1
|
Recinella L, Libero ML, Veschi S, Piro A, Marconi GD, Diomede F, Chiavaroli A, Orlando G, Ferrante C, Florio R, Lamolinara A, Cai R, Sha W, Schally AV, Salvatori R, Brunetti L, Leone S. Effects of GHRH Deficiency and GHRH Antagonism on Emotional Disorders in Mice. Cells 2023; 12:2615. [PMID: 37998350 PMCID: PMC10670114 DOI: 10.3390/cells12222615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Growth hormone (GH)-releasing hormone (GHRH) has been suggested to play a crucial role in brain function. We aimed to further investigate the effects of a novel GHRH antagonist of the Miami (MIA) series, MIA-602, on emotional disorders and explore the relationships between the endocrine system and mood disorders. In this context, the effects induced by MIA-602 were also analyzed in comparison to vehicle-treated mice with GH deficiency due to generalized ablation of the GHRH gene (GHRH knock out (GHRHKO)). We show that the chronic subcutaneous administration of MIA-602 to wild type (+/+) mice, as well as generalized ablation of the GHRH gene, is associated with anxiolytic and antidepressant behavior. Moreover, immunohistochemical and Western blot analyses suggested an evident activation of Nrf2, HO1, and NQO1 in the prefrontal cortex of both +/+ mice treated with MIA-602 (+/+ MIA-602) and homozygous GHRHKO (-/- control) animals. Finally, we also found significantly decreased COX-2, iNOS, NFkB, and TNF-α gene expressions, as well as increased P-AKT and AKT levels in +/+ MIA-602 and -/- control animals compared to +/+ mice treated with vehicle (+/+ control). We hypothesize that the generalized ablation of the GHRH gene leads to a dysregulation of neural pathways, which is mimicked by GHRH antagonist treatment.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Maria Loreta Libero
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
| | - Serena Veschi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Anna Piro
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (G.D.M.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (G.D.M.); (F.D.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Rosalba Florio
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Alessia Lamolinara
- Department of Neuroscience Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy;
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Andrew V. Schally
- Veterans Affairs Medical Center, Miami, FL 33125, USA; (R.C.); (W.S.); (A.V.S.)
- Division of Medical/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (S.V.); (A.P.); (A.C.); (G.O.); (C.F.); (R.F.); (S.L.)
| |
Collapse
|
2
|
Lazarov NE, Atanasova DY. Neurochemical Anatomy of the Mammalian Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:63-103. [PMID: 37946078 DOI: 10.1007/978-3-031-44757-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Carotid body (CB) glomus cells in most mammals, including humans, contain a broad diversity of classical neurotransmitters, neuropeptides and gaseous signaling molecules as well as their cognate receptors. Among them, acetylcholine, adenosine triphosphate and dopamine have been proposed to be the main excitatory transmitters in the mammalian CB, although subsequently dopamine has been considered an inhibitory neuromodulator in almost all mammalian species except the rabbit. In addition, co-existence of biogenic amines and neuropeptides has been reported in the glomus cells, thus suggesting that they store and release more than one transmitter in response to natural stimuli. Furthermore, certain metabolic and transmitter-degrading enzymes are involved in the chemotransduction and chemotransmission in various mammals. However, the presence of the corresponding biosynthetic enzyme for some transmitter candidates has not been confirmed, and neuroactive substances like serotonin, gamma-aminobutyric acid and adenosine, neuropeptides including opioids, substance P and endothelin, and gaseous molecules such as nitric oxide have been shown to modulate the chemosensory process through direct actions on glomus cells and/or by producing tonic effects on CB blood vessels. It is likely that the fine balance between excitatory and inhibitory transmitters and their complex interactions might play a more important than suggested role in CB plasticity.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
3
|
Recinella L, Chiavaroli A, Orlando G, Ferrante C, Veschi S, Cama A, Marconi GD, Diomede F, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Brunetti L, Leone S. Effects of growth hormone-releasing hormone receptor antagonist MIA-602 in mice with emotional disorders: a potential treatment for PTSD. Mol Psychiatry 2021; 26:7465-7474. [PMID: 34331008 DOI: 10.1038/s41380-021-01228-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Anxiety and depression have been suggested to increase the risk for post-traumatic stress disorders (PTSD). A link between all these mental illnesses, inflammation and oxidative stress is also well established. Recent behavior studies by our group clearly demonstrate a powerful anxiolytic and antidepressant-like effects of a novel growth hormone releasing hormone (GHRH) antagonist of MIAMI class, MIA-690, probably related to modulatory effects on the inflammatory and oxidative status. In the