1
|
Yin X, Yang AA, Gao JM. Mushroom Toxins: Chemistry and Toxicology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5053-5071. [PMID: 30986058 DOI: 10.1021/acs.jafc.9b00414] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mushroom consumption is a global tradition that is still gaining popularity. However, foraging for wild mushrooms and accidental ingestion of toxic mushrooms can result in serious illness and even death. The early diagnosis and treatment of mushroom poisoning are quite difficult, as the symptoms are similar to those caused by common diseases. Chemically, mushroom poisoning is related to very powerful toxins, suggesting that the isolation and identification of toxins have great research value, especially in determining the lethal components of toxic mushrooms. In contrast, most of these toxins have remarkable physiological properties that could promote advances in chemistry, biochemistry, physiology, and pharmacology. Although more than 100 toxins have been elucidated, there are a number of lethal mushrooms that have not been fully investigated. This review provides information on the chemistry (including chemical structures, total synthesis, and biosynthesis) and the toxicology of these toxins, hoping to inspire further research in this area.
Collapse
Affiliation(s)
- Xia Yin
- Shaanxi Key Laboratory of Natural Products & Chemistry Biology, College of Chemistry & Pharmacy , Northwest A & F University , Yangling 712100 , People's Republic of China
| | - An-An Yang
- Department of Pathology , The 969th Hospital of PLA , Hohhot , Inner Mongolia 010000 , People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemistry Biology, College of Chemistry & Pharmacy , Northwest A & F University , Yangling 712100 , People's Republic of China
| |
Collapse
|
2
|
Lee SY, Woo SY, Malachová A, Michlmayr H, Kim SH, Kang GJ, Chun HS. Simple validated method for simultaneous determination of deoxynivalenol, nivalenol, and their 3-β-D-glucosides in baby formula and Korean rice wine via HPLC-UV with immunoaffinity cleanup. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:964-975. [DOI: 10.1080/19440049.2019.1606454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sang Yoo Lee
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - So Young Woo
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Alexandra Malachová
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna(BOKU), Tulln, Austria
| | - Sheen-Hee Kim
- Food Contaminants Division, National Institute of Food & Drug Safety Evaluation, Osong, Republic of Korea
| | - Gil Jin Kang
- Food Contaminants Division, National Institute of Food & Drug Safety Evaluation, Osong, Republic of Korea
| | - Hyang Sook Chun
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
3
|
Matsumoto M, Tanaka S, Tonouchi A, Hashimoto M. 12-Deoxyroridin J and 12-Deoxyepiisororidin E from Calcarisporium arbuscular. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Loi M, Fanelli F, Liuzzi VC, Logrieco AF, Mulè G. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins (Basel) 2017; 9:E111. [PMID: 28338601 PMCID: PMC5408185 DOI: 10.3390/toxins9040111] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 01/13/2023] Open
Abstract
Worldwide mycotoxins contamination has a significant impact on animal and human health, and leads to economic losses accounted for billions of dollars annually. Since the application of pre- and post- harvest strategies, including chemical or physical removal, are not sufficiently effective, biological transformation is considered the most promising yet challenging approach to reduce mycotoxins accumulation. Although several microorganisms were reported to degrade mycotoxins, only a few enzymes have been identified, purified and characterized for this activity. This review focuses on the biotransformation of mycotoxins performed with purified enzymes isolated from bacteria, fungi and plants, whose activity was validated in in vitro and in vivo assays, including patented ones and commercial preparations. Furthermore, we will present some applications for detoxifying enzymes in food, feed, biogas and biofuel industries, describing their limitation and potentialities.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
- Department of Economics, University of Foggia, via Napoli 25, Foggia 71122, Italy.
