1
|
Carvajal FJ, Cerpa W. Regulation of Phosphorylated State of NMDA Receptor by STEP 61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101575. [PMID: 34679709 PMCID: PMC8533270 DOI: 10.3390/antiox10101575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.
Collapse
Affiliation(s)
- Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Correspondence: ; Tel.: +56-2-2354-2656; Fax: +56-2-2354-2660
| |
Collapse
|
2
|
Cavitation-induced traumatic cerebral contusion and intracerebral hemorrhage in the rat brain by using an off-the-shelf clinical shockwave device. Sci Rep 2019; 9:15614. [PMID: 31666607 PMCID: PMC6821893 DOI: 10.1038/s41598-019-52117-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Traumatic cerebral contusion and intracerebral hemorrhages (ICH) commonly result from traumatic brain injury and are associated with high morbidity and mortality rates. Current animal models require craniotomy and provide less control over injury severity. This study proposes a highly reproducible and controllable traumatic contusion and ICH model using non-invasive extracorporeal shockwaves (ESWs). Rat heads were exposed to ESWs generated by an off-the-shelf clinical device plus intravenous injection of microbubbles to enhance the cavitation effect for non-invasive induction of injury. Results indicate that injury severity can be effectively adjusted by using different ESW parameters. Moreover, the location or depth of injury can be purposefully determined by changing the focus of the concave ESW probe. Traumatic contusion and ICH were confirmed by H&E staining. Interestingly, the numbers of TUNEL-positive cells (apoptotic cell death) peaked one day after ESW exposure, while Iba1-positive cells (reactive microglia) and GFAP-positive cells (astrogliosis) respectively peaked seven and fourteen days after exposure. Cytokine assay showed significantly increased expressions of IL-1β, IL-6, and TNF-α. The extent of brain edema was characterized with magnetic resonance imaging. Conclusively, the proposed non-invasive and highly reproducible preclinical model effectively simulates the mechanism of closed head injury and provides focused traumatic contusion and ICH.
Collapse
|
3
|
Divani AA, Salazar P, Monga M, Beilman GJ, SantaCruz KS. Inducing Different Brain Injury Levels Using Shock Wave Lithotripsy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:2925-2933. [PMID: 29689641 DOI: 10.1002/jum.14656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To assess the feasibility of inducing different severities of shock wave (SW)-induced traumatic brain injury (TBI) using lithotripsy. METHODS Wistar rats (n = 36) were divided into 2 groups: group 1 (n = 20) received 5 SW pulses, and group 2 (n = 16) received 15 SWs pulses. The SW pulses were delivered to the right side of the frontal cortex. Neurologic and behavioral assessments (Garcia test, beam walking, rotarod, and elevated plus maze) were performed at the baseline and at 3, 6, 24, 72, and 168 hours after injury. At day 7 after injury (168 hours), we performed cerebral angiography to assess the presence of cerebral vasospasm and vascular damage due to SW-induced TBI. At the conclusion of the study, the animals were euthanized to assess damage to brain tissue using an overall histologic severity score. RESULTS The Garcia score was significantly higher, and the anxiety index (based on the elevated plus maze) was significantly lower in group 1 compared to group 2 (P < .05). The anxiety index for group 1 returned to the baseline level in a fast nonlinear fashion, whereas the anxiety index for group 2 followed a distinct slow linear reduction. Cerebral angiograms revealed a more severe vasospasm for the animals in group 2 compared to group 1 (P = .027). We observed a statistically significant difference in the overall histologic severity scores between the groups. The median (interquartile range) overall histologic severity scores for groups 1 and 2 were 3.0 (2.75) and 6.5 (6.0), respectively (P = .023). CONCLUSIONS We have successfully established different SW-induced TBI severities in our SW-induced TBI model by delivering different numbers of SW pulses to brain tissue.
