1
|
Nasrullah, Hussain A, Ahmed S, Rasool M, Shah AJ. DNA methylation across the tree of life, from micro to macro-organism. Bioengineered 2022; 13:1666-1685. [PMID: 34986742 PMCID: PMC8805842 DOI: 10.1080/21655979.2021.2014387] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is a process in which methyl (CH3) groups are added to the DNA molecule. The DNA segment does not change in the sequence, but DNA methylation could alter the action of DNA. Different enzymes like DNA methyltransferases (DNMTs) take part in methylation of cytosine/adenine nucleosides in DNA. In prokaryotes, DNA methylation is performed to prevent the attack of phage and also plays a role in the chromosome replication and repair. In fungi, DNA methylation is studied to see the transcriptional changes, as in insects, the DNA methylation is not that well-known, it plays a different role like other organisms. In mammals, the DNA methylation is related to different types of cancers and plays the most important role in the placental development and abnormal DNA methylation connected with diseases like cancer, autoimmune diseases, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Nasrullah
- Center for Advanced Studies in Vaccinology & Biotechnology (Casvab), University of Baluchistan, Quetta- Pakistan. E-mails:
| | - Abrar Hussain
- Department of Biotechnology, Faculty of Life Sciences, Buitems, Quetta-Pakistan. E-mails:
| | - Sagheer Ahmed
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan. E-mails:
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. E-mails:
| | - Abdul Jabbar Shah
- Department of Pharmaceutical Sciences, Comsats University, Abbottabad. E-mails:
| |
Collapse
|
2
|
Wang J, Hao F, Song K, Jin W, Fu B, Wei Y, Shi Y, Guo H, Liu W. Identification of a Novel NtLRR-RLK and Biological Pathways That Contribute to Tolerance of TMV in Nicotiana tabacum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:996-1006. [PMID: 32196398 DOI: 10.1094/mpmi-12-19-0343-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tobacco mosaic virus (TMV) infection can causes serious damage to tobacco crops. To explore the approach of preventing TMV infection of plants, two tobacco cultivars with different resistances to TMV were used to analyze transcription profiling before and after TMV infection. The involvement of biological pathways differed between the tolerant variety (Yuyan8) and the susceptible variety (NC89). In particular, the plant-virus interaction pathway was rapidly activated in Yuyan8, and specific resistance genes were enriched. Liquid chromatography tandem mass spectrometry analysis detected large quantities of antiviral substances in the tolerant Yuyan8. A novel Nicotiana tabacum leucine-rich repeat receptor kinase (NtLRR-RLK) gene was identified as being methylated and this was verified using bisulfite sequencing. Transient expression of TMV-green fluorescent protein in pRNAi-NtLRR-RLK transgenic plants confirmed that NtLRR-RLK was important for susceptibility to TMV. The specific protein interaction map generated from our study revealed that levels of BIP1, E3 ubiquitin ligase, and LRR-RLK were significantly elevated, and all were represented at node positions in the protein interaction map. The same expression tendency of these proteins was also found in pRNAi-NtLRR-RLK transgenic plants at 24 h after TMV inoculation. These data suggested that specific genes in the infection process can activate the immune signal cascade through different resistance genes, and the integration of signal pathways could produce resistance to the virus. These results contribute to the overall understanding of the molecular basis of plant resistance to TMV and in the long term could identify new strategies for prevention and control virus infection.
Collapse
Affiliation(s)
- Jing Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Fengsheng Hao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Kunfeng Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Wei
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yongchun Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Weiqun Liu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
A Comparative Analysis of 5-Azacytidine- and Zebularine-Induced DNA Demethylation. G3-GENES GENOMES GENETICS 2016; 6:2773-80. [PMID: 27402357 PMCID: PMC5015934 DOI: 10.1534/g3.116.030262] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nonmethylable cytosine analogs, 5-azacytidine and zebularine, are widely used to inhibit DNA methyltransferase activity and reduce genomic DNA methylation. In this study, whole-genome bisulfite sequencing is used to construct maps of DNA methylation with single base pair resolution in Arabidopsis thaliana seedlings treated with each demethylating agent. We find that both inhibitor treatments result in nearly indistinguishable patterns of genome-wide DNA methylation and that 5-azacytidine had a slightly greater demethylating effect at higher concentrations across the genome. Transcriptome analyses revealed a substantial number of upregulated genes, with an overrepresentation of transposable element genes, in particular CACTA-like elements. This demonstrates that chemical demethylating agents have a disproportionately large effect on loci that are otherwise silenced by DNA methylation.
