1
|
Liang J, Min LQ, Zhu XY, Ma TT, Li Y, Zhang MQ, Zhao L. Fingolimod protects against neurovascular unit injury in a rat model of focal cerebral ischemia/reperfusion injury. Neural Regen Res 2023; 18:869-874. [DOI: 10.4103/1673-5374.353500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Ruggieri S, Quartuccio ME, Prosperini L. Ponesimod in the Treatment of Relapsing Forms of Multiple Sclerosis: An Update on the Emerging Clinical Data. Degener Neurol Neuromuscul Dis 2022; 12:61-73. [PMID: 35356493 PMCID: PMC8958267 DOI: 10.2147/dnnd.s313825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/10/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) receptors are bioactive lipid metabolites that bind five different types of receptors expressed ubiquitously in human body and mediate a broad range of biological functions. Targeting S1P receptors is nowadays a well-established pharmacological strategy to treat multiple sclerosis (MS). However, the adverse events associated with the ancestor (fingolimod), especially in terms of heart conduction and slow reversibility of its pharmacodynamics effect on lymphocytes, have stimulated a search for a S1P modulator with greater selectivity for S1P1 (the most important immune mechanism to prevent MS-related neuroinflammation). Ponesimod is a second-generation, orally active, directly bioavailable, highly selective, and rapidly reversible modulator of the S1P1 receptor. Gradual 14-day up-titration of ponesimod mitigates its first-dose effects on heart rate and facilitates its use over fingolimod, as it does not require first-dose cardiac monitoring. Ponesimod is rapidly eliminated within 1 week of discontinuation, thereby representing a more manageable approach in case of vaccination, pregnancy, or adverse events. However, the fast reversibility of ponesimod may also raise concerns about the possibility of a rapid reactivation of disease activity following its discontinuation. Ponesimod was recently approved for the treatment of relapsing MS forms on the basis of a Phase III, double-blind, double-dummy, randomized clinical trial (OPTIMUM) that demonstrated the superiority of ponesimod over teriflunomide on disease activity markers, without unexpected safety concerns. This review summarizes the pharmacodynamic and pharmacokinetic characteristics of ponesimod, and the main Phase II and III studies that led to its approval. Comparisons of ponesimod with other S1P receptor modulators currently available for MS (fingolimod, ozanimod, siponimod) are also provided.
Collapse
Affiliation(s)
- Serena Ruggieri
- Department of Human Neurosciences, Sapienza University, Rome, 00185, Italy
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, 00143, Italy
| | | | - Luca Prosperini
- Department of Neurosciences, S. Camillo-Forlanini Hospital, Rome, 00152, Italy
| |
Collapse
|
3
|
Cheng H, Di G, Gao CC, He G, Wang X, Han YL, Sun LA, Zhou ML, Jiang X. FTY720 Reduces Endothelial Cell Apoptosis and Remodels Neurovascular Unit after Experimental Traumatic Brain Injury. Int J Med Sci 2021; 18:304-313. [PMID: 33390799 PMCID: PMC7757143 DOI: 10.7150/ijms.49066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. A sequence of pathological processes occurred when there is TBI. Previous studies showed that sphingosine-1-phosphate receptor 1 (S1PR1) played a critical role in inflammatory response in the brain after TBI. Thus, the present study was designed to evaluate the effects of the S1PR1 modulator FTY720 on neurovascular unit (NVU) after experimental TBI in mice. The weight-drop TBI method was used to induce TBI. Western blot (WB) was performed to determine the levels of SIPR1, claudin-5 and occludin at different time points. FTY720 was intraperitoneally administered to mice after TBI was induced. The terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay was used to assess endothelial cell apoptosis. Immunofluorescence and WB were performed to measure the expression of tight junction proteins: claudin-5 and occludin. Evans blue (EB) permeability assay and brain water content were applied to evaluate the blood-brain barrier (BBB) permeability and brain edema. Immunohistochemistry was performed to assess the activation of astrocytes and microglia. The results showed that FTY720 administration reduced endothelial cell apoptosis and improved BBB permeability. FTY720 also attenuated astrocytes and microglia activation. Furthermore, treatment with FTY720 not only improved neurological function, but also increased the survival rate of mice significantly. These findings suggest that FTY720 administration restored the structure of the NVU after experimental TBI by decreasing endothelial cell apoptosis and attenuating the activation of astrocytes. Moreover, FTY720 might reduce inflammation in the brain by reducing the activation of microglia in TBI mice.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Guangfu Di
