1
|
Behrendt F, Gottschaldt M, Schubert US. Surface functionalized cryogels - characterization methods, recent progress in preparation and application. MATERIALS HORIZONS 2024; 11:4600-4637. [PMID: 39021096 DOI: 10.1039/d4mh00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cryogels are polymeric materials with a sponge-like microstructure and have attracted significant attention in recent decades. Research has focused on their composition, fabrication techniques, characterization methods as well as potential or existing fields of applications. The use of functional precursors or functionalizing ligands enables the preparation of cryogels with desired properties such as biocompatibility or responsivity. They can also exhibit adsorptive properties or can be used for catalytical purposes. Although a very brief overview about several functional (macro-)monomers and functionalizing ligands has been provided by previous reviewers for certain cryogel applications, so far there has been no particular focus on the evaluation of the functionalization success and the characterization methods used. This review will provide a comprehensive overview of different characterization methods most recently used for the evaluation of cryogel functionalization. Furthermore, new functional (macro-)monomers and subsequent cryogel functionalization strategies are discussed, based on synthetic polymers, biopolymers and a combination of both. This review highlights the importance of the functionalization aspect in cryogel research in order to produce materials with tailored properties for certain applications.
Collapse
Affiliation(s)
- Florian Behrendt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Abbe Center of Photonics (ACP), Albert-Einstein-Straße 6, 07743 Jena, Germany
| |
Collapse
|
2
|
Huo P, Ming X, Wang Y, Yu Q, Liang R, Sun G. Stable Zinc Anode Facilitated by Regenerated Silk Fibroin-modified Hydrogel Protective Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400565. [PMID: 38602450 DOI: 10.1002/smll.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Inherent dendrite growth and side reactions of zinc anode caused by its unstable interface in aqueous electrolytes severely limit the practical applications of zinc-ion batteries (ZIBs). To overcome these challenges, a protective layer for Zn anode inspired by cytomembrane structure is developed with PVA as framework and silk fibroin gel suspension (SFs) as modifier. This PVA/SFs gel-like layer exerts similar to the solid electrolyte interphase, optimizing the anode-electrolyte interface and Zn2+ solvation structure. Through interface improvement, controlled Zn2+ migration/diffusion, and desolvation, this buffer layer effectively inhibits dendrite growth and side reactions. The additional SFs provide functional improvement and better interaction with PVA by abundant functional groups, achieving a robust and durable Zn anode with high reversibility. Thus, the PVA/SFs@Zn symmetric cell exhibits an ultra-long lifespan of 3150 h compared to bare Zn (182 h) at 1.0 mAh cm-2-1.0 mAh cm-2, and excellent reversibility with an average Coulombic efficiency of 99.04% under a large plating capacity for 800 cycles. Moreover, the PVA/SFs@Zn||PANI/CC full cells maintain over 20 000 cycles with over 80% capacity retention under harsh conditions at 5 and 10 A g-1. This SF-modified protective layer for Zn anode suggests a promising strategy for reliable and high-performance ZIBs.
Collapse
Affiliation(s)
- Peixian Huo
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Xing Ming
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, China
| | - Yueyang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Qinglu Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Rui Liang
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| |
Collapse
|
3
|
Vogt I, Engel K, Schlünz A, Kowal R, Hensen B, Gutberlet M, Wacker F, Rose G. MRI-compatible abdomen phantom to mimic respiratory-triggered organ movement while performing needle-based interventions. Int J Comput Assist Radiol Surg 2024:10.1007/s11548-024-03188-x. [PMID: 38839726 DOI: 10.1007/s11548-024-03188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE In vivo studies are often required to prove the functionality and safety of medical devices. Clinical trials are costly and complex, adding to ethical scrutiny of animal testing. Anthropomorphic phantoms with versatile functionalities can overcome these issues with regard to medical education or an effective development of assistance systems during image-guided interventions (e.g., robotics, navigation/registration algorithms). In this work, an MRI-compatible and customizable motion phantom is presented to mimic respiratory-triggered organ movement as well as human anatomy. METHODS For this purpose, polyvinyl alcohol cryogel (PVA-C) was the foundation for muscles, liver, kidneys, tumors, and remaining abdominal tissue in different sizes of the abdominal phantom body (APB) with the ability to mimic human tissue in various properties. In addition, a semi-flexible rib cage was 3D-printed. The motion unit (MU) with an electromagnetically shielded stepper motor and mechanical extensions simulated a respiration pattern to move the APB. RESULTS Each compartment of the APB complied the relaxation times, dielectricity, and elasticity of human tissue. It showed resistance against mold and provided a resealable behavior after needle punctures. During long-term storage, the APB had a weight loss of 2.3%, followed by changes to relaxation times of 9.3% and elasticity up to 79%. The MU was able to physiologically appropriately mimic the organ displacement without reducing the MRI quality. CONCLUSION This work presents a novel modularizable and low-cost PVA-C based APB to mimic fundamental organ motion. Beside a further organ motion analysis, an optimization of APB's chemical composition is needed to ensure a realistic motion simulation and reproducible long-term use. This phantom enhances diverse and varied training environments for prospective physicians as well as effective R&D of medical devices with the possibility to reduce in vivo experiments.
Collapse
Affiliation(s)
- Ivan Vogt
- Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany.
- Faculty of Electrical Engineering and Information Technology, Otto von Guericke University, Magdeburg, Germany.
| | - Katja Engel
- Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
- Faculty of Electrical Engineering and Information Technology, Otto von Guericke University, Magdeburg, Germany
| | - Anton Schlünz
- Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
- Faculty of Electrical Engineering and Information Technology, Otto von Guericke University, Magdeburg, Germany
| | - Robert Kowal
- Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
- Faculty of Electrical Engineering and Information Technology, Otto von Guericke University, Magdeburg, Germany
| | - Bennet Hensen
- Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
- Institute of Diagnostics and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Marcel Gutberlet
- Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
- Institute of Diagnostics and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
- Institute of Diagnostics and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Georg Rose
- Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
- Faculty of Electrical Engineering and Information Technology, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
4
|
Kolosova OY, Vasil'ev VG, Novikov IA, Sorokina EV, Lozinsky VI. Cryostructuring of Polymeric Systems: 67 Properties and Microstructure of Poly(Vinyl Alcohol) Cryogels Formed in the Presence of Phenol or Bis-Phenols Introduced into the Aqueous Polymeric Solutions Prior to Their Freeze-Thaw Processing. Polymers (Basel) 2024; 16:675. [PMID: 38475358 DOI: 10.3390/polym16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Poly(vinyl alcohol) (PVA) physical cryogels that contained the additives of o-, m-, and p-bis-phenols or phenol were prepared, and their physico-chemical characteristics and macroporous morphology and the solute release dynamics were evaluated. These phenolic additives caused changes in the viscosity of initial PVA solutions before their freeze-thaw processing and facilitated the growth in the rigidity of the resultant cryogels, while their heat endurance decreased. The magnitude of the effects depended on the interposition of phenolic hydroxyls in the molecules of the used additives and was stipulated by their H-bonding with PVA OH-groups. Subsequent rinsing of such "primary" cryogels with pure water led to the lowering of their rigidity. The average size of macropores inside these heterophase gels also depended on the additive type. It was found also that the release of phenolic substances from the additive-containing cryogels occurred via virtually a free diffusion mechanism; therefore, drug delivery systems such as PVA cryogels loaded with either pyrocatechol, resorcinol, hydroquinone, or phenol, upon the in vitro agar diffusion tests, exhibited antibacterial activity typical of these phenols. The promising biomedical potential of the studied nanocomposite gel materials is supposed.