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| | - Vania C Liuzzi
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
5
|
Wetterhorn KM, Newmister SA, Caniza RK, Busman M, McCormick SP, Berthiller F, Adam G, Rayment I. Crystal Structure of Os79 (Os04g0206600) from Oryza sativa: A UDP-glucosyltransferase Involved in the Detoxification of Deoxynivalenol. Biochemistry 2016; 55:6175-6186. [DOI: 10.1021/acs.biochem.6b00709] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karl M. Wetterhorn
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Sean A. Newmister
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Rachell K. Caniza
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Mark Busman
- Mycotoxin
Prevention and Applied Microbiology Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Susan P. McCormick
- Mycotoxin
Prevention and Applied Microbiology Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Franz Berthiller
- Christian
Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical
Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse
20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department
of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Ivan Rayment
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Modified Fusarium mycotoxins unmasked: From occurrence in cereals to animal and human excretion. Food Chem Toxicol 2015; 80:17-31. [DOI: 10.1016/j.fct.2015.02.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/19/2022]
|
7
|
Fruhmann P, Weigl-Pollack T, Mikula H, Wiesenberger G, Adam G, Varga E, Berthiller F, Krska R, Hametner C, Fröhlich J. Methylthiodeoxynivalenol (MTD): insight into the chemistry, structure and toxicity of thia-Michael adducts of trichothecenes. Org Biomol Chem 2015; 12:5144-50. [PMID: 24903010 DOI: 10.1039/c4ob00458b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methylthiodeoxynivalenol (MTD), a novel derivative of the trichothecene mycotoxin deoxynivalenol (DON), was prepared by applying a reliable procedure for the formal Michael addition of methanethiol to the conjugated double bond of DON. Structure elucidation revealed the preferred formation of the hemiketal form of MTD by intramolecular cyclisation between C8 and C15. Computational investigations showed a negative total reaction energy for the hemiketalisation step and its decrease in comparison with theoretical model compounds. Therefore, this structural behaviour seems to be a general characteristic of thia-Michael adducts of type B trichothecenes. MTD was shown to be less inhibitory for a reticulocyte lysate based in vitro translation system than the parent compound DON, which supports the hypothesis that trichothecenes are detoxified through thia-adduct formation during xenobiotic metabolism.
Collapse
Affiliation(s)
- Philipp Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (VUT), Getreidemarkt 9/163, 1060 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nathanail AV, Syvähuoko J, Malachová A, Jestoi M, Varga E, Michlmayr H, Adam G, Sieviläinen E, Berthiller F, Peltonen K. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Anal Bioanal Chem 2015; 407:4745-55. [PMID: 25935671 PMCID: PMC4446524 DOI: 10.1007/s00216-015-8676-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/04/2022]
Abstract
A reliable and sensitive liquid chromatography-tandem mass spectrometric method was developed for the simultaneous quantitative determination in cereals of the Fusarium mycotoxins HT-2 toxin, T-2 toxin, deoxynivalenol, nivalenol and zearalenone, as well as the modified metabolites 3-acetyl-deoxynivalenol, α-zearalenol, β-zearalenol, deoxynivalenol-3-glucoside, HT-2-3-glucoside, nivalenol-3-glucoside, zearalenone-14-glucoside, zearalenone-14-sulphate, zearalenone-16-glucoside, α-zearalenol-14-glucoside and β-zearalenol-14-glucoside. The ‘dilute and shoot’ approach was used for sample preparation after extraction with acetonitrile:water:acetic acid (79:20:1, v/v/v). Separation was carried out using reversed-phase liquid chromatography, and detection was performed using tandem mass spectrometry in the selected reaction monitoring mode. The method was in-house validated according to performance characteristics, established in Commission Regulation EC No 401/2006 and Commission Decision EC No 657/2002, prior to its application in a nationwide survey for the analysis of barley, oat and wheat samples (n = 95) harvested in Finland during 2013. Deoxynivalenol and its glucosylated form were the most abundant of the analytes, being detected in 93 and 81 % of the samples, respectively. Concentrations of deoxynivalenol were unusually high in 2013, especially in oats, with some cases exceeding the maximum legislative limits for unprocessed oats placed on the market for first-stage processing. All modified mycotoxins analysed were detected, and the natural occurrence of some of these compounds (e.g. zearalenone-16-glucoside and nivalenol-3-glucoside) in barley, oats and/or wheat was documented for the first time.
Collapse
Affiliation(s)
- Alexis V Nathanail
- Chemistry and Toxicology Unit, Research and Laboratory Department, Finnish Food Safety Authority (Evira), Mustialankatu 3, 00790, Helsinki, Finland,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and cyclases, and scaffold tailoring enzymes such as e.g. cytochrome P450 monoxygenases, NAD(P)+ and flavin dependent oxidoreductases, and various group transferases that generate the final bioactive structures. The biosynthesis of several sesquiterpenoid mycotoxins and bioactive diterpenoids has been well-studied in Ascomycota (e.g. filamentous fungi). Little is known about the terpenoid biosynthetic pathways in Basidiomycota (e.g. mushroom forming fungi), although they produce a huge diversity of terpenoid natural products. Specifically, many trans-humulyl cation derived sesquiterpenoid natural products with potent bioactivities have been isolated. Biosynthetic gene clusters responsible for the production of trans-humulyl cation derived protoilludanes, and other sesquiterpenoids, can be rapidly identified by genome sequencing and bioinformatic methods. Genome mining combined with heterologous biosynthetic pathway refactoring has the potential to facilitate discovery and production of pharmaceutically relevant fungal terpenoids.