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Chao-Chao Gao
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, China
| | - Guoyuan He
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Xue Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Yan-Ling Han
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Le-An Sun
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Anhui, China
| |
Collapse
|
4
|
dos Anjos F, Simões JLB, Assmann CE, Carvalho FB, Bagatini MD. Potential Therapeutic Role of Purinergic Receptors in Cardiovascular Disease Mediated by SARS-CoV-2. J Immunol Res 2020; 2020:8632048. [PMID: 33299899 PMCID: PMC7709498 DOI: 10.1155/2020/8632048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) causes pulmonary and cardiovascular disorders and has become a worldwide emergency. Myocardial injury can be caused by direct or indirect damage, particularly mediated by a cytokine storm, a disordered immune response that can cause myocarditis, abnormal coagulation, arrhythmia, acute coronary syndrome, and myocardial infarction. The present review focuses on the mechanisms of this viral infection, cardiac biomarkers, consequences, and the possible therapeutic role of purinergic and adenosinergic signalling systems. In particular, we focus on the interaction of the extracellular nucleotide adenosine triphosphate (ATP) with its receptors P2X1, P2X4, P2X7, P2Y1, and P2Y2 and of adenosine (Ado) with A2A and A3 receptors, as well as their roles in host immune responses. We suggest that receptors of purinergic signalling could be ideal candidates for pharmacological targeting to protect against myocardial injury caused by a cytokine storm in COVID-19, in order to reduce systemic inflammatory damage to cells and tissues, preventing the progression of the disease by modulating the immune response and improving patient quality of life.
Collapse
Affiliation(s)
- Fernanda dos Anjos
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
5
|
Lee K, Escobar I, Jang Y, Kim W, Ausubel FM, Mylonakis E. In the Model Host Caenorhabditis elegans, Sphingosine-1-Phosphate-Mediated Signaling Increases Immunity toward Human Opportunistic Bacteria. Int J Mol Sci 2020; 21:ijms21217813. [PMID: 33105563 PMCID: PMC7672543 DOI: 10.3390/ijms21217813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Sphingosine-1-phophate (S1P) is a sphingolipid-derived signaling molecule that controls diverse cellular functions including cell growth, homeostasis, and stress responses. In a variety of metazoans, cytosolic S1P is transported into the extracellular space where it activates S1P receptors in a concentration-dependent manner. In the free-living nematode Caenorhabditis elegans, the spin-2 gene, which encodes a S1P transporter, is activated during Gram-positive or Gram-negative bacterial infection of the intestine. However, the role during infection of spin-2 and three additional genes in the C. elegans genome encoding other putative S1P transporters has not been elucidated. Here, we report an evolutionally conserved function for S1P and a non-canonical role for S1P transporters in the C. elegans immune response to bacterial pathogens. We found that mutations in the sphingosine kinase gene (sphk-1) or in the S1P transporter genes spin-2 or spin-3 decreased nematode survival after infection with Pseudomonas aeruginosa or Enterococcus faecalis. In contrast to spin-2 and spin-3, mutating spin-1 leads to an increase in resistance to P. aeruginosa. Consistent with these results, when wild-type C. elegans were supplemented with extracellular S1P, we found an increase in their lifespan when challenged with P. aeruginosa and E. faecalis. In comparison, spin-2 and spin-3 mutations suppressed the ability of S1P to rescue the worms from pathogen-mediated killing, whereas the spin-1 mutation had no effect on the immune-enhancing activity of S1P. S1P demonstrated no antimicrobial activity toward P. aeruginosa and Escherichia coli and only minimal activity against E. faecalis MMH594 (40 µM). These data suggest that spin-2 and spin-3, on the one hand, and spin-1, on the other hand, transport S1P across cellular membranes in opposite directions. Finally, the immune modulatory effect of S1P was diminished in C. eleganssek-1 and pmk-1 mutants, suggesting that the immunomodulatory effects of S1P are mediated by the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Kiho Lee
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.L.); (I.E.); (Y.J.)
| | - Iliana Escobar
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.L.); (I.E.); (Y.J.)
| | - Yeeun Jang
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.L.); (I.E.); (Y.J.)
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (K.L.); (I.E.); (Y.J.)