present work we investigated the potential beneficial effects of MIA-602, another recently developed GHRH antagonist, in mood disorders, as anxiety and depression, and the possible brain pathways involved in its protective activity, in adult mice. MIA-602 exhibited antinflammatory and antioxidant effects in ex vivo and in vivo experimental models, inducing anxiolytic and antidepressant-like behavior in mice subcutaneously treated for 4 weeks. The beneficial effect of MIA-602 on inflammatory and oxidative status and synaptogenesis resulting in anxiolytic and antidepressant-like effects could be related by increases of nuclear factor erythroid 2-related factor 2 (Nrf2) and of brain-derived neurotrophic factor (BDNF) signaling pathways in the hippocampus and prefrontal cortex. These results strongly suggest that GHRH analogs should be tried clinically for the treatment of mood disorders including PTSD.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami, FL, USA.,Division of Endocrinology, Diabetes and Metabolism, and Division of Medical/Oncology, Department of Medicine, and Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
4
|
Altinkaya SO. Galanin and glypican-4 levels depending on metabolic and cardiovascular risk factors in patients with polycystic ovary syndrome. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:479-487. [PMID: 33740336 PMCID: PMC10522184 DOI: 10.20945/2359-3997000000340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Galanin is a neuropeptide which has effects not only on metabolic syndrome but also on reproduction. Glypican-4 is an adipokine associated with insulin sensitivity by interacting directly with the insulin receptor. This study evaluated serum concentrations of galanin and glypican-4 in relation with the hormonal profile as well as metabolic and cardiovascular risk factors in patients with and without polycystic ovary syndrome (PCOS). METHODS A total of 44 women with PCOS and 44 age-matched controls were eligible. Hirsutism scores, hormonal profile, metabolic and cardiovascular risk factors as well as galanin and glypican-4 levels were evaluated in each subject. RESULTS Women with PCOS exhibited lower levels of galanin (20.2 pg/mL versus 26.4 pg/mL, p = 0.002) and higher concentrations of glypican-4 (3.1 ng/mL versus 2.6 ng/mL, p < 0.001) than controls. Both adipokines were correlated positively with body mass index (BMI), insulin, triglyceride and Homeostasis Model Assessment (HOMA) index; glypican-4 also showed positive correlations with fasting blood glucose, free testosterone, modified Ferriman-Gallwey scores (p < 0.05). Multiple Linear Regression analyses showed that PCOS and BMI were the best predictors affecting galanin levels with a decreasing and increasing effect respectively; however BMI was the best predictor affecting glypican-4 levels with an increasing effect (p < 0.001). CONCLUSION Galanin levels were lower and glypican-4 levels were higher in women with PCOS than controls. Further studies are needed to determine whether these adipokines could be used as additional markers for insulin sensitivity and lipid profile and whether they might play a role in the pathogenesis of PCOS, in which metabolic cardiovascular risks are increased.
Collapse
|
5
|
Ascorbic Acid: A New Player of Epigenetic Regulation in LPS- gingivalis Treated Human Periodontal Ligament Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6679708. [PMID: 33542783 PMCID: PMC7840256 DOI: 10.1155/2021/6679708] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Periodontitis is usually sustained from microorganism of oral cavity, like Porphyromonas gingivalis (P. gingivalis). Periodontal disease is an infectious disease that afflicts a large number of people. Researches are investigating on the mesenchymal stem cells (MSCs) response to inflammatory events in combination with antioxidant substances. In particular, ascorbic acid (AA) increased cell proliferation, upregulated the cells pluripotency marker expression, provide a protection from inflammation, and induced the regeneration of periodontal ligament tissue. The purpose of the present research was to investigate the effects of AA in primary culture of human periodontal ligament stem cells (hPDLSCs) exposed to P. gingivalis lipopolysaccharide (LPS-G). The effect of AA on hPDLSCs exposed to LPS-G was determined through the cell proliferation assay. The molecules involved in the inflammatory pathway and epigenetic regulation have been identified using immunofluorescence and Western blot analyses. miR-210 level was quantified by qRT-PCR, and the ROS generation was finally studied. Cells co-treated with LPS-G and AA showed a restoration in terms of cell proliferation. The expression of NFκB, MyD88, and p300 was upregulated in LPS-G exposed cells, while the expression was attenuated in the co-treatment with AA. DNMT1 expression is attenuated in the cells exposed to the inflammatory stimulus. The level of miR-210 was reduced in stimulated cells, while the expression was evident in the hPDLSCs co-treated with LPS-G and AA. In conclusion, the AA could enhance a protective effect in in vitro periodontitis model, downregulating the inflammatory pathway and ROS generation and modulating the miR-210 level.