Collapse
|
4
|
Hartmann M, Gas-Pascual E, Hemmerlin A, Rohmer M, Bach TJ. Development of an image-based screening system for inhibitors of the plastidial MEP pathway and of protein geranylgeranylation. F1000Res 2015; 4:14. [PMID: 26309725 PMCID: PMC4536634 DOI: 10.12688/f1000research.5923.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2015] [Indexed: 03/26/2024] Open
Abstract
In a preceding study we have recently established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, which involves expressing a dexamethasone-inducible GFP fused to the prenylable, carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was there demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with oxoclomazone and fosmidomycin, as well as inhibition of protein geranylgeranyl transferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect this localization. Furthermore, in this initial study complementation assays with pathway-specific intermediates confirmed that the precursors for the cytosolic isoprenylation of this fusion protein are predominantly provided by the MEP pathway. In order to optimize this visualization system from a more qualitative assay to a statistically trustable medium or a high-throughput screening system, we established now new conditions that permit culture and analysis in 96-well microtiter plates, followed by fluorescence microscopy. For further refinement, the existing GFP-BD-CVIL cell line was transformed with an estradiol-inducible vector driving the expression of a RFP protein, C-terminally fused to a nuclear localization signal (NLS-RFP). We are thus able to quantify the total number of viable cells versus the number of inhibited cells after various treatments. This approach also includes a semi-automatic counting system, based on the freely available image processing software. As a result, the time of image analysis as well as the risk of user-generated bias is reduced to a minimum. Moreover, there is no cross-induction of gene expression by dexamethasone and estradiol, which is an important prerequisite for this test system.
Collapse
Affiliation(s)
- Michael Hartmann
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Department Biologie, Institut für Molekulare Ökophysiologie der Pflanzen, Universität Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Elisabet Gas-Pascual
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Horticulture and Crop Science, Ohio State University, 208 Williams Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Andrea Hemmerlin
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| | - Michel Rohmer
- UMR 7177 CNRS/Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, F-67070 Strasbourg, France
| | - Thomas J. Bach
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| |
Collapse
|
5
|
Hartmann M, Gas-Pascual E, Hemmerlin A, Rohmer M, Bach TJ. Development of an image-based screening system for inhibitors of the plastidial MEP pathway and of protein geranylgeranylation. F1000Res 2015; 4:14. [PMID: 26309725 PMCID: PMC4536634 DOI: 10.12688/f1000research.5923.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/20/2022] Open
Abstract
We have recently established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, which involves expressing a dexamethasone-inducible GFP fused to the prenylable, carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with oxoclomazone and fosmidomycin, as well as inhibition of protein geranylgeranyl transferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect this localization. Furthermore, complementation assays with pathway-specific intermediates confirmed that the precursors for the cytosolic isoprenylation of this fusion protein are predominantly provided by the MEP pathway. In order to optimize this visualization system from a more qualitative assay to a statistically trustable medium or a high-throughput screening system, we established new conditions that permit culture and analysis in 96-well microtiter plates, followed by fluorescence microscopy. For further refinement, the existing GFP-BD-CVIL cell line was transformed with an estradiol-inducible vector driving the expression of a RFP protein, C-terminally fused to a nuclear localization signal (NLS-RFP). We are thus able to quantify the total number of viable cells versus the number of inhibited cells after various treatments. This approach also includes a semi-automatic counting system, based on the freely available image processing software. As a result, the time of image analysis as well as the risk of user-generated bias is reduced to a minimum. Moreover, there is no cross-induction of gene expression by dexamethasone and estradiol, which is an important prerequisite for this test system.