- Correspondence: ; Tel.: +1-401-444-7856
| |
Collapse
|
6
|
Ichu TA, Reed A, Ogasawara D, Ulanovskaya O, Roberts A, Aguirre CA, Bar-Peled L, Gao J, Germain J, Barbas S, Masuda K, Conti B, Tontonoz P, Cravatt BF. ABHD12 and LPCAT3 Interplay Regulates a Lyso-phosphatidylserine-C20:4 Phosphatidylserine Lipid Network Implicated in Neurological Disease. Biochemistry 2020; 59:1793-1799. [PMID: 32364701 DOI: 10.1021/acs.biochem.0c00292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PHARC (polyneuropathy, hearing loss, cerebellar ataxia, retinitis pigmentosa, and cataract) is a human neurological disorder caused by deleterious mutations in the ABHD12 gene, which encodes an integral membrane lyso-phosphatidylserine (lyso-PS) lipase. Pharmacological or genetic disruption of ABHD12 leads to higher levels of lyso-PS lipids in human cells and the central nervous system (CNS) of mice. ABHD12 loss also causes rapid rewiring of PS content, resulting in selective increases in the level of arachidonoyl (C20:4) PS and decreases in the levels of other PS species. The biochemical basis for ABHD12-dependent PS remodeling and its pathophysiological significance remain unknown. Here, we show that genetic deletion of the lysophospholipid acyltransferase LPCAT3 blocks accumulation of brain C20:4 PS in mice lacking ABHD12 and concurrently produces hyper-increases in the level of lyso-PS in these animals. These lipid changes correlate with exacerbated auditory dysfunction and brain microgliosis in mice lacking both ABHD12 and LPCAT3. Taken together, our findings reveal that ABHD12 and LPCAT3 coordinately regulate lyso-PS and C20:4 PS content in the CNS and point to lyso-PS lipids as the likely bioactive metabolites contributing to PHARC-related neuropathologies.
Collapse
Affiliation(s)
- Taka-Aki Ichu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alex Reed
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Daisuke Ogasawara
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | - Amanda Roberts
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Carlos A Aguirre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Liron Bar-Peled
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jie Gao
- Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California 90024, United States
| | - Jason Germain
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sabrina Barbas
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim Masuda
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Bruno Conti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peter Tontonoz
- Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California 90024, United States
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Fingolimod retains cytolytic T cells and limits T follicular helper cell infection in lymphoid sites of SIV persistence. PLoS Pathog 2019; 15:e1008081. [PMID: 31626660 PMCID: PMC6834281 DOI: 10.1371/journal.ppat.1008081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/06/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023] Open
Abstract
Lymph nodes (LN) and their resident T follicular helper CD4+ T cells (Tfh) are a critical site for HIV replication and persistence. Therefore, optimizing antiviral activity in lymphoid tissues will be needed to reduce or eliminate the HIV reservoir. In this study, we retained effector immune cells in LN of cART-suppressed, SIV-infected rhesus macaques by treatment with the lysophospholipid sphingosine-1 phosphate receptor modulator FTY720 (fingolimod). FTY720 was remarkably effective in reducing circulating CD4+ and CD8+ T cells, including those with cytolytic potential, and in increasing the number of these T cells retained in LN, as determined directly in situ by histocytometry and immunohistochemistry. The FTY720-induced inhibition of T cell egress from LN resulted in a measurable decrease of SIV-DNA content in blood as well as in LN Tfh cells in most treated animals. In conclusion, FTY720 administration has the potential to limit viral persistence, including in the critical Tfh cellular reservoir. These findings provide rationale for strategies designed to retain antiviral T cells in lymphoid tissues to target HIV remission. FTY720 (fingolimod), a drug approved by the FDA for treatment of multiple sclerosis, blocks the egress of lymphocytes from the lymph node (LN). To determine whether FTY720 retention activity could improve cytolytic responses in the LN and affect SIV persistence, we studied for the first time tolerability and biological activity of two doses of FTY720 in cART-suppressed, SIV-infected rhesus macaques. FTY720 was remarkably effective in reducing circulating CD4+ and CD8+ T cells, including those with cytolytic potential, and in increasing the number of cytolytic T cells in LN. FTY720 administration reduced SIV-DNA content in blood as well as in LN Tfh cells in most of the animals. These results suggest that FTY720 limits viral persistence, including Tfh cellular reservoir, by increasing the number of cytolytic cells in the LN, critical site for HIV/SIV replication and persistence.
