1
|
Yaacoub S, Boudaka A, AlKhatib A, Pintus G, Sahebkar A, Kobeissy F, Eid AH. The pharmaco-epigenetics of hypertension: a focus on microRNA. Mol Cell Biochem 2024; 479:3255-3271. [PMID: 38424404 PMCID: PMC11511726 DOI: 10.1007/s11010-024-04947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Hypertension is a major harbinger of cardiovascular morbidity and mortality. It predisposes to higher rates of myocardial infarction, chronic kidney failure, stroke, and heart failure than most other risk factors. By 2025, the prevalence of hypertension is projected to reach 1.5 billion people. The pathophysiology of this disease is multifaceted, as it involves nitric oxide and endothelin dysregulation, reactive oxygen species, vascular smooth muscle proliferation, and vessel wall calcification, among others. With the advent of new biomolecular techniques, various studies have elucidated a gaping hole in the etiology and mechanisms of hypertension. Indeed, epigenetics, DNA methylation, histone modification, and microRNA-mediated translational silencing appear to play crucial roles in altering the molecular phenotype into a hypertensive profile. Here, we critically review the experimentally determined associations between microRNA (miRNA) molecules and hypertension pharmacotherapy. Particular attention is given to the epigenetic mechanisms underlying the physiological responses to antihypertensive drugs like candesartan, and other relevant drugs like clopidogrel, aspirin, and statins among others. Furthermore, how miRNA affects the pharmaco-epigenetics of hypertension is especially highlighted.
Collapse
Affiliation(s)
- Serge Yaacoub
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, Lebanese International University, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Dong Y, Xu W, Liu S, Xu Z, Qiao S, Cai Y. Serum albumin and liver dysfunction mediate the associations between organophosphorus pesticide exposure and hypertension among US adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174748. [PMID: 39019272 DOI: 10.1016/j.scitotenv.2024.174748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Human health is commonly threatened by organophosphorus pesticides (OPPs) due to their widespread use and biological characteristics. However, the combined effect of mixtures of OPPs metabolites on the risk of hypertension and potential mechanism remain limited. OBJECTIVES To comprehensively investigate the effects between OPPs exposure on hypertension risk and explore and underlying mechanism among US general population. METHODS This cross-sectional study collected US adults who had available data on urine OPPs metabolites (dialkyl phosphate compounds, DAPs) from the National Health and Nutrition Examination Survey (NHANES) to assess the relationships of DAPs with hypertension risk. Survey-weighted logistic regression, restricted cubic spline (RCS), and mixed exposure analysis models [weighted quantile sum regression (WQS) and Bayesian kernel machine regression (BKMR)] were used to analyze individual, dose-response and combined associations between urinary DAPs metabolites and hypertension risk, respectively. Mediation analysis determined the potential intermediary role of serum albumin and liver function in the above associations. RESULTS Compared with the reference group, participants with the highest tertile levels of DEP, DMTP, DETP, and DMDTP experienced increased risk of hypertension by 1.21-fold (95%CI: 1.02-1.36), 1.20-fold (95%CI: 1.02-1.42), 1.19-fold (95%CI: 1.01-1.40), and 1.17-fold (95%CI: 1.03-1.43), respectively. RCS curve also showed positive exposure-response associations of individual DAPs with hypertension risk. WQS and BKMR analysis further confirmed DAP mixtures were significantly associated with increased risk of hypertension, with DEP identified as a major contributor to the combined effect. Mediation analysis indicated that serum albumin and AST/ALT ratios played crucial mediating roles in the relationships between individual and mixed urinary DAPs and the prevalence of hypertension. CONCLUSION Our findings provided more comprehensive and novel perspectives into the individual and combined effects of urinary OPPs matabolites on the increased risk of hypertension and the possible driving mechanism, which would be of great significance for environmental control and early prevention of hypertension.
Collapse
Affiliation(s)
- Yinqiao Dong
- Department of Public Health, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200335, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shiping Liu
- National Children's Medical Center, Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhongqing Xu
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200335, China
| | - Shan Qiao
- Department of Health Promotion Education and Behaviors, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| | - Yong Cai
- Department of Public Health, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200335, China.
| |
Collapse
|
3
|
Jain A, Jung HJ, Aubee J, O’Neil JN, Muhammad LA, Khan S, Thompson K, Fluitt MB, Lee DL, Klinge CM, Khundmiri SJ. Role of NHERF1 in MicroRNA Landscape Changes in Aging Mouse Kidneys. Biomolecules 2024; 14:1048. [PMID: 39334814 PMCID: PMC11430241 DOI: 10.3390/biom14091048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of cellular function and fate via post-transcriptional regulation of gene expression. Although several miRNAs are associated with physiological processes and kidney diseases, not much is known about changes in miRNAs in aging kidneys. We previously demonstrated that sodium hydrogen exchanger 1 (NHERF1) expression regulates cellular responses to cisplatin, age-dependent salt-sensitive hypertension, and sodium-phosphate cotransporter trafficking. However, the mechanisms driving these regulatory effects of NHERF1 on cellular processes are unknown. Here, we hypothesize that dysregulation of miRNA-mediated gene regulatory networks that induce fibrosis and cytokines may depend on NHERF1 expression. To address this hypothesis, we compared miRNA expression in kidneys from both male and female old (12-18-month-old) and young (4-7-month-old) wild-type (WT) and NHERF1 knockout (NHERF1-/-) mice. Our results identified that miRNAs significantly decreased in NHERF1-/- mice included miR-669m, miR-590-3p, miR-153, miR-673-3p, and miR-127. Only miR-702 significantly decreased in aged WT mice, while miR-678 decreased in both WT and NHERF1-/- old versus young mice. miR-153 was shown to downregulate transcription factors NFATc2 and NFATc3 which regulate the transcription of several cytokines. Immunohistochemistry and western blotting revealed a significant increase in nuclear NFATc2 and NFATc3 in old NHERF1-/- mice compared to old WT mice. Our data further show that expression of the cytokines IL-1β, IL-6, IL-17A, MCP1, and TNF-α significantly increased in the old NHERF1-/- mice compared to the WT mice. We conclude that loss of NHERF1 expression induces cytokine expression in the kidney through interactive regulation between miR-153 and NFATc2/NFATc3 expression.