Collapse
Affiliation(s)
- Michael Hartmann
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Department Biologie, Institut für Molekulare Ökophysiologie der Pflanzen, Universität Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Elisabet Gas-Pascual
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
- Current address: Horticulture and Crop Science, Ohio State University, 208 Williams Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Andrea Hemmerlin
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| | - Michel Rohmer
- UMR 7177 CNRS/Université de Strasbourg, Institut Le Bel, 4 rue Blaise Pascal, F-67070 Strasbourg, France
| | - Thomas J. Bach
- Département “Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg, France
| |
Collapse
|
6
|
Yang C, Zhang M, Niu W, Yang R, Zhang Y, Qiu Z, Sun B, Zhao Z. Analysis of DNA methylation in various swine tissues. PLoS One 2011; 6:e16229. [PMID: 21283691 PMCID: PMC3025005 DOI: 10.1371/journal.pone.0016229] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/15/2010] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively. In addition, different methylation patterns were observed in seven tissues from pig, and almost all of the methylation patterns detected by F-MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrated that the F-MSAP technique can be adapted for use in large-scale DNA methylation detection in the pig genome.
Collapse
Affiliation(s)
- Chun Yang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Mingjun Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Weiping Niu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Runjun Yang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Yonghong Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengyan Qiu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Boxing Sun
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (BS); (ZZ)
| | - Zhihui Zhao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (BS); (ZZ)
| |
Collapse
|
7
|
Zhao Y, Yu S, Xing C, Fan S, Song M. Analysis of DNA methylation in cotton hybrids and their parents. Mol Biol 2008. [DOI: 10.1134/s0026893308020015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Cao-De J, Chang-Yan D, Yuan-Zhu X. Differences of cytosine methylation in parental lines and F1 hybrids of Large White×Meishan crosses and their effects on F1 performance. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/cjb200559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractIn order to probe the effect of methylation on heterosis, the methylation-sensitive arbitrarily primed polymerase chain reaction (AP-PCR) technique was adopted to amplify pig genome DNA with 40 single arbitrary primers. The material involved parental lines and F1 hybrids of Large White×Meishan crosses. Nineteen differentially methylated sites with RsaI+HpaII digestion and 14 differentially methylated sites with RsaI+MspII digestion between parental lines and the hybrid were found. All fragments detected in this study were grouped into four classes: (1) the same level of methylation in both parental lines and the hybrid; (2) the same level of methylation in one parent and the hybrid; (3) an increased level of methylation in the hybrid compared to the parents, and (4) a decreased level of methylation in the hybrid. Five sites had significant effects on seven traits (P<0.05). Sequence analysis showed that three sequences had a high-identity match in GenBank (greater than 87%) and two sequences had no match in the database. The percentage of G+C in three sequences was over 50, and the observed/expected CpG of all sequences was above 0.6. Furthermore, one sequence contained G/C boxes. This study demonstrated that the sites in CpG islands within a gene promoter were differentially methylated in the hybrid compared to parental lines; methylated sites contributed differentially to F1 performance, showing that heterosis could benefit from either expression or repression of some genes.