Collapse
|
6
|
Liu A, Hu S, Wu Q, Ares I, Martínez M, Martínez-Larrañaga MR, Anadón A, Wang X, Martínez MA. Epigenetic upregulation of galanin-like peptide mediates deoxynivalenol induced-growth inhibition in pituitary cells. Toxicol Appl Pharmacol 2020; 403:115166. [PMID: 32738333 DOI: 10.1016/j.taap.2020.115166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
Deoxynivalenol (DON) is an unavoidable contaminant in human food, animal feeds, and agricultural products. Growth retardation in children caused by extensive DON pollution has become a global problem that cannot be ignored. Previous studies have shown that DON causes stunting in children through intestinal dysfunction, insulin-like growth factor-1 (IGF-1) axis disorder and peptide YY (PYY). Galanin-like peptide (GALP) is an important growth regulator, but its role in DON-induced growth retardation is unclear. In this study, we report the important role of GALP during DON-induced growth inhibition in the rat pituitary tumour cell line GH3. DON was found to increase the expression of GALP through hypomethylationin the promoter region of the GALP gene and upregulate the expression of proinflammatory factors, while downregulate the expression of growth hormone (GH). Furthermore, GALP overexpression promoted proinflammatory cytokines, including TNF-α, IL-1β, IL-11 and IL-6, and further reduced cell viability and cell proliferation, while the inhibitory effect of GALP was the opposite. The expression of GALP and insulin like growth factor binding protein acid labile subunit (IGFALS) showed the opposite trend, which was the potential reason for the regulation of cell proliferation by GALP. In addition, GALP has anti-apoptotic effects, which could not eliminate the inflammatory damage of cells, thus aggravating cell growth inhibition. The present findings provide new mechanistic insights into the toxicity of DON-induced growth retardation and suggest a therapeutic potential of GALP in DON-related diseases.
Collapse
Affiliation(s)
- Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Siyi Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
7
|
Vasoactive Intestinal Polypeptide in the Carotid Body-A History of Forty Years of Research. A Mini Review. Int J Mol Sci 2020; 21:ijms21134692. [PMID: 32630153 PMCID: PMC7370131 DOI: 10.3390/ijms21134692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Vasoactive intestinal polypeptide (VIP) consists of 28 amino acid residues and is widespread in many internal organs and systems. Its presence has also been found in the nervous structures supplying the carotid body not only in mammals but also in birds and amphibians. The number and distribution of VIP in the carotid body clearly depends on the animal species studied; however, among all the species, this neuropeptide is present in nerve fibers around blood vessels and between glomus cell clusters. It is also known that the number of nerves containing VIP located in the carotid body may change under various pathological and physiological factors. The knowledge concerning the functioning of VIP in the carotid body is relatively limited. It is known that VIP may impact the glomus type I cells, causing changes in their spontaneous discharge, but the main impact of VIP on the carotid body is probably connected with the vasodilatory effects of this peptide and its influence on blood flow and oxygen delivery. This review is a concise summary of forty years of research concerning the distribution of VIP in the carotid body.
Collapse
|
8
|
Marconi GD, Diomede F, Pizzicannella J, Fonticoli L, Merciaro I, Pierdomenico SD, Mazzon E, Piattelli A, Trubiani O. Enhanced VEGF/VEGF-R and RUNX2 Expression in Human Periodontal Ligament Stem Cells Cultured on Sandblasted/Etched Titanium Disk. Front Cell Dev Biol 2020; 8:315. [PMID: 32478069 PMCID: PMC7240029 DOI: 10.3389/fcell.2020.00315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bone formation, in skeletal development or in osseointegration processes, is the result of interaction between angiogenesis and osteogenesis. To establish osseointegration, cells must attach to the implant in a direct way without any deposition of soft tissue. Structural design and surface topography of dental implants enhance the cell attachment and can affect the biological response. The aim of the study was to evaluate the cytocompatibility, osteogenic and angiogenic markers involved in bone differentiation of human periodontal ligament stem cells (hPDLSCs) on different titanium disks surfaces. The hPDLSCs were cultured on pure titanium surfaces modified with two different procedures, sandblasted (Control—CTRL) and sandblasted/etched (Test—TEST) as experimental titanium surfaces. After 1 and 8 weeks of culture VEGF, VEGF-R, and RUNX2 expression was evaluated under confocal laser scanning microscopy. To confirm the obtained data, RT-PCR and WB analyses were performed in order to evaluate the best implant surface performance. TEST surfaces compared to CTRL titanium surfaces enhanced cell adhesion and increased VEGF and RUNX2 expression. Moreover, titanium TEST surfaces showed a different topographic morphology that promoted cell adhesion, proliferation, and osteogenic/angiogenic commitment. To conclude, TEST surfaces performed more efficiently than CTRL surfaces; furthermore, TEST surface results showed them to be more biocompatible, better tolerated, and appropriate for allowing hPDLSC growth and proliferation. This fact could also lead to more rapid bone–titanium integration.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Luigia Fonticoli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sante D Pierdomenico