Collapse
Affiliation(s)
- Maureen B Quin
- University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
10
|
Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. Molecular and Genetic Studies ofFusariumTrichothecene Biosynthesis: Pathways, Genes, and Evolution. Biosci Biotechnol Biochem 2014; 71:2105-23. [PMID: 17827683 DOI: 10.1271/bbb.70183] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trichothecenes are a large family of sesquiterpenoid secondary metabolites of Fusarium species (e.g., F. graminearum) and other molds. They are major mycotoxins that can cause serious problems when consumed via contaminated cereal grains. In the past 20 years, an outline of the trichothecene biosynthetic pathway has been established based on the results of precursor feeding experiments and blocked mutant analyses. Following the isolation of the pathway gene Tri5 encoding the first committed enzyme trichodiene synthase, 10 biosynthesis genes (Tri genes; two regulatory genes, seven pathway genes, and one transporter gene) were functionally identified in the Tri5 gene cluster. At least three pathway genes, Tri101 (separated alone), and Tri1 and Tri16 (located in the Tri1-Tri16 two-gene cluster), were found outside of the Tri5 gene cluster. In this review, we summarize the current understanding of the pathways of biosynthesis, the functions of cloned Tri genes, and the evolution of Tri genes, focusing on Fusarium species.
Collapse
Affiliation(s)
- Makoto Kimura
- Plant & Microbial Metabolic Engineering Research Unit, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
11
|
Schweiger W, Pasquet JC, Nussbaumer T, Paris MPK, Wiesenberger G, Macadré C, Ametz C, Berthiller F, Lemmens M, Saindrenan P, Mewes HW, Mayer KFX, Dufresne M, Adam G. Functional characterization of two clusters of Brachypodium distachyon UDP-glycosyltransferases encoding putative deoxynivalenol detoxification genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:781-92. [PMID: 23550529 DOI: 10.1094/mpmi-08-12-0205-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant small-molecule UDP-glycosyltransferases (UGT) glycosylate a vast number of endogenous substances but also act in detoxification of metabolites produced by plant-pathogenic microorganisms. The ability to inactivate the Fusarium graminearum mycotoxin deoxynivalenol (DON) into DON-3-O-glucoside is crucial for resistance of cereals. We analyzed the UGT gene family of the monocot model species Brachypodium distachyon and functionally characterized two gene clusters containing putative orthologs of previously identified DON-detoxification genes from Arabidopsis thaliana and barley. Analysis of transcription showed that UGT encoded in both clusters are highly inducible by DON and expressed at much higher levels upon infection with a wild-type DON-producing F. graminearum strain compared with infection with a mutant deficient in DON production. Expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae revealed that only two B. distachyon UGT encoded by members of a cluster of six genes homologous to the DON-inactivating barley HvUGT13248 were able to convert DON into DON-3-O-glucoside. Also, a single copy gene from Sorghum bicolor orthologous to this cluster and one of three putative orthologs of rice exhibit this ability. Seemingly, the UGT genes undergo rapid evolution and changes in copy number, making it difficult to identify orthologs with conserved substrate specificity.