Collapse
|
9
|
Abstract
Twenty-one complete eukaryotic genomes are compared for codon signature biases. The codon signature refers to the dinucleotide relative abundance values at codon sites {1, 2}, {2, 3}, and {3, 4} (4 = 1 of the next codon site). The genomes under study include human, mouse, chicken, three invertebrates, one plant species, eight fungi, and six protists. The dinucleotide CpG is significantly underrepresented at all contiguous codon sites and drastically suppressed in noncoding regions in mammalian species, in yeast-like genomes, in the dicotArabidopsis thaliana, but not in the filamentous fungiNeurospora crassaandAsperigillus fumigatus, and in the protistEntamoeba histolytica.The dinucleotide TpA, probably due to DNA structural weaknesses, is underrepresented genome-wide and significantly underrepresented in the codon signature for all contiguous codon sites in mammals, inverterbrates, plants, and fungi, but somewhat restricted to codon sites {1, 2} among protists helping in avoidance of stop codons. The amino acid Ser, not of abundance in bacterial genomes, generally ranks among the two most used amino acids among eukaryotes ostensibly resulting from greater activity in the nucleus. The observed differences are linked to specifics of methylation, context-dependent mutation, DNA repair, and replication. For example, the amino acid Leu is broadly abundant in all life domains generally resulting from extra occurrences of the codon TTR, R purine. The malarial protistPlasmodium falciparumshows many codon signature extremes.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University, Stanford
| | - Dorit Carmelli
- Department of Mathematics, Stanford University, Stanford
| |
Collapse
|
10
|
Lu G, Wu X, Chen B, Gao G, Xu K, Li X. Detection of DNA methylation changes during seed germination in rapeseed (Brassica napus). ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-005-1191-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Selker EU, Freitag M, Kothe GO, Margolin BS, Rountree MR, Allis CD, Tamaru H. Induction and maintenance of nonsymmetrical DNA methylation in Neurospora. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16485-90. [PMID: 12189210 PMCID: PMC139912 DOI: 10.1073/pnas.182427299] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One can imagine a variety of mechanisms that should result in self-perpetuating biological states. It is generally assumed that cytosine methylation is propagated in eukaryotes by enzymes that specifically methylate hemimethylated symmetrical sites (e.g., (5')CpGGpC(5') or (5')CpNpGGpNpC(5')). Although there is wide support for this model, we and others have found examples of methylation that must be propagated by a different mechanism. Most methylated regions of the Neurospora genome that have been examined are products of repeat-induced point mutation, a premeiotic genome defense system that litters duplicated sequences with C.G to T.A mutations and typically leaves them methylated at remaining cytosines. In general, such relics of repeat-induced point mutation are capable of triggering methylation de novo. Nevertheless, some reflect a mechanism that can propagate heterogeneous methylation at nonsymmetrical sites. We propose that de novo and maintenance methylation are manifestations of a single mechanism in Neurospora, catalyzed by the DIM-2 DNA methyltransferase. The action of DIM-2 is controlled by the DIM-5 histone H3 Lys-9 methyltransferase, which in turn is influenced by other modifications of histone H3. DNA methylation indirectly recruits histone deacetylases, providing the framework of a self-reinforcing system that could result in propagation of DNA methylation and the associated silenced chromatin state.
Collapse
Affiliation(s)
- Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mourrain P, Béclin C, Vaucheret H. Are gene silencing mutants good tools for reliable transgene expression or reliable silencing of endogenous genes in plants? GENETIC ENGINEERING 2001; 22:155-70. [PMID: 11501375 DOI: 10.1007/978-1-4615-4199-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- P Mourrain
- Laboratoire de Biologie Cellulaire INRA 78026 Versailles, France
| | | | | |
Collapse
|
13
|
|
14
|
Abstract
Methylation of cytosine residues in DNA provides a mechanism of gene control. There are two classes of methyltransferase in Arabidopsis; one has a carboxy-terminal methyltransferase domain fused to an amino-terminal regulatory domain and is similar to mammalian methyltransferases. The second class apparently lacks an amino-terminal domain and is less well conserved. Methylcytosine can occur at any cytosine residue, but it is likely that clonal transmission of methylation patterns only occurs for cytosines in strand-symmetrical sequences CpG and CpNpG. In plants, as in mammals, DNA methylation has dual roles in defense against invading DNA and transposable elements and in gene regulation. Although originally reported as having no phenotypic consequence, reduced DNA methylation disrupts normal plant development.
Collapse
Affiliation(s)
- E. J. Finnegan
- 1Commonwealth Scientific and Industrial Research Organization, Plant Industry, P.O. Box 1600, Canberra, ACT 2601, Australia, Cooperative Research Centre for Plant Science, P.O. Box 475, Canberra, ACT 2601, Australia; e-mail: , 2Division of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
15
|
Gebhard F, Smalla K. Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl Environ Microbiol 1998; 64:1550-4. [PMID: 9546192 PMCID: PMC106187 DOI: 10.1128/aem.64.4.1550-1554.1998] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1997] [Accepted: 01/20/1998] [Indexed: 02/07/2023] Open
Abstract
The ability of Acinetobacter sp. strain BD413(pFG4 delta nptII) to take up and integrate transgenic plant DNA based on homologous recombination was studied under optimized laboratory conditions. Restoration of nptII, resulting in kanamycin-resistant transformants, was observed with plasmid DNA, plant DNA, and homogenates carrying the gene nptII. Molecular analysis showed that some transformants not only restored the 317-bp deletion but also obtained additional DNA.