Collapse
Affiliation(s)
- Olga Yu Kolosova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Viktor G Vasil'ev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Ivan A Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Street 38, 119991 Moscow, Russia
| | - Elena V Sorokina
- Microbilogy Department, Biology Faculty, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Microbiology Department, Kazan (Volga-Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
5
|
Omidian H, Dey Chowdhury S, Babanejad N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023; 15:1836. [PMID: 37514023 PMCID: PMC10384998 DOI: 10.3390/pharmaceutics15071836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability. Combination therapies and drug delivery systems using cryogels show promise. In vivo evaluation and clinical trials are crucial for safety and efficacy. Overcoming practical challenges, including scalability, structural integrity, mass transfer constraints, biocompatibility, seamless integration, and cost-effectiveness, is essential. By addressing these challenges, cryogels can transform biomedical applications with innovative biomaterials.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
6
|
Biomaterials Based on Chitosan and Polyvinyl Alcohol as a Drug Delivery System with Wound-Healing Effects. Gels 2023; 9:gels9020122. [PMID: 36826292 PMCID: PMC9957424 DOI: 10.3390/gels9020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The excellent biological properties of chitosan (CS) together with the increased oxygen permeability of polyvinyl alcohol (PVA) were the prerequisites for the creation of a wound healing dressing that would also function as a system for L-arginine (L-arg) and caffeine (Caff) delivery. Using the freezing/thawing method, 12 hydrogels were obtained in PVA:CS polymer ratios of 90:10, 75:25, and 60:40, and all were loaded with L-arg, Caff, and the mixture of L-arg and Caff, respectively. Afterwards, an inorganic material (zeolite-Z) was added to the best polymeric ratio (75:25) and loaded with active substances. The interactions between the constituents of the hydrogels were analyzed by FTIR spectroscopy, the uniformity of the network was highlighted by the SEM technique, and the dynamic water vapor sorption capacity was evaluated. In the presence of the inorganic material, the release profile of the active substances is delayed, and in vitro permeation kinetics proves that the equilibrium state is not reached even after four hours. The synergy of the constituents in the polymer network recommends that they be used in medical applications, such as wound healing dressings.
Collapse
|
7
|
Sharma A, Marapureddy SG, Paul A, Bisht SR, Kakkar M, Thareja P, Mercado-Shekhar KP. Characterizing Viscoelastic Polyvinyl Alcohol Phantoms for Ultrasound Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:497-511. [PMID: 36328889 DOI: 10.1016/j.ultrasmedbio.2022.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound phantoms mimic the acoustic and mechanical properties of native tissues. Polyvinyl alcohol (PVA) phantoms are used extensively as models for validating ultrasound elastography approaches. However, the viscous properties of PVA phantoms have not been investigated adequately. Glycerol is a viscous liquid that has been reported to increase the speed of sound of phantoms. This study aims to assess the acoustic and viscoelastic properties of PVA phantoms and PVA mixed with glycerol at varying concentrations. The phantoms were fabricated with 10% w/v PVA in water with varying concentrations of glycerol (10%, 15% and 20% v/v) and 2% w/v silicon carbide particles as acoustic scatterers. The phantoms were subjected to either one, two, or three 24-h freeze-thaw cycles. The longitudinal sound speeds of all PVA phantoms were measured, and ranged from 1529 to 1660 m/s. Attenuation spectroscopy was performed in the range of 5 to 20 MHz. The measured attenuation followed a power-law relationship with frequency, wherein the power-law fit constants and exponents ranged from 0.02 to 0.1 dB/cm/MHzn and from 1.6 to 1.9, respectively. These results were in agreement with previous reports for soft tissues. Viscoelasticity of PVA phantoms was assessed using rheometry. The estimated values of shear modulus and viscosity using the Kelvin-Voigt and Kelvin-Voigt fractional derivative models were within the range of previously-reported tissue-mimicking phantoms and soft tissues. The number of freeze-thaw cycles were shown to alter the viscosity of PVA phantoms, even in the absence of glycerol. Scanning electron microscopy images of PVA phantoms without glycerol showed a porous hydrogel network, in contrast to those of PVA-glycerol phantoms with non-porous structure. Phantoms fabricated in this study possess tunable acoustic and viscoelastic properties within the range reported for healthy and diseased soft tissues. This study demonstrates that PVA phantoms can be manufactured with glycerol for applications in ultrasound elastography.
Collapse
Affiliation(s)
- Ananya Sharma
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Sai Geetha Marapureddy
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Abhijit Paul
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Sapna R Bisht
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Manik Kakkar
- Discipline of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Prachi Thareja
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Karla P Mercado-Shekhar
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India.
| |
Collapse
|
8
|
Kolosova OY, Shaikhaliev AI, Krasnov MS, Bondar IM, Sidorskii EV, Sorokina EV, Lozinsky VI. Cryostructuring of Polymeric Systems: 64. Preparation and Properties of Poly(vinyl alcohol)-Based Cryogels Loaded with Antimicrobial Drugs and Assessment of the Potential of Such Gel Materials to Perform as Gel Implants for the Treatment of Infected Wounds. Gels 2023; 9:gels9020113. [PMID: 36826283 PMCID: PMC9956285 DOI: 10.3390/gels9020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Physical macroporous poly(vinyl alcohol)-based cryogels formed by the freeze-thaw technique without the use of any foreign cross-linkers are of significant interests for biomedical applications. In the present study, such gel materials loaded with the antimicrobial substances were prepared and their physicochemical properties were evaluated followed by an assessment of their potential to serve as drug carriers that can be used as implants for the treatment of infected wounds. The antibiotic Ceftriaxone and the antimycotic Fluconazole were used as antimicrobial agents. It was shown that the Ceftriaxone additives caused the up-swelling effects with respect to the cryogel matrix and some decrease in its heat endurance but did not result in a substantial change in the gel strength. With that, the drug release from the cryogel vehicle occurred without any diffusion restrictions, which was demonstrated by both the spectrophotometric recording and the microbiological agar diffusion technique. In turn, the in vivo biotesting of such drug-loaded cryogels also showed that these materials were able to function as rather efficient antimicrobial implants injected in the artificially infected model wounds of laboratory rabbits. These results confirmed the promising biomedical potential of similar implants.