Collapse
Affiliation(s)
- Wolfgang Schweiger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, A-3430 Tulln, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 2012; 217:149-58. [PMID: 23274714 DOI: 10.1016/j.toxlet.2012.12.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/24/2023]
Abstract
Trichothecenes are sesquiterpenoid mycotoxins commonly found as contaminants in cereal grains and are a major health and food safety concern due to their toxicity to humans and farm animals. Trichothecenes are predominantly produced by the phytopathogenic Fusarium fungus, and in plants they act as a virulence factor aiding the spread of the fungus during disease development. Known for their inhibitory effect on eukaryotic protein synthesis, trichothecenes also induce oxidative stress, DNA damage and cell cycle arrest and affect cell membrane integrity and function in eukaryotic cells. In animals, trichothecenes can be either immunostimulatory or immunosuppressive and induce apoptosis via mitochondria-mediated or -independent pathway. In plants, trichothecenes induce programmed cell death via production of reactive oxygen species. Recent advances in molecular techniques have led to the elucidation of signal transduction pathways that manifest trichothecene toxicity in eukaryotes. In animals, trichothecenes induce mitogen-activated protein kinase (MAPK) signalling cascades via ribotoxic stress response and/or endoplasmic reticulum stress response. The upstream signalling events that lead to the activation trichothecene-induced ribotoxic stress response are discussed. In plants, trichothecenes exhibit elicitor-like activity leading to the inductions MAPKs and genes involved in oxidative stress, cell death and plant defence response. Trichothecenes might also modulate hormone-mediated defence signalling and abiotic stress signalling in plants.
Collapse
|
13
|
Zhang SY, Li ZL, Guan LP, Wu X, Pan HQ, Bai J, Hua HM. Structure determination of two new trichothecenes from a halotolerant fungus Myrothecium sp. GS-17 by NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50:632-636. [PMID: 22806769 DOI: 10.1002/mrc.3845] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 06/14/2012] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
Two new trichothecenes, named 8α-hydroxyroridin H and myrothecin A, along with six known compounds, 8α-acetoxy roridin H, isororidin K, verrucarin A, verrucarin J, verrucarin L and 8α-acetoxy verrucarin L, were isolated from the fermentation broth of a halotolerant fungus Myrothecium sp. GS-17, which was separated from the soil sample of a salina. Structure elucidation and NMR signal assignments were achieved on the basis of spectroscopy. In addition, compounds 1 and 2 were active against plant pathogenic fungi Rhizoctonia solani and Fusarium oxysporum.
Collapse
Affiliation(s)
- Song-Ya Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | | | | | | | | | | | | |
Collapse
|
14
|
McCormick SP, Stanley AM, Stover NA, Alexander NJ. Trichothecenes: from simple to complex mycotoxins. Toxins (Basel) 2011; 3:802-14. [PMID: 22069741 PMCID: PMC3202860 DOI: 10.3390/toxins3070802] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/10/2011] [Accepted: 06/29/2011] [Indexed: 01/07/2023] Open
Abstract
As the world's population grows, access to a safe food supply will continue to be a global priority. In recent years, the world has experienced an increase in mycotoxin contamination of grains due to climatic and agronomic changes that encourage fungal growth during cultivation. A number of the molds that are plant pathogens produce trichothecene mycotoxins, which are known to cause serious human and animal toxicoses. This review covers the types of trichothecenes, their complexity, and proposed biosynthetic pathways of trichothecenes.
Collapse
Affiliation(s)
- Susan P. McCormick
- Bacterial Foodborne Pathogens and Mycology, National Center for Agricultural Utilization Research, U.S. Department of Agriculture-Agriculture Research Service, Peoria, IL 61604, USA;
- Author to whom correspondence should be addressed; ; Tel.:+1-309-681-6381; Fax:+1-309-681-6627
| | - April M. Stanley
- Biology Department, Bradley University, Peoria, IL 61625, USA; (A.M.S.); (N.A.S.)
| | - Nicholas A. Stover
- Biology Department, Bradley University, Peoria, IL 61625, USA; (A.M.S.); (N.A.S.)