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
9
|
Recinella L, Chiavaroli A, Orlando G, Ferrante C, Marconi GD, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Brunetti L, Leone S. Antinflammatory, antioxidant, and behavioral effects induced by administration of growth hormone-releasing hormone analogs in mice. Sci Rep 2020; 10:732. [PMID: 31959947 PMCID: PMC6971229 DOI: 10.1038/s41598-019-57292-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Growth hormone-releasing hormone (GHRH) antagonist MIA-690 and GHRH agonist MR-409, previously synthesized and developed by us have demonstrated potent antitumor effects. However, little is known about the effects of these analogs on brain functions. We investigated the potential antinflammatory and antioxidant effects of GHRH antagonist MIA-690 and GHRH agonist MR-409, on isolated mouse prefrontal cortex specimens treated with lipopolysaccharide (LPS). Additionally, we studied their effects on emotional behavior after chronic in vivo treatment. Ex vivo, MIA-690 and MR-409 inhibited LPS-induced inflammatory and pro-oxidative markers. In vivo, both MIA-690 and MR-409 induced anxiolytic and antidepressant-like effects, increased norepinephrine and serotonin levels and decreased nuclear factor-kB, tumor necrosis factor-α and interleukin-6 gene expression in prefrontal cortex. Increased nuclear factor erythroid 2–related factor 2 expression was also found in mice treated with MIA-690 and MR-409. MIA-690 showed higher efficacy in inhibiting all tested inflammatory and oxidative markers. In addition, MR-409 induced a down regulation of the gene and protein expression of pituitary-type GHRH-receptor in prefrontal cortex of mice after 4 weeks of treatment at 5 µg/day. In conclusion, our results demonstrate anxiolytic and antidepressant-like effects of GHRH analogs that could involve modulatory effects on monoaminergic signaling, inflammatory and oxidative status.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | | | | | | | | | - Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, 10126, Italy
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin and Città Della Salute e Della Scienza Hospital, Turin, 10126, Italy
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, FL, 33125, USA.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Division of Medical/Oncology, Department of Pathology, Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL, 33125, USA.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Division of Medical/Oncology, Department of Pathology, Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami, FL, 33125, USA.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Division of Medical/Oncology, Department of Pathology, Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| |
Collapse
|
10
|
A Novel Role of Ascorbic Acid in Anti-Inflammatory Pathway and ROS Generation in HEMA Treated Dental Pulp Stem Cells. MATERIALS 2019; 13:ma13010130. [PMID: 31892218 PMCID: PMC6981406 DOI: 10.3390/ma13010130] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Resin (co)monomers issued from restorative dental materials are able to distribute in the dental pulp or the gingiva, to get to the saliva and to the flowing blood. Many authors have recently shown that methacrylate-based resins, in particular 2-hydroxyethylmethacrylate (HEMA), are responsible of inflammatory and autophagic processes in human dental pulp stem cells (hDPSCs) while ascorbic acid (AS), an antioxidant molecule, can assume a protective role in cell homeostasis. The purpose of the current work was to study if 50 µg/mL AS can affect the inflammatory status induced by 2 mM HEMA in hDPSCs, a tissue–specific cell population. Cell proliferation, cytokine release, morphological arrangement and reactive oxygen species (ROS) formation were determined respectively by MTT, ELISA, morphological analysis and dichlorofluorescein assay. The hDPSCs exposed to HEMA let to an increment of ROS formation and in the expression of high levels of inflammatory mediators such as nuclear factor-κB (NFkB), inflammatory cytokines such as interleukin IL6, IL8, interferon (IFN)ɣ and monocyte chemoattractant protein (MCP)1. Moreover, HEMA induced the up-regulation of pospho-extracellular signal–regulated kinases (pERK)/ERK signaling pathway associated to the nuclear translocation. AS treatment significantly down-regulated the levels of pro-inflammatory mediators. Then, the natural product AS reduced the detrimental result promoted by methacrylates in clinical dentistry, in fact restore cell proliferation, reduce the pro-inflammatory cytokine, downregulate ROS production and of NFkB/pERK/ERK signaling path. In synthesis, AS, could improve the quality of dental care and play a strategic role as innovative endodontic compound easy to use and with reasonable cost.