Collapse
Affiliation(s)
- Olga Yu. Kolosova
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Astemir I. Shaikhaliev
- Institute of Dentistry, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Mikhail S. Krasnov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Ivan M. Bondar
- Institute of Dentistry, I.M.Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Egor V. Sidorskii
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Elena V. Sorokina
- Microbiology Department, Biology Faculty, M.V.Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I. Lozinsky
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Microbiology Department, Kazan (Volga-Region) Federal University, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-499-135-6492
| |
Collapse
|
9
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Manzhai VN, Fufaeva MS, Kashlach ES. Relaxation of Mechanical Stress in Poly(vinyl alcohol) Cryogels of Different Compositions. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Liu C, Wang D, Wang Z, Zhang H, Chen L, Wei Z. Sulfolane Crystal Templating: A One-Step and Tunable Polarity Approach for Self-Assembled Super-Macroporous Hydrophobic Monoliths. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45810-45821. [PMID: 36169330 DOI: 10.1021/acsami.2c11930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Freeze-casting (ice templating) is generally used to prepare super-macroporous materials. However, water solubility limits the application of freeze-casting in hydrophobic material fabrication. In the present work, inexpensive and low-toxic sulfolane was used as a novel crystallization-induced porogen (sulfolane crystal templating) to prepare super-macroporous hydrophobic monoliths (cryogels) with tunable polarity. The phase transition of sulfolane consisted of reversible processes in the liquid, semi-crystalline, and crystalline states. Because of the density change during phase transition, liquid sulfolane experienced a 16.4% volume shrinkage per unit mass. Thus, the cryogels obtained using the conventional freezing method contained obvious hollow-shaped defects. Furthermore, a novel route of pre-cooling, pre-crystallization, crystal growth, freezing, and thawing (PPCFT) was employed to prepare cryogels with defect-free macroscopic morphology and uniform pore structure. The as-obtained cryogels were composed of a super-macroporous structures and interconnected channels, and their porosity ranged between 85 and 97%. Moreover, the cryogels manifested good hydrophobicity (contact angle = 120-130°) and had absorption capacities greater than 10 g g-1 for oils and organic liquids. The maximum absorption capacities of the resultant cryogels in dichloromethane, ethyl acetate, and liquid paraffin were 60.3, 35.8, and 15.2 g g-1, respectively. Moreover, sulfolane could conveniently dissolve hydrophobic and hydrophilic monomers to generate amphiphilic cryogels (contact angle = 130-0°). Therefore, sulfolane crystal templating is a potential fabrication method for super-macroporous hydrophobic materials with tunable polarity.
Collapse
Affiliation(s)
- Chunjie Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 221 North Fourth Road, Shihezi 832003, China
| | - Dong Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 221 North Fourth Road, Shihezi 832003, China
| | - Zimeng Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 221 North Fourth Road, Shihezi 832003, China
| | - Haiyan Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 221 North Fourth Road, Shihezi 832003, China
| | - Liang Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 221 North Fourth Road, Shihezi 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 221 North Fourth Road, Shihezi 832003, China
| |
Collapse
|
12
|
Recombinant mussel protein Pvfp5β enhances cell adhesion of poly(vinyl alcohol)/k-carrageenan hydrogel scaffolds. Int J Biol Macromol 2022; 211:639-652. [PMID: 35569680 DOI: 10.1016/j.ijbiomac.2022.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
Polymeric hydrogels are increasingly considered as scaffolds for tissue engineering due to their extraordinary resemblance with the extracellular matrix (ECM) of many tissues. As cell adhesion is a key factor in regulating important cell functions, hydrogel scaffolds are often functionalized or loaded with a variety of bioactive molecules that can promote adhesion. Interesting biomimetic approaches exploit the properties of mussel-inspired recombinant adhesive proteins. In this work, we prepared hydrogel scaffolds with a 50%w mixture of k-carrageenan (kC) and polyvinyl alcohol (PVA), by a two-step physical gelation process, and we coated them with Perna viridis foot protein-5β (Pvfp5β). The mechanical and morphological properties of hydrogels were investigated both after conditioning with typical cell culture media and also after coating with the Pvfp5β. The protein resulted strongly adsorbed onto the surface of the hydrogel and also able to penetrate in its interiors to a certain depth, mainly interacting with the kC component of the scaffold as resulted from the confocal analysis. Mouse embryonic fibroblasts NIH-3T3 were seeded on top of the hydrogels and cultured up to two weeks. The role of Pvfp5β in promoting cell adhesion, spreading and colonization of the scaffold was demonstrated.
Collapse
|
13
|
Michurov DA, Makhina TK, Siracusa V, Bonartsev AP, Lozinsky VI, Iordanskii AL. Cryo-Structuring of Polymeric Systems. Poly(Vinyl Alcohol)-Based Cryogels Loaded with the Poly(3-hydroxybutyrate) Microbeads and the Evaluation of Such Composites as the Delivery Vehicles for Simvastatin. Polymers (Basel) 2022; 14:2196. [PMID: 35683869 PMCID: PMC9182817 DOI: 10.3390/polym14112196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Highly porous composite poly(vinyl alcohol) (PVA) cryogels loaded with the poly(3-hydroxybutyrate) (PHB) microbeads containing the drug, simvastatin (SVN), were prepared via cryogenic processing (freezing-storing frozen-defrosting) of the beads' suspensions in aqueous PVA solution. The rigidity of the resultant composite cryogels increased with increasing the filler content. Optical microscopy of the thin section of such gel matrices revealed macro-porous morphology of both continuous (PVA cryogels) and discrete (PHB-microbeads) phases. Kinetic studies of the SVN release from the drug-loaded microbeads, the non-filled PVA cryogel and the composite material showed that the cryogel-based composite system could potentially serve as a candidate for the long-term therapeutic system for controlled drug delivery. Such PHB-microbeads-containing PVA-cryogel-based composite drug delivery carriers were unknown earlier; their preparation and studies have been performed for the first time.
Collapse
Affiliation(s)
- Dmitrii A. Michurov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences, 33, Bld. 2 Leninskiy Ave., 119071 Moscow, Russia;
| | - Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia;
| | - Alexey L. Iordanskii
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street, 4, 119991 Moscow, Russia;
| |
Collapse
|
14
|
Durham PG, Kim J, Eltz KM, Caskey CF, Dayton PA. Polyvinyl Alcohol Cryogels for Acoustic Characterization of Phase-Change Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:954-960. [PMID: 35246338 PMCID: PMC9012345 DOI: 10.1016/j.ultrasmedbio.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 05/03/2023]
Abstract
Phase-change contrast agents (PCCAs) consisting of lipid-encapsulated low-boiling-point perfluorocarbons can be used in conjunction with ultrasound for diagnostic and therapeutic applications. One benefit of PCCAs is site-specific activation, whereby the liquid core is acoustically vaporized into a bubble detectable via ultrasound imaging. For further evaluation of PCCAs in a variety of applications, it is useful to disperse these nanodroplets into an acoustically compatible stationary matrix. However, many traditional phantom preparations require heating, which causes premature thermal activation of low-boiling-point PCCAs. Polyvinyl alcohol (PVA) cryogels do not require heat to set. Here we propose a simple method for the incorporation of the low-boiling-point PCCAs using octafluoropropane (OFP) and decafluorobutane (DFB) into PVA cryogels for a variety of acoustic characterization applications. We determined the utility of the phantoms by activating droplets with a focused transducer, visualizing the lesions with ultrasound imaging. At 1 MHz, droplet activation was consistently observed at 2.0 and 4.0 MPa for OFP and DFB, respectively.
Collapse
Affiliation(s)
- Phillip G Durham
- Department of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Katherine M Eltz
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul A Dayton
- Department of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Wang D, Du Z, Mighri F, Xu Z, Wang L, Zhang Z. Proanthocyanidins Promote Endothelial Cell Viability and Angiogenesis. J Cardiovasc Pharmacol 2022; 79:719-729. [PMID: 35170488 DOI: 10.1097/fjc.0000000000001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Botanic drugs are reportedly effective in treating ischemic conditions by improving vascular circulation. However, it has been very rare for biomaterial researchers to look into the possibility of using such products in the context of tissue regeneration. This work studied 4 botanic drugs to explore their effects on vascular endothelial cell growth. Human umbilical endothelial cells were cultured in the presence of different doses of astragalus powder extract, astragalus injection, puerarin injection, and proanthocyanidin (PAC). Among the 4 drugs, PAC showed a potent effect on cell viability and stimulated cell growth in a dose-dependent manner. In particular, the PAC under test was able to maintain a high level of cell viability/proliferation comparable with the cells supplemented with the endothelial cell growth medium, at both low and normal serum conditions. Blocking either endothelial cell growth factor receptors or epithelial cell growth factor receptors was ineffective in reducing the stimulatory effect. The PAC released from polyvinyl alcohol cryogels stimulated HUVECs proliferation. The chick embryo chorioallantoic membrane model was further used to test the angiogenicity of PAC, showing that this botanic drug was potent in stimulating vasculature development. This work therefore demonstrates for the first time that PAC is capable of upregulating endothelial cell activity and growth in vitro in the absence of growth factors and that PAC can be loaded and released from drug carriers and can stimulate angiogenesis. These findings suggest the application of PAC in angiogenesis and tissue regeneration.