Collapse
Affiliation(s)
- F Gebhard
- Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Biochemie und Pflanzenvirologie, Braunschweig, Germany
| | | |
Collapse
|
16
|
Sakowicz T, Olszewska MJ. DNA content, interphase AgNOR-area, number of3HrDNA hybridization signals and the methylation level in coding rDNA sequence in different organs ofLupinus luteus L. Genetica 1997. [DOI: 10.1007/bf02259499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Vicient CM, Martínez-Izquierdo JA. Discovery of a Zdel transposable element in Zea species as a consequence of a retrotransposon insertion. Gene X 1997; 184:257-61. [PMID: 9031637 DOI: 10.1016/s0378-1119(96)00610-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nucleotide sequences similar to del1 retrotransposon from Lilium henryi have been discovered in Zea diploperennis as a consequence of finding a Zea retrotransposon element inserted into one of them. These sequences named Zdel (Zea del1-like) elements are present in all the Zea species (about 100 copies per haploid genome) and in Tripsacum dactyloides and absent from closely related genera. Sequences corresponding to gag and protease domains from a Zdel element have been identified. The Zdel protease sequence shows a conserved active site motif (DT/SG) from aspartic proteases. The high level of DNA methylation found in Zdel elements may be related to the observed absence of transcriptional activity.
Collapse
Affiliation(s)
- C M Vicient
- Departamento de Genética Molecular CID-CSIC, Barcelona, Spain
| | | |
Collapse
|
18
|
Sørensen MB, Müller M, Skerritt J, Simpson D. Hordein promoter methylation and transcriptional activity in wild-type and mutant barley endosperm. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:750-60. [PMID: 8628236 DOI: 10.1007/bf02172987] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
B- and C-hordein gene transcription is severely reduced in the endosperm of the regulatory barley mutant lys3a, and this is correlated with persistent hypermethylation of the promoters. In contrast, D-hordein is expressed at normal levels in the mutant. To confirm the connection between methylation and transcriptional activity, a genomic D-hordein clone was isolated and sequenced. The nucleotide composition of the promoter region revealed a CpG island and methylation analysis, using bisulphite treatment of genomic DNA, confirmed that the D-hordein promoter is unmethylated in endosperm and leaf tissue. Immunocytochemical studies localized D-hordein to the reticular component of protein bodies in both the wild-type Bomi and lys3a. Transient expression of GUS reporter gene constructs in barley endosperm, following transfection by particle bombardment revealed the D-hordein promotors. Comparison of transient expression in Bomi and lys3a endosperm demonstrated that the activities of the unmethylated D-hordein and the Hor1-14 C-hordein promoters were equivalent, while the activities in the mutant of the Horl-17 C-hordein and the Hor2-4 B-hordein promoters were reduced two- and tenfold, respectively. Methylation of plasmids in vitro prior to expression severely inhibited B- and D-hordein promoter activities. Based on these observations two categories of promoters for endosperm-specific expression of storage proteins are recognized and a model involving methylation and modulation of chromatin structure in the regulation by the Lys3 gene is presented.