Collapse
|
11
|
Porzionato A, Stocco E, Guidolin D, Agnati L, Macchi V, De Caro R. Receptor-Receptor Interactions of G Protein-Coupled Receptors in the Carotid Body: A Working Hypothesis. Front Physiol 2018; 9:697. [PMID: 29930516 PMCID: PMC6000251 DOI: 10.3389/fphys.2018.00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In the carotid body (CB), a wide series of neurotransmitters and neuromodulators have been identified. They are mainly produced and released by type I cells and act on many different ionotropic and metabotropic receptors located in afferent nerve fibers, type I and II cells. Most metabotropic receptors are G protein-coupled receptors (GPCRs). In other transfected or native cells, GPCRs have been demonstrated to establish physical receptor–receptor interactions (RRIs) with formation of homo/hetero-complexes (dimers or receptor mosaics) in a dynamic monomer/oligomer equilibrium. RRIs modulate ligand binding, signaling, and internalization of GPCR protomers and they are considered of relevance for physiology, pharmacology, and pathology of the nervous system. We hypothesize that RRI may also occur in the different structural elements of the CB (type I cells, type II cells, and afferent fibers), with potential implications in chemoreception, neuromodulation, and tissue plasticity. This ‘working hypothesis’ is supported by literature data reporting the contemporary expression, in type I cells, type II cells, or afferent terminals, of GPCRs which are able to physically interact with each other to form homo/hetero-complexes. Functional data about cross-talks in the CB between different neurotransmitters/neuromodulators also support the hypothesis. On the basis of the above findings, the most significant homo/hetero-complexes which could be postulated in the CB include receptors for dopamine, adenosine, ATP, opioids, histamine, serotonin, endothelin, galanin, GABA, cannabinoids, angiotensin, neurotensin, and melatonin. From a methodological point of view, future studies should demonstrate the colocalization in close proximity (less than 10 nm) of the above receptors, through biophysical (i.e., bioluminescence/fluorescence resonance energy transfer, protein-fragment complementation assay, total internal reflection fluorescence microscopy, fluorescence correlation spectroscopy and photoactivated localization microscopy, X-ray crystallography) or biochemical (co-immunoprecipitation, in situ proximity ligation assay) methods. Moreover, functional approaches will be able to show if ligand binding to one receptor produces changes in the biochemical characteristics (ligand recognition, decoding, and trafficking processes) of the other(s). Plasticity aspects would be also of interest, as development and environmental stimuli (chronic continuous or intermittent hypoxia) produce changes in the expression of certain receptors which could potentially invest the dynamic monomer/oligomer equilibrium of homo/hetero-complexes and the correlated functional implications.
Collapse
Affiliation(s)
| | - Elena Stocco
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Luigi Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Macchi
- Department of Neuroscience, University of Padua, Padua, Italy
| | | |
Collapse
|
12
|
Fang P, Shi M, Zhu Y, Bo P, Zhang Z. Type 2 diabetes mellitus as a disorder of galanin resistance. Exp Gerontol 2016; 73:72-77. [PMID: 26585047 DOI: 10.1016/j.exger.2015.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/16/2022]
Abstract
The increasing prevalence of type 2 diabetes mellitus with its high morbidity and mortality becomes an important health problem. The multifactorial etiology of type 2 diabetes mellitus is relative to many gene and molecule alterations, and increased insulin resistance. Besides these, however, there are still other predisposing and risk factors accounting for type 2 diabetes mellitus not to be identified and recognized. Emerging evidence indicated that defects in galanin function played a crucial role in development of type 2 diabetes mellitus. Galanin homeostasis is tightly relative to insulin resistance and is regulated by blood glucose. Hyperglycemia, hyperinsulinism, enhanced plasma galanin levels and decreased galanin receptor activities are some of the characters of type 2 diabetes mellitus. The discrepancy between high insulin level and low glucose handling is named as insulin resistance. Similarly, the discrepancy between high galanin level and low glucose handling may be denominated as galanin resistance too. In this review, the characteristic milestones of type 2 diabetes mellitus were condensed as two analogical conceptual models, obesity-hyper-insulin-insulin resistance-type 2 diabetes mellitus and obesity-hyper-galanin-galanin resistance-type 2 diabetes mellitus. Both galanin resistance and insulin resistance are correlative with each other. Conceptualizing the etiology of type 2 diabetes mellitus as a disorder of galanin resistance may inspire a new concept to deepen our knowledge about pathogenesis of type 2 diabetes mellitus, eventually leading to novel preventive and therapeutic interventions for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|