Collapse
Affiliation(s)
- Dingkun Wang
- Department of Chemical Engineering, Université Laval, Quebec, Quebec, Canada
- Department of Surgery, Université Laval, Quebec, Quebec, Canada
- Division of Regenerative Medicine, Research Centre of CHU-Université Laval, Quebec, Quebec, Canada
| | - Zhiyong Du
- Department of Surgery, Université Laval, Quebec, Quebec, Canada
- Division of Regenerative Medicine, Research Centre of CHU-Université Laval, Quebec, Quebec, Canada
| | - Frej Mighri
- Department of Chemical Engineering, Université Laval, Quebec, Quebec, Canada
| | - Zaipin Xu
- Department of Veterinary Medicine, Guizhou University, Guiyang, China; and
| | - Lu Wang
- Engineering Research Center of the Utilization for Characteristic Bio-pharmaceutical Resources in Southwest, Guizhou University, Guiyang, China
| | - Ze Zhang
- Department of Surgery, Université Laval, Quebec, Quebec, Canada
- Division of Regenerative Medicine, Research Centre of CHU-Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
16
|
Kurskaya EA, Podorozhko EA, Afanasyev ES, Kononova EG, Askadskii AA. Trends in Cryotropic Gelation of Semidilute Aqueous Solutions of Poly(vinyl alcohol) with Different Thermal History. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Gao X, Deng T, Huang X, Yu M, Li D, Lin J, Yu C, Tang C, Huang Y. Porous boron nitride nanofibers as effective nanofillers for poly(vinyl alcohol) composite hydrogels with excellent self-healing performances. SOFT MATTER 2022; 18:859-866. [PMID: 34985488 DOI: 10.1039/d1sm01361k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
New composite hydrogels with excellent self-healing properties were prepared by combining poly(vinyl alcohol) (PVA) and boron nitride nanofibers (BNNFs) via a facile one-pot assembly method. One-dimensional porous BNNFs with high aspect ratio, abundant hydroxyl functional groups, especially excellent flexibility which has been first demonstrated in experiments, can act as a decent inorganic nanofillers to effectively improve the mechanical and self-healing properties of PVA hydrogels. Both the tensile and compression performances of hydrogels have been greatly improved by the trace addition of BNNFs (only ∼1.25 wt%). Compared with other BN nanofillers with spherical particles and lamellar morphologies, BNNFs with high aspect ratios and good flexibility play a unique role in the preparation of PVA composite hydrogels with cross-linked three-dimensional polymeric networks. This can be explained by the different topological structures of composite hydrogels formed. The abundant hydroxyl functional groups can form a lot of reversible hydrogen bonds with the molecular chains of PVA, so the as-prepared hydrogels have a high self-healing efficiency. The best healing efficiency of the composite hydrogels with 2.25 wt% BNNFs reaches as high as 97.31% after self-healing for 30 minutes. The good flexibility of BNNFs is beneficial to the movement of the PVA chain, which is beneficial to the self-healing process of composite hydrogels. The outstanding self-healing performance is very important for the application of composite hydrogels in the biomedical field and wearable flexible devices.
Collapse
Affiliation(s)
- Xiangqian Gao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Tiantian Deng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xindi Huang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Mengmeng Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Danyang Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jing Lin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Chao Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yang Huang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China.
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
18
|
Podorozhko EA, Buzin MI, Golubev EK, Shcherbina MA, Lozinsky VI. A Study of Cryostructuring of Polymer Systems. 59. Effect of Cryogenic Treatment of Preliminarily Deformed Poly(vinyl alcohol) Cryogels on Their Physicochemical Properties. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21050112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Kolosova OY, Karelina PA, Vasil'ev VG, Grinberg VY, Kurochkin II, Kurochkin IN, Lozinsky VI. Cryostructuring of polymeric systems. 58. Influence of the H2N-(CH2) -COOH–type amino acid additives on formation, properties, microstructure and drug release behaviour of poly(vinyl alcohol) cryogels. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Crolla JP, Britton MM, Espino DM, Thomas-Seale LEJ. The dynamic viscoelastic characterisation and magnetic resonance imaging of poly(vinyl alcohol) cryogel: Identifying new attributes and opportunities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112383. [PMID: 34579902 DOI: 10.1016/j.msec.2021.112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/28/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Poly(vinyl alcohol) (PVA) cryogel is a biocompatible, synthetic hydrogel, compatible with magnetic resonance (MR) imaging. It is widely used as a biomaterial in tissue scaffolds and mimics to test various diagnostic techniques. The aim of this study is to characterise the effect of varying PVA concentration, molecular weight (MW) and manufacturing protocol on the viscoelastic mechanical properties and MR T2 relaxation time. Further to this MR imaging (MRI) was investigated as a method to quantify material homogeneity. Cylindrical samples of PVA, of varying MW, concentration and number of freeze thaw cycles (FTCs), were manufactured. Dynamic mechanical analysis was performed to evaluate the storage and loss moduli between frequencies of 0.5 and 10 Hz. MR T2 relaxation maps were imaged using a 7 T MRI instrument. Storage and loss moduli were shown to increase with MW, concentration, or the number of FTCs; with storage modulus ranging from 55 kPa to 912 kPa and loss modulus ranging from 6 kPa to 103 kPa. MR T2 relaxation time was shown to increase linearly with PVA concentration. The qualitative and quantitative heterogeneity of the PVA sample were identified through MR T2 relaxation time maps. Excitingly, PVA demonstrated a composition-dependent casual correlation between the viscoelastic mechanical properties and MR T2 relaxation time. In conclusion, this research thoroughly characterised the viscoelastic mechanical properties of PVA to support its extensive use as a biomaterial, and demonstrated the use of MRI to non-invasively identify sample heterogeneity and to predict the composition-dependent viscoelastic properties of PVA.
Collapse
Affiliation(s)
- J P Crolla
- Dept. of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK.
| | - M M Britton
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - D M Espino
- Dept. of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - L E J Thomas-Seale
- Dept. of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
21
|
Awad SA. Enhancing the Thermal and Mechanical Characteristics of Polyvinyl Alcohol (PVA)-Hemp Protein Particles (HPP) Composites. INT POLYM PROC 2021. [DOI: 10.1515/ipp-2020-3974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This paper aims to describe the thermal, mechanical, and surface properties of a PVA/HPP blend whereby the film was prepared using a solution casting method. The improvements in thermal and mechanical properties of HPP-based PVA composites were investigated. The characterization of pure PVA and PVA composite films included tensile tests, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results of TGA and DSC indicated that the addition of HPP increased the thermal decomposition temperature of the composites. Mechanical properties are significantly improved in PVA/HPP composites. The thermal stability of the PVA composite increased with the increase of HPP filler content. The tensile strength increased from 15.74 ± 0.72 MPa to 27.54 ± 0.45 MPa and the Young’s modulus increased from 282.51 ± 20.56 MPa to 988.69 ± 42.64 MPa for the 12 wt% HPP doped sample. Dynamic mechanical analysis (DMA) revealed that at elevated temperatures, enhanced mechanical properties because of the presence of HPP was even more noticeable. Morphological observations displayed no signs of agglomeration of HPP fillers even in composites with high HPP loading.