Collapse
Affiliation(s)
- Afshin A Divani
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Manoj Monga
- Department of Urology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Greg J Beilman
- Department of Surgery, Division of Surgical Critical Care and Acute Care Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen S SantaCruz
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
4
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
5
|
Beamer M, Tummala SR, Gullotti D, Kopil C, Gorka S, Bass CRD, Morrison B, Cohen AS, Meaney DF. Primary blast injury causes cognitive impairments and hippocampal circuit alterations. Exp Neurol 2016; 283:16-28. [PMID: 27246999 DOI: 10.1016/j.expneurol.2016.05.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 11/17/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) and its long term consequences are a major health concern among veterans. Despite recent work enhancing our knowledge about bTBI, very little is known about the contribution of the blast wave alone to the observed sequelae. Herein, we isolated its contribution in a mouse model by constraining the animals' heads during exposure to a shockwave (primary blast). Our results show that exposure to primary blast alone results in changes in hippocampus-dependent behaviors that correspond with electrophysiological changes in area CA1 and are accompanied by reactive gliosis. Specifically, five days after exposure, behavior in an open field and performance in a spatial object recognition (SOR) task were significantly different from sham. Network electrophysiology, also performed five days after injury, demonstrated a significant decrease in excitability and increase in inhibitory tone. Immunohistochemistry for GFAP and Iba1 performed ten days after injury showed a significant increase in staining. Interestingly, a threefold increase in the impulse of the primary blast wave did not exacerbate these measures. However, we observed a significant reduction in the contribution of the NMDA receptors to the field EPSP at the highest blast exposure level. Our results emphasize the need to account for the effects of primary blast loading when studying the sequelae of bTBI.
Collapse
Affiliation(s)
- Matthew Beamer
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Shanti R Tummala
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - David Gullotti
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Kopil
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Gorka
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | | | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David F Meaney
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Cao Y, Risling M, Malm E, Sondén A, Bolling MF, Sköld MK. Cellular High-Energy Cavitation Trauma - Description of a Novel In Vitro Trauma Model in Three Different Cell Types. Front Neurol 2016; 7:10. [PMID: 26869990 PMCID: PMC4734234 DOI: 10.3389/fneur.2016.00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/19/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanisms involved in traumatic brain injury have yet to be fully characterized. One mechanism that, especially in high-energy trauma, could be of importance is cavitation. Cavitation can be described as a process of vaporization, bubble generation, and bubble implosion as a result of a decrease and subsequent increase in pressure. Cavitation as an injury mechanism is difficult to visualize and model due to its short duration and limited spatial distribution. One strategy to analyze the cellular response of cavitation is to employ suitable in vitro models. The flyer-plate model is an in vitro high-energy trauma model that includes cavitation as a trauma mechanism. A copper fragment is accelerated by means of a laser, hits the bottom of a cell culture well causing cavitation, and shock waves inside the well and cell medium. We have found the flyer-plate model to be efficient, reproducible, and easy to control. In this study, we have used the model to analyze the cellular response to microcavitation in SH-SY5Y neuroblastoma, Caco-2, and C6 glioma cell lines. Mitotic activity in neuroblastoma and glioma was investigated with BrdU staining, and cell numbers were calculated using automated time-lapse imaging. We found variations between cell types and between different zones surrounding the lesion with these methods. It was also shown that the injured cell cultures released S-100B in a dose-dependent manner. Using gene expression microarray, a number of gene families of potential interest were found to be strongly, but differently regulated in neuroblastoma and glioma at 24 h post trauma. The data from the gene expression arrays may be used to identify new candidates for biomarkers in cavitation trauma. We conclude that our model is useful for studies of trauma in vitro and that it could be applied in future treatment studies.