| | - Nancy J. Alexander
- Bacterial Foodborne Pathogens and Mycology, National Center for Agricultural Utilization Research, U.S. Department of Agriculture-Agriculture Research Service, Peoria, IL 61604, USA;
| |
Collapse
|
15
|
Yang H, Park SH, Choi HJ, Do KH, Kim J, An TJ, Lee SH, Moon Y. Mechanism-based alternative monitoring of endoplasmic reticulum stress by 8-keto-trichothecene mycotoxins using human intestinal epithelial cell line. Toxicol Lett 2010; 198:317-23. [DOI: 10.1016/j.toxlet.2010.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
|
16
|
Gardiner SA, Boddu J, Berthiller F, Hametner C, Stupar RM, Adam G, Muehlbauer GJ. Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:962-76. [PMID: 20521958 DOI: 10.1094/mpmi-23-7-0962] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Trichothecenes are a major group of toxins produced by phytopathogenic fungi, including Fusarium graminearum. Trichothecenes inhibit protein synthesis in eukaryotic cells and are toxicologically relevant mycotoxins for humans and animals. Because they promote plant disease, the role of host responses to trichothecene accumulation is considered to be an important aspect of plant defense and resistance to fungal infection. Our overall objective was to examine the barley response to application of the type B trichothecene deoxynivalenol (DON). We found that DON is diluted by movement from the application site to acropetal and basipetal florets. A susceptible barley genotype converted DON to DON-3-O-glucoside, indicating that UDP-glucosyltransferases capable of detoxifying DON must exist in barley. RNA profiling of DON-treated barley spikes revealed strong upregulation of gene transcripts encoding ABC transporters, UDP-glucosyltransferases, cytochrome P450s, and glutathione-S-transferases. We noted that transcripts encoding cysteine synthases were dramatically induced by DON, and that toxin-sensitive yeast on glutathione- or cysteine-supplemented media or carrying a gene that encodes a cysteine biosynthetic enzyme exhibit DON resistance, suggesting that preventing glutathione depletion by increasing cysteine supply could play a role in ameliorating the impact of DON. Evidence for nonenzymatic formation of DON-glutathione adducts in vitro was found using both liquid chromatography-mass spectrometry and nuclear magnetic resonance analysis, indicating that the formation of DON-glutathione conjugates in vivo may reduce the impact of trichothecenes. Our results indicate that barley exhibits multiple defense mechanisms against trichothecenes.
Collapse
Affiliation(s)
- Stephanie A Gardiner
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Serrano M, Hubert DA, Dangl JL, Schulze-Lefert P, Kombrink E. A chemical screen for suppressors of the avrRpm1-RPM1-dependent hypersensitive cell death response in Arabidopsis thaliana. PLANTA 2010; 231:1013-23. [PMID: 20140739 PMCID: PMC2840663 DOI: 10.1007/s00425-010-1105-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/18/2010] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana RPM1 encodes an intracellular immune sensor that conditions disease resistance to Pseudomonas syringae expressing the type III effector protein AvrRpm1. Conditional expression of this type III effector in a transgenic line carrying avrRpm1 under the control of a steroid-inducible promoter results in RPM1-dependent cell death that resembles the cell death response of the incompatible RPM1-avrRpm1 plant-bacterium interaction. This line was previously used in a genetic screen, which revealed two genes that likely function in the folding of pre-activation RPM1. We established a chemical screen for small molecules that suppress steroid-inducible and RPM1-avrRpm1-dependent cell death in Arabidopsis seedlings. Screening of a library comprising 6,800 compounds of natural origin identified two trichothecene-type mycotoxins, 4,15-diacetoxyscirpenol (DAS) and neosolaniol (NEO), which are synthesized by Fusarium and other fungal species. However, protein blot analysis revealed that DAS and NEO inhibit AvrRpm1 synthesis rather than suppress RPM1-mediated responses. This inhibition of translational activity likely explains the survival of the seedlings under screening conditions. Likewise, flg22-induced defense responses are also impaired at the translational, but not the transcriptional, level by DAS or NEO. Unexpectedly, both compounds not only prevented AvrRpm1 synthesis, but rather caused an apparent hyper-accumulation of RPM1 and HSP70. The hyper-accumulation phenotype is likely unrelated to the ribotoxic function of DAS and NEO and could be due to an inhibitory activity on the proteolytic machinery of Arabidopsis or elicitor-like activities of type A trichothecenes.
Collapse
Affiliation(s)
- Mario Serrano
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Present Address: Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - David A. Hubert
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280 USA
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280 USA
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Erich Kombrink
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
18
|
Sherif SO, Salama EE, Abdel-Wahhab MA. Mycotoxins and child health: the need for health risk assessment. Int J Hyg Environ Health 2009; 212:347-368. [PMID: 18805056 DOI: 10.1016/j.ijheh.2008.08.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 06/05/2008] [Accepted: 08/11/2008] [Indexed: 01/11/2023]
Abstract
The occurrences of mycotoxins as food contaminants in different localities particularly in developing countries and the inevitable exposure of populations and children to these toxins with probable adverse outcomes need be scientifically and systematically assessed. Health risk assessment developed in the 1980s is separate from risk management, both with risk communication form the risk analysis framework adopted by the World Health Organization. The process contributes increasingly to policy development, public health decision making, the establishment of mycotoxin regulations and research planning. However, the exercise of the risk assessment structured approach is not simple and is faced up to lack of data, capable infrastructure facilities and need for trained personnel and resources. Furthermore, adopted methodologies need be developed focusing on child characteristics and health concerns.