Collapse
Affiliation(s)
- S. A. Awad
- Department of Chemistry, College of Education for Pure Science, University of Anbar, Anbar , Ramadi , Iraq
| |
Collapse
|
22
|
AWAD S. Investigation of Chemical Modification and Enzymatic Degradation of Poly(vinyl alcohol)/Hemoprotein Particle Composites. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.878495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
23
|
Hezarkhani M, Ustürk S, Özbilenler C, Yilmaz E. Pullulan/poly(
N‐vinylimidazole
) cryogel: An efficient adsorbent for methyl orange. J Appl Polym Sci 2021. [DOI: 10.1002/app.50958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marjan Hezarkhani
- Department of Chemistry, Faculty of Arts and Sciences Eastern Mediterranean University Famagusta Turkey
- Sabanci University Integrated Manufacturing Technologies Research and Application Center & Composite Technologies Center of Excellence İstanbul Turkey
| | - Selma Ustürk
- Department of Chemistry, Faculty of Arts and Sciences Eastern Mediterranean University Famagusta Turkey
| | - Cahit Özbilenler
- Department of Chemistry, Faculty of Arts and Sciences Eastern Mediterranean University Famagusta Turkey
| | - Elvan Yilmaz
- Department of Chemistry, Faculty of Arts and Sciences Eastern Mediterranean University Famagusta Turkey
| |
Collapse
|
24
|
Triborheological Study under Physiological Conditions of PVA Hydrogel/HA Lubricant as Synthetic System for Soft Tissue Replacement. Polymers (Basel) 2021; 13:polym13050746. [PMID: 33670837 PMCID: PMC7957559 DOI: 10.3390/polym13050746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/29/2022] Open
Abstract
In soft tissue replacement, hydrophilic, flexible, and biocompatible materials are used to reduce wear and coefficient of friction. This study aims to develop and evaluate a solid/liquid triborheological system, polyvinyl alcohol (PVA)/hyaluronic acid (HA), to mimic conditions in human synovial joints. Hydrogel specimens prepared via the freeze–thawing technique from a 10% (w/v) PVA aqueous solution were cut into disc shapes (5 ± 0.5 mm thickness). Compression tests of PVA hydrogels presented a Young’s modulus of 2.26 ± 0.52 MPa. Friction tests were performed on a Discovery Hybrid Rheometer DHR-3 under physiological conditions using 4 mg/mL HA solution as lubricant at 37 °C. Contact force was applied between 1 and 20 N, highlighting a coefficient of friction change of 0.11 to 0.31 between lubricated and dry states at 3 N load (angular velocity: 40 rad/s). Thermal behavior was evaluated by differential scanning calorimetry (DSC) in the range of 25–250 °C (5 °C/min rate), showing an endothermic behavior with a melting temperature (Tm) around 231.15 °C. Scanning Electron Microscopy (SEM) tests showed a microporous network that enhanced water content absorption to 82.99 ± 1.5%. Hydrogel achieved solid/liquid lubrication, exhibiting a trapped lubricant pool that supported loads, keeping low coefficient of friction during lubricated tests. In dry tests, interstitial water evaporates continuously without countering sliding movement friction.
Collapse
|
25
|
Bakeeva IV, Doktorova AV, Damshkaln LG, Lozinsky VI. A Study of Cryostructuring of Polymer Systems. 54. Hybrid Organo-Inorganic Poly(vinyl alcohol) Cryogels Filled with In situ Formed Silica. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Zhao J, Ji G, Zhang X, Hu R, Zheng J. Preparation of a high strength, rapid self-healing composite gel and its application in electrochemical capacitor. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Sha D, Xu J, Yang X, Xue Y, Liu X, Li C, Wei M, Liang Z, Shi K, Wang B, Tang Y, Ji X. Synthesis and antibacterial activities of quaternary ammonium salts with different alkyl chain lengths grafted on polyvinyl alcohol-formaldehyde sponges. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Pohan G, Mattiassi S, Yao Y, Zaw AM, Anderson DE, Cutiongco MF, Hinds MT, Yim EK. Effect of Ethylene Oxide Sterilization on Polyvinyl Alcohol Hydrogel Compared with Gamma Radiation. Tissue Eng Part A 2020; 26:1077-1090. [PMID: 32264787 PMCID: PMC7580577 DOI: 10.1089/ten.tea.2020.0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
This study investigated the effects of terminal sterilization of polyvinyl alcohol (PVA) biomaterials using clinically translatable techniques, specifically ethylene oxide (EtO) and gamma (γ) irradiation. While a few studies have reported the possibility of sterilizing PVA with γ-radiation, the use of EtO sterilization of PVA requires additional study. PVA solutions were chemically crosslinked with trisodium trimetaphosphate and sodium hydroxide. The three experimental groups included untreated control, EtO, and γ-irradiation, which were tested for the degree of swelling and water content, and mechanical properties such as radial compliance, longitudinal tensile, minimum bend radius, burst pressure, and suture retention strength. In addition, samples were characterized with scanning electron microscopy, differential scanning calorimetry, X-ray photoelectron spectroscopy, and water contact angle measurements. Cell attachment was assessed using the endothelial cell line EA.hy926, and the sterilized PVA cytotoxicity was studied with a live/dead stain. Platelet and fibrin accumulation was measured using an ex vivo shunt baboon model. Finally, the immune responses of PVA implants were analyzed after a 21-day subcutaneous implantation in rats and a 30-day implantation in baboon. EtO sterilization reduced the PVA graft wall thickness, its degree of swelling, and water content compared with both γ-irradiated and untreated PVA. Moreover, EtO sterilization significantly reduced the radial compliance and increased Young's modulus. EtO did not change PVA hydrophilicity, while γ-irradiation increased the water contact angle of the PVA. Consequently, endothelial cell attachment on the EtO-sterilized PVA showed similar results to the untreated PVA, while cell attachment significantly improved on the γ-irradiated PVA. When exposing the PVA grafts to circulating whole blood, fibrin accumulation of EtO-sterilized PVA was found to be significantly lower than γ-irradiated PVA. The immune responses of γ-irradiated PVA, EtO-treated PVA, and untreated PVA were compared. Implanted EtO-treated PVA showed the least MAC387 reaction. The terminal sterilization methods in this study changed PVA hydrogel properties; nevertheless, based on the characterizations performed, both sterilization methods were suitable for sterilizing PVA. We concluded that EtO can be used as an alternative method to sterilize PVA hydrogel material. Impact statement Polyvinyl alcohol (PVA) hydrogels have been used for a variety of tissue replacements, including neural, cardiac, meniscal, cartilage, muscle, pancreatic, and ocular applications. In addition, PVA can be made into a tubular shape and used as a small-diameter vascular graft. Ethylene oxide (EtO) is one of the Food and Drug Administration-approved methods for sterilization, but its effect on PVA has not been studied extensively. The outcome of this study provides the effects of EtO and γ-irradiation of PVA grafts on both the material properties and the in vivo responses, particularly for vascular applications. Knowledge of these effects may ultimately improve the success rate of PVA vascular grafts.