Collapse
Affiliation(s)
- Yuli Cao
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Elisabeth Malm
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Anders Sondén
- Section of Surgery, Department of Clinical Science and Education, Karolinska Institutet at Södersjukhuset , Stockholm , Sweden
| | - Magnus Frödin Bolling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias K Sköld
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
7
|
Abstract
The goals of this chapter are to provide an introduction into the variety of animal models available for studying traumatic brain injury (TBI) and to provide a concise systematic review of the general materials and methods involved in each model. Materials and methods were obtained from a literature search of relevant peer-reviewed articles. Strengths and weaknesses of each animal choice were presented to include relative cost, anatomical and physiological features, and mechanism of injury desired. Further, a variety of homologous, isomorphic/induced, and predictive animal models were defined, described, and compared with respect to their relative ease of use, characteristics, range, adjustability (e.g., amplitude, duration, mass/size, velocity, and pressure), and rough order of magnitude cost. Just as the primary mechanism of action of TBI is limitless, so are the animal models available to study TBI. With such a wide variety of available animals, types of injury models, along with the research needs, there exists no single "gold standard" model of TBI rendering cross-comparison of data extremely difficult. Therefore, this chapter reflects a representative sampling of the TBI animal models available and is not an exhaustive comparison of every possible model and associated parameters. Throughout this chapter, special considerations for animal choice and TBI animal model classification are discussed. Criteria central to choosing appropriate animal models of TBI include ethics, funding, complexity (ease of use, safety, and controlled access requirements), type of model, model characteristics, and range of control (scope).
Collapse
Affiliation(s)
- Helen W Phipps
- , 700N St. Mary's St, Suite 700, San Antonio, TX, 78205, USA.
| |
Collapse
|
8
|
Divani AA, Murphy AJ, Meints J, Sadeghi-Bazargani H, Nordberg J, Monga M, Low WC, Bhatia PM, Beilman GJ, SantaCruz KS. A Novel Preclinical Model of Moderate Primary Blast-Induced Traumatic Brain Injury. J Neurotrauma 2015; 32:1109-16. [DOI: 10.1089/neu.2014.3686] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Afshin A. Divani
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Amanda J. Murphy
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Joyce Meints
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Homayoun Sadeghi-Bazargani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | - Jessica Nordberg
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
| | - Manoj Monga
- Department of Urology, Cleveland Clinic, Cleveland, Ohio
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Prerana M. Bhatia
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Greg J. Beilman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Karen S. SantaCruz
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
9
|
Gullotti DM, Beamer M, Panzer MB, Chen YC, Patel TP, Yu A, Jaumard N, Winkelstein B, Bass CR, Morrison B, Meaney DF. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury. J Biomech Eng 2015; 136:091004. [PMID: 24950710 DOI: 10.1115/1.4027873] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/19/2014] [Indexed: 11/08/2022]
Abstract
Although blast-induced traumatic brain injury (bTBI) is well recognized for its significance in the military population, the unique mechanisms of primary bTBI remain undefined. Animate models of primary bTBI are critical for determining these potentially unique mechanisms, but the biomechanical characteristics of many bTBI models are poorly understood. In this study, we examine some common shock tube configurations used to study blast-induced brain injury in the laboratory and define the optimal configuration to minimize the effect of torso overpressure and blast-induced head accelerations. Pressure transducers indicated that a customized animal holder successfully reduced peak torso overpressures to safe levels across all tested configurations. However, high speed video imaging acquired during the blast showed significant head accelerations occurred when animals were oriented perpendicular to the shock tube axis. These findings of complex head motions during blast are similar to previous reports [Goldstein et al., 2012, "Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model," Sci. Transl. Med., 4(134), 134ra160; Sundaramurthy et al., 2012, "Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model," J. Neurotrauma, 29(13), pp. 2352-2364; Svetlov et al., 2010, "Morphologic and Biochemical Characterization of Brain Injury in a Model of Controlled Blast Overpressure Exposure," J. Trauma, 69(4), pp. 795-804]. Under the same blast input conditions, minimizing head acceleration led to a corresponding elimination of righting time deficits. However, we could still achieve righting time deficits under minimal acceleration conditions by significantly increasing the peak blast overpressure. Together, these data show the importance of characterizing the effect of blast overpressure on head kinematics, with the goal of producing models focused on understanding the effects of blast overpressure on the brain without the complicating factor of superimposed head accelerations.
Collapse
|
10
|
Abstract
Objective Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. Methods This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. Results The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. Conclusions The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear.