Collapse
Affiliation(s)
- M B Sørensen
- Department of Physiology, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | | | |
Collapse
|
19
|
Agrobacterium rhizogenes-mediated induction of adventitious rooting fromPinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity. Transgenic Res 1996. [DOI: 10.1007/bf01969425] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Graham MW, Larkin PJ. Adenine methylation at dam sites increases transient gene expression in plant cells. Transgenic Res 1995; 4:324-31. [PMID: 8589735 DOI: 10.1007/bf01972529] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Escherichia coli encodes two major DNA methylation systems: dam, which produces 6-methyladenine; and dcm, which produces 5-methylcytosine. About 1-2% of adenine and cytosine residues in plasmid DNAs prepared in E. coli are methylated by these systems. Since DNA methylation profoundly influences gene expression in eukaryotes, we were interested in determining whether these bacterially encoded modifications might also effect plant gene expression in experimental systems. We therefore examined the influence of dam and dcm methylation on gene expression from four GUS fusion constructs in transient assays in protoplasts and microprojectile-bombarded whole tissues. In these constructs, GUS expression was driven by promoter regions derived from the Arabidopsis alcohol dehydrogenase (Adh1), maize ubiquitin (Ubi1), rice actin (Act1) and CaMV 35S genes. We show that methyladenine produced by dam methylation increased gene expression from constructs based on the Adh1, Ubi1 and Act1 genes. The increase in gene expression ranged from three-fold for Ubi1 and Adh1 in protoplasts to 50-fold for Act1 in bombarded wheat tissues. Expression of a 35S.GUS construct was, however, insensitive to dam methylation. dcm methylation had little if any effect on transient gene expression for any of these constructs. We provide indirect evidence that the critical sites of adenine methylation lie within sequences from the promoter regions, suggesting that dam methylation increases transcription rate. These results have important experimental implications and also raise the intriguing possibility that methyladenine might play a role in the regulation of gene expression in vivo.
Collapse
Affiliation(s)
- M W Graham
- CSIRO Division of Plant Industry, Canberra, Australia
| | | |
Collapse
|
21
|
Leach CR, Donald TM, Franks TK, Spiniello SS, Hanrahan CF, Timmis JN. Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica. Chromosoma 1995; 103:708-14. [PMID: 7664618 DOI: 10.1007/bf00344232] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Brachycome dichromosomatica is an Australian native daisy that has two pairs of A chromosomes and up to three B chromosomes in some populations. A putative B-specific tandem repeat DNA sequence (Bd49) was isolated previously. Here we describe further characterisation of this sequence and investigate its possible origin. Southern analysis showed that all individual B chromosomes examined have highly methylated tandem repeats of Bd49 but differences in banding pattern for distinct B isolates suggested that the sequence is in a state of flux. Using in situ hybridisation, the sequence was shown to be located at the centromeric region of the B chromosome. Southern analysis of genomic DNA with Bd49 demonstrated that multiple copies of the sequence exist in the genomes of B. eriogona, B. ciliaris, B. segmentosa and B. multifida (none of which have B chromosomes) whereas other species tested (including 0B plants of B. dichromosomatica and 0B and +B B. curvicarpa and B. dentata) have few or no copies. Genomic clones and Bd49-like sequences derived by the polymerase chain reaction (PCR) were obtained from five species but determination of phylogenetic relationships within the genus and inference as to the possible origin of the B chromosome were problematic because of extensive intragenomic heterogeneity of the sequences.
Collapse
Affiliation(s)
- C R Leach
- Department of Genetics, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Finnegan EJ, Dennis ES. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res 1993; 21:2383-8. [PMID: 8389441 PMCID: PMC309536 DOI: 10.1093/nar/21.10.2383] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A plant cytosine methyltransferase cDNA was isolated using degenerate oligonucleotides, based on homology between prokaryote and mouse methyltransferases, and PCR to amplify a short fragment of a methyltransferase gene. A fragment of the predicted size was amplified from genomic DNA from Arabidopsis thaliana. Overlapping cDNA clones, some with homology to the PCR amplified fragment, were identified and sequenced. The assembled nucleic acid sequence is 4720 bp and encodes a protein of 1534 amino acids which has significant homology to prokaryote and mammalian cytosine methyltransferases. Like mammalian methylases, this enzyme has a C terminal methyltransferase domain linked to a second larger domain. The Arabidopsis methylase has eight of the ten conserved sequence motifs found in prokaryote cytosine-5 methyltransferases and shows 50% homology to the murine enzyme in the methyltransferase domain. The amino terminal domain is only 24% homologous to the murine enzyme and lacks the zinc binding region that has been found in methyltransferases from both mouse and man. In contrast to mouse where a single methyltransferase gene has been identified, a small multigene family with homology to the region amplified in PCR has been identified in Arabidopsis thaliana.
Collapse
Affiliation(s)
- E J Finnegan
- CSIRO, Division of Plant Industry, Canberra, ACT, Australia
| | | |
Collapse
|