Collapse
Affiliation(s)
- Grace Pohan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Aung Moe Zaw
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Deirdre E.J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Marie F.A. Cutiongco
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Evelyn K.F. Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| |
Collapse
|
29
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 55. Retrospective View on the More than 40 Years of Studies Performed in the A.N.Nesmeyanov Institute of Organoelement Compounds with Respect of the Cryostructuring Processes in Polymeric Systems. Gels 2020; 6:E29. [PMID: 32927850 PMCID: PMC7559272 DOI: 10.3390/gels6030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The processes of cryostructuring in polymeric systems, the techniques of the preparation of diverse cryogels and cryostructurates, the physico-chemical mechanisms of their formation, and the applied potential of these advanced polymer materials are all of high scientific and practical interest in many countries. This review article describes and discusses the results of more than 40 years of studies in this field performed by the researchers from the A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences-one of the key centers, where such investigations are carried out. The review includes brief historical information, the description of the main effects and trends characteristic of the cryostructuring processes, the data on the morphological specifics inherent in the polymeric cryogels and cryostructurates, and examples of their implementation for solving certain applied tasks.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| |
Collapse
|
30
|
Influence of succinylation of a wide-pore albumin cryogels on their properties, structure, biodegradability, and release dynamics of dioxidine loaded in such spongy carriers. Int J Biol Macromol 2020; 160:583-592. [PMID: 32479937 DOI: 10.1016/j.ijbiomac.2020.05.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022]
Abstract
The goal of this study was to reveal how the chemical modification, succinylation in this case, of the wide-pore serum-albumin-based cryogels affects on their osmotic characteristics (swelling extent), biodegradability and ability to be loaded with the bactericide substance - dioxidine, as well as on its release. The cryogels were prepared via the cryogenic processing (freezing - frozen storage - thawing) of aqueous solutions containing bovine serum albumin (50 g/L), denaturant (urea or guanidine hydrochloride, 1.0 mol/L) and reductant (cysteine, 0.01 mol/L). Freezing/frozen storage temperatures were either -15, or -20, or -25 °C. After defrosting, spongy cryogels were obtained that possessed the system of interconnected gross pores, whose shape and dimensions were dependent on the freezing temperature and on the type of denaturant introduced in the feed solution. Subsequent succinylation of the resultant cryogels caused the growth of the swelling degree of the pore walls of these spongy materials, resulted in strengthening of their resistance against of trypsinolysis and gave rise to an increase in their loading capacity with respect to dioxidine. With that, the microbiological tests showed a higher bactericidal activity of the dioxidine-loaded sponges based on the succinylated albumin cryogels as compared to that of the drug-carriers based on the non-modified protein sponges.
Collapse
|
31
|
Podorozhko EA, Ul’yabaeva GR, Tikhonov VE, Kil’deeva NR, Lozinsky VI. A Study of Cryostructuring of Polymer Systems. 53. The “Abnormal” Character of Variations in the Properties of Chitosan-Containing Composite Poly(vinyl alcohol) Cryogels upon Repeated Freezing–Defrosting. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x2001010x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Aslanli A, Stepanov N, Razheva T, Podorozhko EA, Lyagin I, Lozinsky VI, Efremenko E. Enzymatically Functionalized Composite Materials Based on Nanocellulose and Poly(Vinyl Alcohol) Cryogel and Possessing Antimicrobial Activity. MATERIALS 2019; 12:ma12213619. [PMID: 31689944 PMCID: PMC6862455 DOI: 10.3390/ma12213619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022]
Abstract
In the present work, innovative composite biomaterials possessing bactericidal properties and based on the hexahistidine-tagged organophosphorus hydrolase (His6-OPH) entrapped in the poly(vinyl alcohol) cryogel (PVA-CG)/bacterial cellulose (BC) were developed. His6-OPH possesses lactonase activity, with a number of N-acyl homoserine lactones being the inducers of Gram-negative bacterial resistance. The enzyme can also be combined with various antimicrobial agents (antibiotics and antimicrobial peptides) to improve the efficiency of their action. In this study, such an effect was shown for composite biomaterials when His6-OPH was entrapped in PVA-CG/BC together with β-lactam antibiotic meropenem or antimicrobial peptides temporin A and indolicidin. The residual catalytic activity of immobilized His6-OPH was 60% or more in all the composite samples. In addition, the presence of BC filler in the PVA-CG composite resulted in a considerable increase in the mechanical strength and heat endurance of the polymeric carrier compared to the BC-free cryogel matrix. Such enzyme-containing composites could be interesting in the biomedical field to help overcome the problem of antibiotic resistance of pathogenic microorganisms.
Collapse
Affiliation(s)
- Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- N.M.Emanuel Institute of Biochemical Physics RAS, Moscow 119334, Russia.
| | - Tatyana Razheva
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Elena A Podorozhko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- N.M.Emanuel Institute of Biochemical Physics RAS, Moscow 119334, Russia.
| | - Vladimir I Lozinsky
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- N.M.Emanuel Institute of Biochemical Physics RAS, Moscow 119334, Russia.
| |
Collapse
|
33
|
Hofmeister Effect on Thermo-responsive Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2320-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Eroğlu AG, Yıldırım M, Durmuş P, Dökme İ. Distribution of interface traps in Au/2% GC‐doped Ca
3
Co
4
Ga
0.001
O
x
/
n
‐Si structures. J Appl Polym Sci 2019. [DOI: 10.1002/app.48399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ayşe Gül Eroğlu
- Department of Physics, Faculty of ScienceGazi University 06500 Ankara Turkey
| | - Mert Yıldırım
- Department of Mechatronics Engineering, Faculty of EngineeringDüzce University 81620 Düzce Turkey
| | - Perihan Durmuş
- Department of Physics, Faculty of ScienceGazi University 06500 Ankara Turkey
| | - İlbilge Dökme
- Department of Science Education, Faculty of EducationGazi University 06500 Ankara Turkey
| |
Collapse
|
35
|
Ishii T, Ho CK, Nahas H, Yiu BYS, Chee AJY, Yu ACH. Deformable phantoms of the prostatic urinary tract for urodynamic investigations. Med Phys 2019; 46:3034-3043. [PMID: 31049993 DOI: 10.1002/mp.13558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Assessment of urethral dynamics is clinically regarded to be important in analyzing the functional impact of pathological features like urethral obstruction, albeit it is difficult to perform directly in vivo. To facilitate such an assessment, urethra phantoms may serve well as investigative tools by reconstructing urethral dynamics based on anthropomorphic factors. Here, our aim is to design a new class of anatomically realistic, deformable urethra phantoms that can simulate the geometric, mechanical, and hydrodynamic characteristics of the male prostatic urethra. METHODS A new lost-core tube casting protocol was devised. It first involved the drafting of urethra geometry in computer-aided design software. Next, 3D printing was used to fabricate the urethra geometry and an outer mold. These parts were then used to cast a urinary tract using a polyvinyl alcohol (PVA)-based material (with 26.6 ± 4.0 kPa Young's elastic modulus). After forming a surrounding tissue-mimicking slab using an agar-gelatin mixture (with 17.4 ± 3.4 kPa Young's modulus), the completed urethra phantom was connected to a flow circuit that simulates voiding. To assess the fabricated phantoms' morphology, ultrasound imaging was performed over different planes. Also, color Doppler imaging was performed to visualize the flow profile within the urinary tract. RESULTS Deformable phantoms were devised for the normal urethra and a diseased urethra with obstruction due to benign prostatic hyperplasia (BPH). During voiding, the short-axis lumen diameter at the verumontanum of the BPH-featured phantom (0.91 ± 0.08 mm) was significantly smaller than that for the normal phantom (2.49 ± 0.20 mm). Also, the maximum flow velocity of the BPH-featured phantom (59.3 ± 5.8 cm/s; without Doppler angle correction) was found to be higher than that of the normal phantom (22.7 ± 9.0 cm/s). CONCLUSION The fabricated phantoms were effective in simulating urethra deformation resulting from urine passage during voiding. They can be used for mechanistic studies of urethral dynamics and for the testing of urodynamic diagnostic techniques in urology.