Collapse
Affiliation(s)
- Paul A Taylor
- Sandia National Laboratories, Terminal Ballistics Technology , Albuquerque , USA and
| | | | | |
Collapse
|
11
|
Du X, Ewert DL, Cheng W, West MB, Lu J, Li W, Floyd RA, Kopke RD. Effects of antioxidant treatment on blast-induced brain injury. PLoS One 2013; 8:e80138. [PMID: 24224042 PMCID: PMC3818243 DOI: 10.1371/journal.pone.0080138] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
Blast-induced traumatic brain injury has dramatically increased in combat troops in today’s military operations. We previously reported that antioxidant treatment can provide protection to the peripheral auditory end organ, the cochlea. In the present study, we examined biomarker expression in the brains of rats at different time points (3 hours to 21 days) after three successive 14 psi blast overpressure exposures to evaluate antioxidant treatment effects on blast-induced brain injury. Rats in the treatment groups received a combination of antioxidants (2,4-disulfonyl α-phenyl tertiary butyl nitrone and N-acetylcysteine) one hour after blast exposure and then twice a day for the following two days. The biomarkers examined included an oxidative stress marker (4-hydroxy-2-nonenal, 4-HNE), an immediate early gene (c-fos), a neural injury marker (glial fibrillary acidic protein, GFAP) and two axonal injury markers [amyloid beta (A4) precursor protein, APP, and 68 kDa neurofilament, NF-68]. The results demonstrate that blast exposure induced or up-regulated the following: 4-HNE production in the dorsal hippocampus commissure and the forceps major corpus callosum near the lateral ventricle; c-fos and GFAP expression in most regions of the brain, including the retrosplenial cortex, the hippocampus, the cochlear nucleus, and the inferior colliculus; and NF-68 and APP expression in the hippocampus, the auditory cortex, and the medial geniculate nucleus (MGN). Antioxidant treatment reduced the following: 4-HNE in the hippocampus and the forceps major corpus callosum, c-fos expression in the retrosplenial cortex, GFAP expression in the dorsal cochlear nucleus (DCN), and APP and NF-68 expression in the hippocampus, auditory cortex, and MGN. This preliminary study indicates that antioxidant treatment may provide therapeutic protection to the central auditory pathway (the DCN and MGN) and the non-auditory central nervous system (hippocampus and retrosplenial cortex), suggesting that these compounds have the potential to simultaneously treat blast-induced injuries in the brain and auditory system.
Collapse
Affiliation(s)
- Xiaoping Du
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Donald L. Ewert
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Weihua Cheng
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Matthew B. West
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Jianzhong Lu
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Wei Li
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Robert A. Floyd
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Richard D. Kopke
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Departments of Physiology and Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
12
|
Budde MD, Shah A, McCrea M, Cullinan WE, Pintar FA, Stemper BD. Primary blast traumatic brain injury in the rat: relating diffusion tensor imaging and behavior. Front Neurol 2013; 4:154. [PMID: 24133481 PMCID: PMC3796287 DOI: 10.3389/fneur.2013.00154] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/21/2013] [Indexed: 12/14/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) among military personnel is at its highest point in U.S. history. Experimental animal models of blast have provided a wealth of insight into blast injury. The mechanisms of neurotrauma caused by blast, however, are still under debate. Specifically, it is unclear whether the blast shockwave in the absence of head motion is sufficient to induce brain trauma. In this study, the consequences of blast injury were investigated in a rat model of primary blast TBI. Animals were exposed to blast shockwaves with peak reflected overpressures of either 100 or 450 kPa (39 and 110 kPa incident pressure, respectively) and subsequently underwent a battery of behavioral tests. Diffusion tensor imaging (DTI), a promising method to detect blast injury in humans, was performed on fixed brains to detect and visualize the spatial dependence of blast injury. Blast TBI caused significant deficits in memory function as evidenced by the Morris Water Maze, but limited emotional deficits as evidenced by the Open Field Test and Elevated Plus Maze. Fractional anisotropy, a metric derived from DTI, revealed significant brain abnormalities in blast-exposed animals. A significant relationship between memory deficits and brain microstructure was evident in the hippocampus, consistent with its role in memory function. The results provide fundamental insight into the neurological consequences of blast TBI, including the evolution of injury during the sub-acute phase and the spatially dependent pattern of injury. The relationship between memory dysfunction and microstructural brain abnormalities may provide insight into the persistent cognitive difficulties experienced by soldiers exposed to blast neurotrauma and may be important to guide therapeutic and rehabilitative efforts.