Collapse
|
8
|
Ogasawara D, Ichu TA, Jing H, Hulce JJ, Reed A, Ulanovskaya OA, Cravatt BF. Discovery and Optimization of Selective and in Vivo Active Inhibitors of the Lysophosphatidylserine Lipase α/β-Hydrolase Domain-Containing 12 (ABHD12). J Med Chem 2019; 62:1643-1656. [PMID: 30720278 DOI: 10.1021/acs.jmedchem.8b01958] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABHD12 is a membrane-bound hydrolytic enzyme that acts on the lysophosphatidylserine (lyso-PS) and lysophosphatidylinositol (lyso-PI) classes of immunomodulatory lipids. Human and mouse genetic studies point to a key role for the ABHD12-(lyso)-PS/PI pathway in regulating (neuro)immunological functions in both the central nervous system and periphery. Selective inhibitors of ABHD12 would offer valuable pharmacological probes to complement genetic models of ABHD12-regulated (lyso)-PS/PI metabolism and signaling. Here, we provide a detailed description of the discovery and activity-based protein profiling (ABPP) guided optimization of reversible thiourea inhibitors of ABHD12 that culminated in the identification of DO264 as a potent, selective, and in vivo active ABHD12 inhibitor. We also show that DO264, but not a structurally related inactive control probe (S)-DO271, augments inflammatory cytokine production from human THP-1 macrophage cells. The in vitro and in vivo properties of DO264 designate this compound as a suitable chemical probe for studying the biological functions of ABHD12-(lyso)-PS/PI pathways.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Taka-Aki Ichu
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Hui Jing
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Jonathan J Hulce
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Alex Reed
- Abide Therapeutics , 10835 Road to the Cure , San Diego , California 92121 , United States
| | - Olesya A Ulanovskaya
- Abide Therapeutics , 10835 Road to the Cure , San Diego , California 92121 , United States
| | - Benjamin F Cravatt
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
9
|
Ogasawara D, Ichu TA, Vartabedian VF, Benthuysen J, Jing H, Reed A, Ulanovskaya OA, Hulce JJ, Roberts A, Brown S, Rosen H, Teijaro JR, Cravatt BF. Selective blockade of the lyso-PS lipase ABHD12 stimulates immune responses in vivo. Nat Chem Biol 2018; 14:1099-1108. [PMID: 30420694 PMCID: PMC6263940 DOI: 10.1038/s41589-018-0155-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022]
Abstract
ABHD12 metabolizes bioactive lysophospholipids, including lysophosphatidylserine (lyso-PS). Deleterious mutations in human ABHD12 cause the neurological disease PHARC, and ABHD12-/- mice display PHARC-like phenotypes, including hearing loss, along with elevated brain lyso-PS and features of stimulated innate immune cell function. Here, we develop a selective and in vivo-active inhibitor of ABHD12 termed DO264 and show that this compound elevates lyso-PS in mouse brain and primary human macrophages. Unlike ABHD12-/- mice, adult mice treated with DO264 exhibited minimal perturbations in auditory function. On the other hand, both DO264-treated and ABHD12-/- mice displayed heightened immunological responses to lymphocytic choriomeningitis virus (LCMV) clone 13 infection that manifested as severe lung pathology with elevated proinflammatory chemokines. These results reveal similarities and differences in the phenotypic impact of pharmacological versus genetic blockade of ABHD12 and point to a key role for this enzyme in regulating immunostimulatory lipid pathways in vivo.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Taka-Aki Ichu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Vincent F Vartabedian
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Hui Jing
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Alex Reed
- Abide Therapeutics, San Diego, CA, USA
| | | | - Jonathan J Hulce
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Amanda Roberts
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven Brown
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Hugh Rosen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Teijaro