Collapse
Affiliation(s)
- Sherif O Sherif
- Department of Child Health, National Research Center, Dokki, Cairo, Egypt
| | | | | |
Collapse
|
19
|
Islam Z, Shinozuka J, Harkema JR, Pestka JJ. Purification and comparative neurotoxicity of the trichothecenes satratoxin G and roridin L2 from Stachybotrys chartarum. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1242-1251. [PMID: 20077192 PMCID: PMC2808125 DOI: 10.1080/15287390903129234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Satratoxin G (SG), a macrocyclic trichothecene produced by Stachybotrys chartarum, induces apoptosis in cultured neuronal cells as well as nasal olfactory sensory neurons (OSN) in the nose and brain of mice exposed intranasally to this toxin. The purposes of this study were to (1) develop a facile method for production and purification of both SG and its putative biosynthetic precursor, roridin L2 (RL2), from S. chartarum cultures and (2) compare their relative neurotoxicity in vitro and in vivo. Stachybotrys chartarum 29-58-17 was cultured in Fernbach flasks on rice (5 x 10(5) spores/250 g rice) for 4 to 6 wk. Following extraction with acetonitrile, the extract was dried, dissolved in dichloromethane, and subjected to Michel-Miller silica-gel chromatography using a stepwise acetonitrile-dichloromethane gradient with SG and RL2 eluting in the 30 and 40% acetonitrile fractions, respectively. Purification of the two compounds was completed by C18 semipreparative reverse-phase liquid chromatography using an acetonitrile-water gradient, and purity was confirmed by electrospray ionization/collision-induced dissociation (ESI-CID) tandem mass spectroscopy. Although viability significantly decreased in PC-12 neuronal cells treated with 10 to 25 ng/ml of SG, RL2 at concentrations up to 1000 ng/ml was not toxic. Flow cytometry and agarose DNA fragmentation assays revealed that SG at 10 to 25 ng/ml induced apoptotic death in the PC-12 cells, while RL2 at concentrations up to 1000 ng/ml was without effect. In a similar fashion, intranasal exposure of mice (female B6C3F1) to SG at 100 microg/kg body weight (bw) induced marked OSN apoptosis and atrophy of the olfactory epithelium, whereas RL2 at the equivalent dose did not exhibit toxicity. Taken together, an optimized protocol for production and isolation of trichothecenes from S. chartarum cultures is described and further demonstrates that while the macrocyclic SG was neurotoxic in vitro and in vivo, its biosynthetic precursor, RL2, was nontoxic.
Collapse
Affiliation(s)
- Zahidul Islam
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing MI 48824, USA
| | - Junko Shinozuka
- Center for Integrative Toxicology, Michigan State University, East Lansing MI 48824, USA
- Safety Research Laboratory, Mitsubishi Tanabe Pharma Corporation, 2-50, Kawagishi, 2-Chome, Toda, Saitama, 335-8505, JAPAN
| | - Jack R. Harkema
- Center for Integrative Toxicology, Michigan State University, East Lansing MI 48824, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing MI 48824, USA
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing MI 48824, USA
| |
Collapse
|
20
|
Wang JH, Li HP, Qu B, Zhang JB, Huang T, Chen FF, Liao YC. Development of a generic PCR detection of 3-acetyldeoxy-nivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum Clade. Int J Mol Sci 2008; 9:2495-2504. [PMID: 19330088 PMCID: PMC2635647 DOI: 10.3390/ijms9122495] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 11/20/2008] [Accepted: 12/03/2008] [Indexed: 11/16/2022] Open
Abstract
Fusarium graminearum clade pathogens cause Fusarium head blight (FHB) or scab of wheat and other small cereal grains, producing different kinds of trichothecene mycotoxins that are detrimental to human and domestic animals. Type B trichothecene mycotoxins such as deoxynivalenol, 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON) and nivalenol (NIV) are the principal Fusarium mycotoxins reported in China, as well as in other countries. A genomic polymerase chain reaction (PCR) to predict chemotypes was developed based on the structural gene sequences of Tri13 genes involved in trichothecene mycotoxin biosynthesis pathways. A single pair of primers derived from the Tri13 genes detected a 583 bp fragment from 15-AcDON-chemotypes, a 644 bp fragment from 3-AcDON-chemotypes and an 859 bp fragment from NIV-producing strains. Fusarium strains from China, Nepal, USA and Europe were identified by this method, revealing their mycotoxin chemotypes identical to that obtained by chemical analyses of HPLC or GC/MS and other PCR assays. The mycotoxin chemotype-specific fragments were amplified from a highly variable region located in Tri13 genes with three deletions for 15-AcDON-chemotypes, two deletions for 3-AcDON-chemotypes and no deletion for NIV-producers. This PCR assay generated a single amplicon and thus should be more reliable than other PCR-based assays that showed the absence or presence of a PCR fragment since these assays may generate false-negative results. The results with strains from several different countries as well as from different hosts further indicated that this method should be globally applicable. This is a rapid, reliable and cost-effective method for the identification of type B trichothecene mycotoxin chemotypes in Fusarium species and food safety controls.