Collapse
Affiliation(s)
- Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA
| | | | | | | | | | | |
Collapse
|
13
|
Cockerham GC, Lemke S, Glynn-Milley C, Zumhagen L, Cockerham KP. Visual performance and the ocular surface in traumatic brain injury. Ocul Surf 2012; 11:25-34. [PMID: 23321357 DOI: 10.1016/j.jtos.2012.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/14/2012] [Accepted: 09/01/2012] [Indexed: 12/19/2022]
Abstract
The pathophysiology of neurotrauma is reviewed and an original study investigating the prevalence of dry eye disease in a sample of veterans with traumatic brain injury (TBI) is presented. Fifty-three veterans with TBI were evaluated by history of injury, past ocular history, and medication use. Ocular Disease Surface Index (OSDI), ocular examination, cranial nerve evaluation, tear osmolarity, tear film break-up time (TFBUT), ocular surface staining and tear production testing were performed. A matched comparison group underwent similar testing. TBI causes were blast (44) or non-blast (9). TBI subjects scored significantly worse on the OSDI (P<.001), and ocular surface staining by Oxford scale (P<.001) than non-TBI subjects. Scores for tear film breakup (P=.6), basal tear production less than 3 mm (P=.13), and tear osmolarity greater than 314 mOsm/L (P=.15) were all higher in TBI subjects; significantly more TBI subjects had at least one abnormal dry eye measure than comparisons (P<.001). The OSDI related to presence of dry eye symptoms (P<.01). These effects were present in both blast and non-blast TBI. Seventy percent of TBI subjects were taking at least one medication in the following classes: antidepressant, atypical antipsychotic, anticonvulsant, or h1-antihistamine. There was no association between any medication class and the OSDI or dry eye measures. Reduced corneal sensation in 21 TBI subjects was not associated with OSDI, tear production, or TFBUT, but did correlate with reduced tear osmolarity (P=.05). History of refractive surgery, previous contact lens wear, facial nerve weakness, or meibomian gland dysfunction was not associated with DED. In summary, we found a higher prevalence of DED in subjects with TBI, both subjectively and objectively. This effect is unrelated to medication use, and it may persist for months to years. We recommend that patients with TBI from any cause be evaluated for DED using a battery of standard testing methods described in a protocol presented in this article. Further research into the pathophysiology and outcomes of DED in neurotrauma is needed.
Collapse
Affiliation(s)
- Glenn C Cockerham
- Department of Ophthalmology, Veterans Administration Palo Alto Health Care System, Palo Alto, California 94304, USA.
| | | | | | | | | |
Collapse
|
14
|
Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomech Model Mechanobiol 2012; 12:511-31. [PMID: 22832705 DOI: 10.1007/s10237-012-0421-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 07/10/2012] [Indexed: 12/17/2022]
Abstract
Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave-head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue-material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury.