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Yang T, Zhang X, Ma C, Chen Y. TGF-β/Smad3 pathway enhances the cardio-protection of S1R/SIPR1 in in vitro ischemia-reperfusion myocardial cell model. Exp Ther Med 2018; 16:178-184. [PMID: 29896238 PMCID: PMC5995059 DOI: 10.3892/etm.2018.6192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
Abstract
Ischemia-reperfusion (IR) injury is usually associated with a high risk of cardiomyocyte death in patients with acute myocardial infarction. Sphingosine 1-phosphate (S1P) and transforming growth factor (TGF)-β are thought to be involved in the protection of cardiomyocyte and heart function following IR-induced injury. However, the possible association of S1P and S1P receptor 1 (S1PR1) with the TGF-β/Smad3 pathway as the potential protective mechanism has remained to be investigated. In the present study, an in vitro ischemia/reperfusion injury model was established and evaluated by analysis of apoptosis, lactate dehydrogenase (LDH) release and caspase3 activity. The mRNA and protein levels of S1PR1, TGF-β and Smad3 after treatment with 1 µM S1P alone or combined with 0.4 µM W146 (a specific S1PR1 antagonist) were assessed. The mRNA expression of five S1PRs (S1PR1-5) and the protein levels of S1PR1 were also assayed following treatment with 1 ng/ml TGF-β for 0, 4 or 24 h. The mRNA expression of S1PR1 and the levels of S1P were further assessed following exposure to 10 µM SB4 (TGFβR1 inhibitor) plus 1 ng/ml TGF-β and 2 µM SIS3 (Smad3 inhibitor) plus 1 ng/ml TGF-β. The results indicated that apoptosis, LDH release and caspase3 activity were all increased in the established IR model. Exogenous S1P increased the mRNA and protein levels of S1PR1, TGF-β and Smad3, which was abolished by addition of W146. Extraneous TGF-β resulted in the stimulation of several S1PRs, most prominently of S1PR1, while supplementation with SB4 and SIS3 offset the stimulation by TGF-β. These results suggested that the TGF-β/Smad3 pathway was closely associated with S1P/S1PR1 in the protection of myocardial cells from IR injury.
Collapse
Affiliation(s)
- Tingfang Yang
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xianfeng Zhang
- Department of Psychiatry, Jining Mental Health Hospital/Daizhuang Hospital of Shandong, Jining, Shandong 272051, P.R. China
| | - Cuimei Ma
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yan Chen
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
11
|
Tran JQ, Hartung JP, Olson AD, Mendzelevski B, Timony GA, Boehm MF, Peach RJ, Gujrathi S, Frohna PA. Cardiac Safety of Ozanimod, a Novel Sphingosine-1-Phosphate Receptor Modulator: Results of a Thorough QT/QTc Study. Clin Pharmacol Drug Dev 2018; 7:263-276. [PMID: 28783871 PMCID: PMC5901414 DOI: 10.1002/cpdd.383] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ozanimod is a novel, selective, oral sphingosine-1-phosphate (1 and 5) receptor modulator in development for multiple sclerosis and inflammatory bowel disease. This randomized, double-blind, placebo-controlled, positive-controlled, parallel-group thorough QT study characterized the effects of ozanimod on cardiac repolarization in healthy subjects. Eligible subjects were randomized to 1 of 2 groups: ozanimod (escalated from 0.25 to 2 mg over 14 days) or placebo (for 14 days). A single dose of moxifloxacin 400 mg or placebo was administered on days 2 and 17. The primary end point was the time-matched, placebo-corrected, baseline-adjusted mean QTcF (ΔΔQTcF). A total of 113/124 (91.1%) subjects completed the study. The upper limits of the 2-sided 90% confidence intervals for ΔΔQTcF for both ozanimod 1 and 2 mg were below the 10-millisecond regulatory threshold. No QTcF >480 milliseconds or postdose change in QTcF of >60 milliseconds was observed. There was no evidence of a positive relationship between concentrations of ozanimod and its active metabolites and ΔΔQTcF. Although ozanimod blunted the observed diurnal increase in heart rate, excursions below predose heart rates were no greater than with placebo. Results demonstrate that ozanimod does not prolong the QTc interval or cause clinically significant bradycardia, supporting ozanimod's evolving favorable cardiac safety profile.