Collapse
Affiliation(s)
- Jian-Hua Wang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(J. W);
(H. L.);
(B. Q);
(J. Z.);
(T. H);
(F. C)
| | - He-Ping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(J. W);
(H. L.);
(B. Q);
(J. Z.);
(T. H);
(F. C)
| | - Bo Qu
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(J. W);
(H. L.);
(B. Q);
(J. Z.);
(T. H);
(F. C)
| | - Jing-Bo Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(J. W);
(H. L.);
(B. Q);
(J. Z.);
(T. H);
(F. C)
| | - Tao Huang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(J. W);
(H. L.);
(B. Q);
(J. Z.);
(T. H);
(F. C)
| | - Fang-Fang Chen
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(J. W);
(H. L.);
(B. Q);
(J. Z.);
(T. H);
(F. C)
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China. E-Mails:
(J. W);
(H. L.);
(B. Q);
(J. Z.);
(T. H);
(F. C)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
- Author to whom correspondence should be addressed; E-Mails:
;
; Fax: +86-27-87283008
| |
Collapse
|
21
|
Amuzie CJ, Harkema JR, Pestka JJ. Tissue distribution and proinflammatory cytokine induction by the trichothecene deoxynivalenol in the mouse: Comparison of nasal vs. oral exposure. Toxicology 2008; 248:39-44. [DOI: 10.1016/j.tox.2008.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 02/10/2008] [Accepted: 03/07/2008] [Indexed: 11/29/2022]
|
22
|
Pestka JJ, Islam Z, Amuzie CJ. Immunochemical assessment of deoxynivalenol tissue distribution following oral exposure in the mouse. Toxicol Lett 2008; 178:83-7. [PMID: 18395371 DOI: 10.1016/j.toxlet.2008.02.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 02/17/2008] [Accepted: 02/18/2008] [Indexed: 11/30/2022]
Abstract
Deoxynivalenol (DON or vomitoxin) is a trichothecene mycotoxin commonly found in cereal grains that adversely affects growth and immune function in experimental animals. A competitive enzyme-linked immunosorbent assay (ELISA) was used to monitor the kinetics of distribution and clearance of DON in tissues of young adult B6C3F1 male mice that were orally administered 25mg/kg bw of the toxin. DON was detectable from 5 min to 24h in plasma, liver, spleen and brain and from 5 min to 8h in heart and kidney. The highest DON plasma concentrations were observed within 5-15 min (12 microg/mL) after dosing. There was rapid clearance following two-compartment kinetics (t(1/2)alpha=20.4 min, t 1/2 beta=11.8h) with 5% and 2% maximum plasma DON concentrations remaining after 8 and 24h, respectively. DON distribution and clearance kinetics in other tissues were similar to that of plasma. At 5 min, DON concentrations in mug/g were 19.5+/-1.9 in liver, 7.6+/-0.5 in kidney, 7.3+/-0.8 in spleen, 6.8+/-0.9 in heart and 0.8+/-0.1 in the brain. DON recoveries in tissues by ELISA were comparable to a previous study that employed (3)H-DON and 25mg/kg bw DON dose. The ELISA was further applicable to the detection of DON in plasma of mice exposed to the toxin via diet. This approach provides a simple strategy that can be used to answer relevant questions in rodents of how dose, species, age, gender, genetic background and route/duration of exposure impact DON uptake and clearance.
Collapse
Affiliation(s)
- James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States.
| | | | | |
Collapse
|
23
|
|