Collapse
|
15
|
Wang Y, Wei Y, Oguntayo S, Wilkins W, Arun P, Valiyaveettil M, Song J, Long JB, Nambiar MP. Tightly coupled repetitive blast-induced traumatic brain injury: development and characterization in mice. J Neurotrauma 2011; 28:2171-83. [PMID: 21770761 DOI: 10.1089/neu.2011.1990] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A mouse model of repeated blast exposure was developed using a compressed air-driven shock tube, to study the increase in severity of traumatic brain injury (bTBI) after multiple blast exposures. Isoflurane anesthetized C57BL/6J mice were exposed to 13.9, 20.6, and 25 psi single blast overpressure (BOP1) and allowed to recover for 5 days. BOP1 at 20.6 psi showed a mortality rate of 2% and this pressure was used for three repeated blast exposures (BOP3) with 1 and 30 min intervals. Overall mortality rate in BOP3 was increased to 20%. After blast exposure, righting reflex time and body-weight loss were significantly higher in BOP3 animals compared to BOP1 animals. At 4 h, brain edema was significantly increased in BOP3 animals compared to sham controls. Reactive oxygen species in the cortex were increased significantly in BOP1 and BOP3 animals. Neuropathological analysis of the cerebellum and cerebral cortex showed dense silver precipitates in BOP3 animals, indicating the presence of diffuse axonal injury. Fluoro-Jade B staining showed increased intensity in the cortex of BOP3 animals indicating neurodegeneration. Rota Rod behavioral test showed a significant decrease in performance at 10 rpm following BOP1 or BOP3 at 2 h post-blast, which gradually recovered during the 5 days. At 20 rpm, the latency to fall was significantly decreased in both BOP1 and BOP3 animals and it did not recover in the majority of the animals through 5 days of testing. These data suggest that repeated blast exposures lead to increased impairment severity in multiple neurological parameters of TBI in mice.
Collapse
Affiliation(s)
- Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nakagawa A, Manley GT, Gean AD, Ohtani K, Armonda R, Tsukamoto A, Yamamoto H, Takayama K, Tominaga T. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research. J Neurotrauma 2011; 28:1101-19. [PMID: 21332411 DOI: 10.1089/neu.2010.1442] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury caused by explosive or blast events is traditionally divided into four phases: primary, secondary, tertiary, and quaternary blast injury. These phases of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury phase represents the response of brain tissue to the initial blast wave. Among the four phases of bTBI, there is a remarkable paucity of information about the cause of primary bTBI. On the other hand, 30 years of research on the medical application of shockwaves (SW) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by supersonic flow. The resultant tissue injury includes several features observed in bTBI, such as hemorrhage, edema, pseudoaneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation, are all important factors in determining the extent of SW-induced tissue and cellular injury. Herein we describe the requirements for the adequate experimental set-up when investigating blast-induced tissue and cellular injury; review SW physics, research, and the importance of engineering validation (visualization/pressure measurement/numerical simulation); and, based upon our findings of SW-induced injury, discuss the potential underlying mechanisms of primary bTBI.
Collapse
Affiliation(s)
- Atsuhiro Nakagawa
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Park E, Gottlieb JJ, Cheung B, Shek PN, Baker AJ. A Model of Low-Level Primary Blast Brain Trauma Results in Cytoskeletal Proteolysis and Chronic Functional Impairment in the Absence of Lung Barotrauma. J Neurotrauma 2011; 28:343-57. [DOI: 10.1089/neu.2009.1050] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Eugene Park
- Cara Phelan Centre for Trauma Research, Keenan Research Centre in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - James J. Gottlieb
- University of Toronto Institute for Aerospace Studies, Toronto, Ontario, Canada
| | - Bob Cheung
- Defence Research and Development Canada (DRDC) Toronto, Ontario, Canada
| | - Pang N. Shek
- Defence Research and Development Canada (DRDC) Toronto, Ontario, Canada
| | - Andrew J. Baker
- Cara Phelan Centre for Trauma Research, Keenan Research Centre in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Departments of Anesthesia and Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc Natl Acad Sci U S A 2010; 107:20703-8. [PMID: 21098257 DOI: 10.1073/pnas.1014786107] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blast-induced traumatic brain injury is the most prevalent military injury in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head, and still less is known about how personal protective equipment affects the brain's response to blasts. In this study we investigated the effect of the Advanced Combat Helmet (ACH) and a conceptual face shield on the propagation of stress waves within the brain tissue following blast events. We used a sophisticated computational framework for simulating coupled fluid-solid dynamic interactions and a three-dimensional biofidelic finite element model of the human head and intracranial contents combined with a detailed model of the ACH and a conceptual face shield. Simulations were conducted in which the unhelmeted head, head with helmet, and head with helmet and face shield were exposed to a frontal blast wave with incident overpressure of 10 atm. Direct transmission of stress waves into the intracranial cavity was observed in the unprotected head and head with helmet simulations. Compared to the unhelmeted head, the head with helmet experienced slight mitigation of intracranial stresses. This suggests that the existing ACH does not significantly contribute to mitigating blast effects, but does not worsen them either. By contrast, the helmet and face shield combination impeded direct transmission of stress waves to the face, resulting in a delay in the transmission of stresses to the intracranial cavity and lower intracranial stresses. This suggests a possible strategy for mitigating blast waves often associated with military concussion.