Collapse
Affiliation(s)
- Takuro Ishii
- Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Chung Kit Ho
- Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Hassan Nahas
- Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Billy Y S Yiu
- Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Adrian J Y Chee
- Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Alfred C H Yu
- Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
36
|
Pohan G, Chevallier P, Anderson DEJ, Tse JW, Yao Y, Hagen MW, Mantovani D, Hinds MT, Yim EKF. Luminal Plasma Treatment for Small Diameter Polyvinyl Alcohol Tubular Scaffolds. Front Bioeng Biotechnol 2019; 7:117. [PMID: 31192200 PMCID: PMC6541113 DOI: 10.3389/fbioe.2019.00117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/07/2019] [Indexed: 12/04/2022] Open
Abstract
Plasma-based surface modification is recognized as an effective way to activate biomaterial surfaces, and modulate their interactions with cells, extracellular matrix proteins, and other materials. However, treatment of a luminal surface of a tubular scaffold remains non-trivial to perform in small diameter tubes. Polyvinyl alcohol (PVA) hydrogel, which has been widely used for medical applications, lacks functional groups to mediate cell attachment. This poses an issue for vascular applications, as endothelialization in a vascular graft lumen is crucial to maintain long term graft patency. In this study, a Radio Frequency Glow Discharges (RFGD) treatment in the presence of NH3 was used to modify the luminal surface of 3-mm diameter dehydrated PVA vascular grafts. The grafted nitrogen containing functional groups demonstrated stability, and in vitro endothelialization was successfully maintained for at least 30 days. The plasma-modified PVA displayed a higher percentage of carbonyl groups over the untreated PVA control. Plasma treatment on PVA patterned with microtopographies was also studied, with only the concave microlenses topography demonstrating a significant increase in platelet adhesion. Thus, the study has shown the possibility of modifying a small diameter hydrogel tubular scaffold with the RFGD plasma treatment technique and demonstrated stability in ambient storage conditions for up to 30 days.
Collapse
Affiliation(s)
- Grace Pohan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering, CHU de Québec Research Center, Regenerative Medicine, Laval University, Québec City, QC, Canada
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - John W Tse
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Matthew W Hagen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering, CHU de Québec Research Center, Regenerative Medicine, Laval University, Québec City, QC, Canada
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
37
|
de Oliveira ACF, Neves ICO, Saraiva JAM, de Carvalho MFF, Batista GA, Veríssimo LAA, Resende JVD. Capture of lysozyme on macroporous cryogels by hydrophobic affinity chromatography. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1617743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
A detailed comparative study on electrical and photovoltaic characteristics of Al/p-Si photodiodes with coumarin-doped PVA interfacial layer: the effect of doping concentration. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02704-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties. Int J Biol Macromol 2019; 122:1279-1289. [DOI: 10.1016/j.ijbiomac.2018.09.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/01/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022]
|
40
|
Lan W, Zhang X, Xu M, Zhao L, Huang D, Wei X, Chen W. Carbon nanotube reinforced polyvinyl alcohol/biphasic calcium phosphate scaffold for bone tissue engineering. RSC Adv 2019; 9:38998-39010. [PMID: 35540653 PMCID: PMC9075967 DOI: 10.1039/c9ra08569f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
In this paper, a well-developed porous carbon nanotube (CNT) reinforced polyvinyl alcohol/biphasic calcium phosphate (PVA/BCP) scaffold was fabricated by a freeze-thawing and freeze-drying method. The microstructure, mechanical properties and the composition of the scaffolds were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The results illustrate that after the incorporation of CNTs, the compressive strength of the hydrogels (moisture state) reached 81 ± 6 kPa, presenting a significantly higher value than that of pure PVA/BCP hydrogels (48 ± 2 kPa). Meanwhile, CNT reinforced PVA/BCP scaffolds exhibited a porous structure and high interconnectivity (80 ± 0.6%). The degradation analysis indicated that the degradation ratio of scaffolds can be varied by changing the concentrations of BCP powders and CNTs. Cell culture results show that PVA/BCP/CNT porous scaffolds have no negative effects on the survival and proliferation of cells. These results strongly show that the composite scaffolds may possess a potential application in the field of bone tissue engineering and regeneration. In this paper, a well-developed porous carbon nanotube (CNT) reinforced polyvinyl alcohol/biphasic calcium phosphate (PVA/BCP) scaffold was fabricated by a freeze-thawing and freeze-drying method.![]()
Collapse
Affiliation(s)
- Weiwei Lan
- Department of Biomedical Engineering
- Research Center for Nano-Biomaterials & Regenerative Medicine
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
| | - Xiumei Zhang
- Department of Biomedical Engineering
- Research Center for Nano-Biomaterials & Regenerative Medicine
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
| | - Mengjie Xu
- Department of Biomedical Engineering
- Research Center for Nano-Biomaterials & Regenerative Medicine
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
| | - Liqin Zhao
- Department of Biomedical Engineering
- Research Center for Nano-Biomaterials & Regenerative Medicine
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
| | - Di Huang
- Department of Biomedical Engineering
- Research Center for Nano-Biomaterials & Regenerative Medicine
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
| | - Xiaochun Wei
- Department of Orthopaedics
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- PR China
| | - Weiyi Chen
- Department of Biomedical Engineering
- Research Center for Nano-Biomaterials & Regenerative Medicine
- College of Biomedical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
| |
Collapse
|
41
|
Okay O. Semicrystalline physical hydrogels with shape-memory and self-healing properties. J Mater Chem B 2018; 7:1581-1596. [PMID: 32254903 DOI: 10.1039/c8tb02767f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthetic hydrogels are generally amorphous in nature without any order at the molecular level. This is in contrast to biological gels containing ordered aggregates contributing significantly to their mechanical performance. Semicrystalline hydrogels, first developed in 1994, are moderately water-swollen hydrogels containing crystalline domains. Recent work shows that physically cross-linked semicrystalline hydrogels belong to one of the groups of mechanically strong and highly stretchable hydrogels exhibiting melt-processability, self-healing and shape-memory functions. They can undergo an abrupt and reversible change from a solid-like to a liquid-like state at the melting temperature, opening up several applications such as shape-memory hydrogels, injectable gels, chemical motors, and smart inks for 3D or 4D printing. In this review article, recent advances in the field of semicrystalline physical hydrogels prepared from hydrophilic and hydrophobic vinyl monomers via a free-radical mechanism are summarized. Synthesis-molecular structure-property relations of semicrystalline hydrogels, current challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Oguz Okay
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
42
|
Cryostructuring of Polymeric Systems. 49. Unexpected "Kosmotropic-Like" Impact of Organic Chaotropes on Freeze⁻Thaw-Induced Gelation of PVA in DMSO. Gels 2018; 4:gels4040081. [PMID: 30674857 PMCID: PMC6318644 DOI: 10.3390/gels4040081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Urea (URE) and guanidine hydrochloride (GHC) possessing strong chaotropic properties in aqueous media were added to DMSO solutions of poly(vinyl alcohol) (PVA) to be gelled via freeze⁻thaw processing. Unexpectedly, it turned out that in the case of the PVA cryotropic gel formation in DMSO medium, the URE and GHC additives caused the opposite effects to those observed in water, i.e., the formation of the PVA cryogels (PVACGs) was strengthened rather than inhibited. Our studies of this phenomenon showed that such "kosmotropic-like" effects were more pronounced for the PVACGs that were formed in DMSO in the presence of URE additives, with the effects being concentration-dependent. The additives also caused significant changes in the macroporous morphology of the cryogels; the commonly observed trend was a decrease in the structural regularity of the additive-containing samples compared to the additive-free gel sample. The viscosity measurements revealed consistent changes in the intrinsic viscosity, Huggins constant, and the excess activation heat of the viscosity caused by the additives. The results obtained evidently point to the urea-induced decrease in the solvation ability of DMSO with respect to PVA. As a result, this effect can be the key factor that is responsible for strengthening the structure formation upon the freeze⁻thaw gelation of this polymer in DMSO additionally containing additives such as urea, which is capable of competing with PVA for the solvent.