Collapse
Affiliation(s)
- Jonathan Q. Tran
- Receptosa wholly owned subsidiary of Celgene CorporationSan DiegoCaliforniaUSA
| | - Jeffrey P. Hartung
- Receptosa wholly owned subsidiary of Celgene CorporationSan DiegoCaliforniaUSA
| | - Allan D. Olson
- Receptosa wholly owned subsidiary of Celgene CorporationSan DiegoCaliforniaUSA
| | | | - Gregg A. Timony
- Receptosa wholly owned subsidiary of Celgene CorporationSan DiegoCaliforniaUSA
| | - Marcus F. Boehm
- Receptosa wholly owned subsidiary of Celgene CorporationSan DiegoCaliforniaUSA
| | - Robert J. Peach
- Receptosa wholly owned subsidiary of Celgene CorporationSan DiegoCaliforniaUSA
| | - Sheila Gujrathi
- Receptosa wholly owned subsidiary of Celgene CorporationSan DiegoCaliforniaUSA
| | - Paul A. Frohna
- Receptosa wholly owned subsidiary of Celgene CorporationSan DiegoCaliforniaUSA
| |
Collapse
|
12
|
Kono M, Conlon EG, Lux SY, Yanagida K, Hla T, Proia RL. Bioluminescence imaging of G protein-coupled receptor activation in living mice. Nat Commun 2017; 8:1163. [PMID: 29079828 PMCID: PMC5660082 DOI: 10.1038/s41467-017-01340-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/06/2017] [Indexed: 01/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs), a superfamily of cell-surface receptors involved in virtually all physiological processes, are the major target class for approved drugs. Imaging GPCR activation in real time in living animals would provide a powerful way to study their role in biology and disease. Here, we describe a mouse model that enables the bioluminescent detection of GPCR activation in real time by utilizing the clinically important GPCR, sphingosine-1-phosphate receptor 1 (S1P1). A synthetic S1P1 signaling pathway, designed to report the interaction between S1P1 and β-arrestin2 via the firefly split luciferase fragment complementation system, is genetically encoded in these mice. Upon receptor activation and subsequent β-arrestin2 recruitment, an active luciferase enzyme complex is produced, which can be detected by in vivo bioluminescence imaging. This imaging strategy reveals the dynamics and spatial specificity of S1P1 activation in normal and pathophysiologic contexts in vivo and can be applied to other GPCRs. G protein-coupled receptors are involved in numerous physiological functions, thus, they represent potential pharmaceutical targets. Here Kono et al. describe a new mouse model to image GPCR activation in real-time by exploiting firefly split luciferase fragment complementation that can be detected by bioluminescence imaging.
Collapse
Affiliation(s)
- Mari Kono
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth G Conlon
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Samantha Y Lux
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Keisuke Yanagida
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Caliman AD, Miao Y, McCammon JA. Activation mechanisms of the first sphingosine-1-phosphate receptor. Protein Sci 2017; 26:1150-1160. [PMID: 28370663 DOI: 10.1002/pro.3165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/24/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022]
Abstract
Activation of the first sphingosine-1-phosphate receptor (S1PR1 ) promotes permeability of the blood brain barrier, astrocyte and neuronal protection, and lymphocyte egress from secondary lymphoid tissues. Although an agonist often activates the S1PR1 , the receptor exhibits high levels of basal activity. In this study, we performed long-timescale molecular dynamics and accelerated molecular dynamics (aMD) simulations to investigate activation mechanisms of the ligand-free (apo) S1PR1 . In the aMD enhanced sampling simulations, we observed four independent events of activation, which is characterized by close interaction between Y3117.53 and Y2215.58 and increased distance between the intracellular ends of transmembrane (TM) helices 3 and 6. Although TM helices TM3, TM6, TM5 and, TM7 are associated with GPCR activation, we discovered that their movements are not necessarily correlated during activation. Instead, TM5 showed a decreased correlation with each of these regions during activation. During activation of the apo receptor, Y2215.58 and Y3117.53 became more solvated, because a water channel formed in the intracellular pocket. Additionally, a lipid molecule repeatedly entered the receptor between the extracellular ends of TM1 and TM7, providing important insights into the pathway of ligand entry into the S1PR1 .