Collapse
|
19
|
Cheng J, Gu J, Ma Y, Yang T, Kuang Y, Li B, Kang J. Development of a rat model for studying blast-induced traumatic brain injury. J Neurol Sci 2010; 294:23-8. [PMID: 20478573 DOI: 10.1016/j.jns.2010.04.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 03/22/2010] [Accepted: 04/20/2010] [Indexed: 11/26/2022]
Abstract
Blast-induced traumatic brain injury (TBI) has been the predominant cause of neurotrauma in current military conflicts, and it is also emerging as a potential threat in civilian terrorism. The etiology of TBI, however, is poorly understood. Further study on the mechanisms and treatment of blast injury is urgently needed. We developed a unique rat model to simulate blast effects that commonly occur on the battlefield. An electric detonator with the equivalent of 400 mg TNT was developed as the explosive source. The detonator's peak overpressure and impulse of explosion shock determined the explosion intensity in a distance-dependent manner. Ninety-six male adult Sprague-Dawley rats were randomly divided into four groups: 5-cm, 7.5-cm, 10-cm, and control groups. The rat was fixed in a specially designed cabin with an adjustable aperture showing the frontal, parietal, and occipital parts of the head exposed to explosion; the eyes, ears, mouth, and nose were protected by the cabin. After each explosion, we assessed the physiologic, neuropathologic, and neurobehavioral consequences of blast injury. Changes of brain tissue water content and neuron-specific enolase (NSE) expression were detected. The results in the 7.5-cm group show that 87% rats developed apnea, limb seizure, poor appetite, and limpness. Diffuse subarachnoid hemorrhage and edema could be seen within the brain parenchyma, which showed a loss of integrity. Capillary damage and enlarged intercellular and vascular space in the cortex, along with a tattered nerve fiber were observed. These findings demonstrate that we have provided a reliable and reproducible blast-induced TBI model in rats.
Collapse
Affiliation(s)
- Jingmin Cheng
- Department of Neurosurgery, General Hospital of People's Liberation Army Chengdu Military Region, Chengdu, Sichuan 610083, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Cernak I, Noble-Haeusslein LJ. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 2010; 30:255-66. [PMID: 19809467 PMCID: PMC2855235 DOI: 10.1038/jcbfm.2009.203] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review considers the pathobiology of non-impact blast-induced neurotrauma (BINT). The pathobiology of traumatic brain injury (TBI) has been historically studied in experimental models mimicking features seen in the civilian population. These brain injuries are characterized by primary damage to both gray and white matter and subsequent evolution of secondary pathogenic events at the cellular, biochemical, and molecular levels, which collectively mediate widespread neurodegeneration. An emerging field of research addresses brain injuries related to the military, in particular blast-induced brain injuries. What is clear from the effort to date is that the pathobiology of military TBIs, particularly BINT, has characteristics not seen in other types of brain injury, despite similar secondary injury cascades. The pathobiology of primary BINT is extremely complex. It comprises systemic, local, and cerebral responses interacting and often occurring in parallel. Activation of the autonomous nervous system, sudden pressure-increase in vital organs such as lungs and liver, and activation of neuroendocrine-immune system are among the most important mechanisms significantly contributing to molecular changes and cascading injury mechanisms in the brain.
Collapse
Affiliation(s)
- Ibolja Cernak
- National Security Technology Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723, USA.
| | | |
Collapse
|