evolution throughout the human lifespan, we provide the first ever comprehensive low-dimensional normative reference of global FC hierarchical architecture. We observe significant age-related changes in global network features, with global markers of hierarchical organization increasing from birth to early adulthood and decreasing thereafter. During infancy and early childhood, FC organization is shaped by primary sensory processing, dense short-range connectivity, and immature association and control hierarchies. Functional differentiation of transmodal systems supported by long-range coupling drives a convergence toward adult-like FC organization during late childhood, while adolescence and early adulthood are marked by the expansion and refinement of SA and MR hierarchies. While gradient topographies remain stable during late adulthood and aging, we observe decreases in global gradient measures of FC differentiation and complexity from 30 to 100 years. Examining cortical microstructure gradients alongside our functional gradients, we observed that structure-function gradient coupling undergoes differential lifespan trajectories across multiple gradient axes.
Collapse
Affiliation(s)
- Hoyt Patrick Taylor
- Department of Computer Science, University of North Carolina, Chapel Hill, U.S.A
| | - Kim-Han Thung
- Department of Radiology, University of North Carolina, Chapel Hill, U.S.A
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, U.S.A
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, U.S.A
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, U.S.A
| | - Weili Lin
- Department of Radiology, University of North Carolina, Chapel Hill, U.S.A
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, U.S.A
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, U.S.A
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, U.S.A
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, U.S.A
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, U.S.A
| |
Collapse
|
2
|
Lyu W, Wu Y, Huynh KM, Ahmad S, Yap PT. A multimodal submillimeter MRI atlas of the human cerebellum. Sci Rep 2024; 14:5622. [PMID: 38453991 PMCID: PMC10920891 DOI: 10.1038/s41598-024-55412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
The human cerebellum is engaged in a broad array of tasks related to motor coordination, cognition, language, attention, memory, and emotional regulation. A detailed cerebellar atlas can facilitate the investigation of the structural and functional organization of the cerebellum. However, existing cerebellar atlases are typically limited to a single imaging modality with insufficient characterization of tissue properties. Here, we introduce a multifaceted cerebellar atlas based on high-resolution multimodal MRI, facilitating the understanding of the neurodevelopment and neurodegeneration of the cerebellum based on cortical morphology, tissue microstructure, and intra-cerebellar and cerebello-cerebral connectivity.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|