Collapse
|
43
|
Guidetti M, Lorgna G, Hammersly M, Lewis P, Klatt D, Vena P, Shah R, Royston TJ. Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography. J Mech Behav Biomed Mater 2018; 89:199-208. [PMID: 30292169 DOI: 10.1016/j.jmbbm.2018.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
The presence and progression of neuromuscular pathology, including spasticity, Duchenne's muscular dystrophy and hyperthyroidism, has been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools for noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. Dynamic elastography methods for noninvasive measurement of tissue mechanical properties have been under development for nearly three decades. Much of the technological development to date, for both Ultrasound (US)-based and Magnetic Resonance Imaging (MRI)-based strategies, has been grounded in assumptions of local homogeneity and isotropy. Striated skeletal and cardiac muscle, as well as brain white matter and soft tissue in some other organ regions, exhibit a fibrous microstructure which entails heterogeneity and anisotropic response; as one seeks to improve the accuracy and resolution in mechanical property assessment, heterogeneity and anisotropy need to be accounted for in order to optimize both the dynamic elastography experimental protocol and the interpretation of the measurements. Advances in elastography methodology at every step have been aided by the use of tissue-mimicking phantoms. The aim of the present study was to develop and characterize a heterogeneous composite phantom design with uniform controllable anisotropic properties meant to be comparable to the frequency-dependent anisotropic properties of skeletal muscle. MRE experiments and computational finite element (FE) studies were conducted on a novel 3D-printed composite phantom design. The displacement maps obtained from simulation and experiment show the same elliptical shaped wavefronts elongated in the plane where the structure presents higher shear modulus. The model exhibits a degree of anisotropy in line with literature data from skeletal muscle tissue MRE experiments. FE simulations of the MRE experiments provide insight into proper interpretation of experimental measurements, and help to quantify the importance of heterogeneity in the anisotropic material at different scales.
Collapse
Affiliation(s)
- Martina Guidetti
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| | - Gloria Lorgna
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy.
| | - Margaret Hammersly
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Phillip Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Dieter Klatt
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| | - Pasquale Vena
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy.
| | - Ramille Shah
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Thomas J Royston
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| |
Collapse
|
44
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 50. † Cryogels and Cryotropic Gel-Formation: Terms and Definitions. Gels 2018; 4:E77. [PMID: 30674853 PMCID: PMC6209254 DOI: 10.3390/gels4030077] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
A variety of cryogenically-structured polymeric materials are of significant scientific and applied interest in various areas. However, in spite of considerable attention to these materials and intensive elaboration of their new examples, as well as the impressive growth in the number of the publications and patents on this topic over the past two decades, a marked variability of the used terminology and definitions is frequently met with in the papers, reviews, theses, patents, conference presentations, advertising materials and so forth. Therefore, the aim of this brief communication is to specify the basic terms and definitions in the particular field of macromolecular science.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia.
| |
Collapse
|
45
|
Peng S, Liu S, Sun Y, Xiang N, Jiang X, Hou L. Facile preparation and characterization of poly(vinyl alcohol)-NaCl-glycerol supramolecular hydrogel electrolyte. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Bilici C, Karaarslan D, Ide S, Okay O. Toughness improvement and anisotropy in semicrystalline physical hydrogels. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Kolosova OY, Kurochkin IN, Kurochkin II, Lozinsky VI. Cryostructuring of polymeric systems. 48. Influence of organic chaotropes and kosmotropes on the cryotropic gel-formation of aqueous poly(vinyl alcohol) solutions. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Zagorskaya SA, Tretinnikov ON. Effect of Halide Salts of Alkali Metals on Crystallinity of Poly(vinyl Alcohol) Cryogels. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x1801008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Kiliç E, Yakar A, Pekel Bayramgil N. Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 29:8. [PMID: 29275508 DOI: 10.1007/s10856-017-6013-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Polyurethane (PU) and doxorubicine loaded-PU nanofiber mats were prepared by the electrospinning technique. The effect of some system and process parameters including flow rate, distance from collector, and concentration of solution on the size and morphology of nanofibers was investigated. The size, morphology and drug content of nanofiber mats were followed by scanning electron microscopy (SEM). FTIR and TGA methods were used for structural and thermal characterization, and DSC was also used for determining the form of drug within nanofiber mat. Doxorubicine release kinetics were studied in two different pHs (4.5 and 7.5) for two drug content and it was observed that there is an inverse correlation between the amounts of drug loaded and released.
Collapse
Affiliation(s)
- Esra Kiliç
- Faculty of Science, Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Arzu Yakar
- Department of Chemical Engineering, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Nursel Pekel Bayramgil
- Faculty of Science, Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
50
|
Wang L, Yuan Y, Mu RJ, Gong J, Ni Y, Hong X, Pang J, Wu C. Mussel-Inspired Fabrication of Konjac Glucomannan/Poly (Lactic Acid) Cryogels with Enhanced Thermal and Mechanical Properties. Int J Mol Sci 2017; 18:E2714. [PMID: 29258196 PMCID: PMC5751315 DOI: 10.3390/ijms18122714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022] Open
Abstract
Three-dimensional nanofibers cryogels (NFCs) with both thermally-tolerant and mechanically-robust properties have potential for wide application in biomedical or food areas; however, creating such NFCs has proven to be extremely challenging. In this study, konjac glucomannan (KGM)/poly (lactic acid) (PLA)-based novel NFCs were prepared by the incorporation of the mussel-inspired protein polydopamine (PDA) via a facile and environmentally-friendly electrospinning and freeze-shaping technique. The obtained KGM/PLA/PDA (KPP) NFCs were characterized by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and compressive and tensile test. The results showed that the hierarchical cellular structure and physicochemical properties of KPP NFCs were dependent on the incorporation of PDA content. Moreover, the strong intermolecular hydrogen bond interactions among KGM, PLA and PDA also gave KPP NFCs high thermostability and mechanically-robust properties. Thus, this study developed a simple approach to fabricate multifunctional NFCs with significant potential for biomedical or food application.
Collapse
Affiliation(s)
- Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yi Yuan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ruo-Jun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jingni Gong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yongsheng Ni
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xin Hong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|