Collapse
Affiliation(s)
- Alisha D Caliman
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093
| | - Yinglong Miao
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093.,Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California, 92093
| | - J Andrew McCammon
- Department of Pharmacology, University of California at San Diego, La Jolla, California, 92093.,Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California, 92093.,Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, 92093
| |
Collapse
|
14
|
ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex. Proc Natl Acad Sci U S A 2016; 113:E1334-42. [PMID: 26903652 DOI: 10.1073/pnas.1504555113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We recently identified a previously unidentified sphingosine-1-phosphate (S1P) signaling mechanism that stimulates production of a key innate immune element, cathelicidin antimicrobial peptide (CAMP), in mammalian cells exposed to external perturbations, such as UVB irradiation and other oxidative stressors that provoke subapoptotic levels of endoplasmic reticulum (ER) stress, independent of the well-known vitamin D receptor-dependent mechanism. ER stress increases cellular ceramide and one of its distal metabolites, S1P, which activates NF-κB followed by C/EBPα activation, leading to CAMP production, but in a S1P receptor-independent fashion. We now show that S1P activates NF-κB through formation of a previously unidentified signaling complex, consisting of S1P, TRAF2, and RIP1 that further associates with three stress-responsive proteins; i.e., heat shock proteins (GRP94 and HSP90α) and IRE1α. S1P specifically interacts with the N-terminal domain of heat shock proteins. Because this ER stress-initiated mechanism is operative in both epithelial cells and macrophages, it appears to be a universal, highly conserved response, broadly protective against diverse external perturbations that lead to increased ER stress. Finally, these studies further illuminate how ER stress and S1P orchestrate critical stress-specific signals that regulate production of one protective response by stimulating production of the key innate immune element, CAMP.
Collapse
|
15
|
Spampinato SF, Obermeier B, Cotleur A, Love A, Takeshita Y, Sano Y, Kanda T, Ransohoff RM. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli? PLoS One 2015. [PMID: 26197437 PMCID: PMC4511229 DOI: 10.1371/journal.pone.0133392] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability of the Blood Brain Barrier (BBB) to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS) activity and regulating leukocytes’ access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS): fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF) that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.
Collapse
Affiliation(s)
- Simona F. Spampinato
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Birgit Obermeier
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Anne Cotleur
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Anna Love
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yukio Takeshita
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Li C, Li JN, Kays J, Guerrero M, Nicol GD. Sphingosine 1-phosphate enhances the excitability of rat sensory neurons through activation of sphingosine 1-phosphate receptors 1 and/or 3. J Neuroinflammation 2015; 12:70. [PMID: 25880547 PMCID: PMC4397880 DOI: 10.1186/s12974-015-0286-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/24/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts through a family of five G-protein-coupled receptors (S1PR1-5) and plays a key role in regulating the inflammatory response. Our previous studies demonstrated that rat sensory neurons express the mRNAs for all five S1PRs and that S1P increases neuronal excitability primarily, but not exclusively, through S1PR1. This raises the question as to which other S1PRs mediate the enhanced excitability. METHODS Isolated sensory neurons were treated with either short-interfering RNAs (siRNAs) or a variety of pharmacological agents targeted to S1PR1/R2/R3 to determine the role(s) of these receptors in regulating neuronal excitability. The excitability of isolated sensory neurons was assessed by using whole-cell patch-clamp recording to measure the capacity of these cells to fire action potentials (APs). RESULTS After siRNA treatment, exposure to S1P failed to augment the excitability. Pooled siRNA targeted to S1PR1 and R3 also blocked the enhanced excitability produced by S1P. Consistent with the siRNA results, pretreatment with W146 and CAY10444, selective antagonists for S1PR1 and S1PR3, respectively, prevented the S1P-induced increase in neuronal excitability. Similarly, S1P failed to augment excitability after pretreatment with either VPC 23019, which is a S1PR1 and R3 antagonist, or VPC 44116, the phosphonate analog of VPC 23019. Acute exposure (10 to 15 min) to either of the well-established functional antagonists, FTY720 or CYM-5442, produced a significant increase in the excitability. Moreover, after a 1-h pretreatment with FTY720 (an agonist for S1PR1/R3/R4/R5), neither SEW2871 (S1PR1 selective agonist) nor S1P augmented the excitability. However, after pretreatment with CYM-5442 (selective for S1PR1), SEW2871 was ineffective, but S1P increased the excitability of some, but not all, sensory neurons. CONCLUSIONS These results demonstrate that the enhanced excitability produced by S1P is mediated by activation of S1PR1 and/or S1PR3.
Collapse
Affiliation(s)
- Chao Li
- Medical Neuroscience Program, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| | - Jun-nan Li
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA. .,Department of Pharmacology, Harbin Medical University, Harbin, Peoples' Republic of China.
| | - Joanne Kays
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| | - Miguel Guerrero
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Grant D Nicol
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| |
Collapse
|