Collapse
Affiliation(s)
- Anish Jain
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Joseph Aubee
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (J.A.); (K.T.)
| | - Jahn N. O’Neil
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| | - Laila A. Muhammad
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| | - Shaza Khan
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| | - Karl Thompson
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (J.A.); (K.T.)
| | - Maurice B. Fluitt
- Department of Medicine, Howard University College of Medicine, Washington, DC 20059, USA;
| | - Dexter L. Lee
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Syed J. Khundmiri
- Department of Physiology, Howard University College of Medicine, Washington, DC 20059, USA; (A.J.); (J.N.O.); (L.A.M.); (S.K.); (D.L.L.)
| |
Collapse
|
4
|
Ramírez-Solano MA, Córdova EJ, Orozco L, Tejero ME. Plasma MicroRNAs Related to Metabolic Syndrome in Mexican Women. Lifestyle Genom 2023; 16:165-176. [PMID: 37708875 DOI: 10.1159/000534041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION The metabolic syndrome (MetS) is a cluster of abnormalities related to cardiovascular disease (CVD). Circulating miRNAs (c-miRNAs) are non-coding RNAs associated with different phenotypes, some of them integrating the MetS. The aim of the study was to compare the c-miRNAs profile in plasma between women with MetS and controls and explore their possible association with dysregulation of metabolic pathways. METHODS The study was conducted in two phases. At the screening phase, miRNA composition in fasting plasma was compared between 8 participants with MetS and 10 healthy controls, using microarray technology. The validation phase included the analysis by qRT-PCR of 10 selected c-miRNAs in an independent sample (n = 29). RESULTS We found 21 c-miRNAs differentially expressed between cases and controls. The concentration in plasma of the c-miRNAs hsa-miR-1260a, hsa-miR-4514, and hsa-miR-4687-5p were also correlated with risk factors for CVD. Differences of hsa-miR-1260a between cases and controls were validated using qRT-PCR (fold-change = 7.0; p = 0.003). CONCLUSION The signature of plasma c-miRNAs differed between women with MetS and controls. The identified miRNAs regulate pathways related to the MetS such as insulin resistance and adipokine activity. The role of c-miR-1260a in the MetS remains to be elucidated.
Collapse
Affiliation(s)
- Marisol Adelina Ramírez-Solano
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Maestría en Bioquímica Clínica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Emilio J Córdova
- Consorcio Oncogenómica y Enfermedades Óseas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Complejas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - María Elizabeth Tejero
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
5
|
Hao S, Zhao H, Hao DH, Ferreri NR. MicroRNA-195a-5p Regulates Blood Pressure by Inhibiting NKCC2A. Hypertension 2023; 80:426-439. [PMID: 36448465 PMCID: PMC9852070 DOI: 10.1161/hypertensionaha.122.19794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Previous studies showed that miR-195a-5p was among the most abundant microRNAs (miRNAs) expressed in the kidney. METHODS Lentivirus silencing of tumor necrosis factor-α (TNF) was performed in vivo and in vitro. Luciferase reporter assays confirmed that bumetanide-sensitive Na+-K+-2Cl- cotransporter isoform A (NKCC2A) mRNA is targeted and repressed by miR-195a-5p. Radiotelemetry was used to measure mean arterial pressure. RESULTS TNF upregulates mmu-miR-195a-5p, and -203 and downregulates mmu-miR-30c and -100 in the medullary thick ascending limb of male mice. miR-195a-5p was >3-fold higher in the renal outer medulla of mice given an intrarenal injection of murine recombinant TNF, whereas silencing TNF inhibited miR-195a-5p expression by ≈51%. Transient transfection of a miR-195a-5p mimic into medullary thick ascending limb cells suppressed NKCC2A mRNA by ≈83%, whereas transfection with Anti-miR-195a-5p increased NKCC2A mRNA. Silencing TNF in medullary thick ascending limb cells prevented increases in miR-195 induced by 400 mosmol/kg H2O medium, an effect reversed by transfection with a miR-195a-5p mimic. Expression of phosphorylated NKCC2 increased 1.5-fold in medullary thick ascending limb cells transfected with Anti-miR-195a-5p and a miR-195a-5p mimic prevented the increase, which was induced by silencing TNF in cells exposed to 400 mosmol/kg H2O medium after osmolality was increased by adding NaCl. Intrarenal injection of TNF suppressed NKCC2A mRNA, whereas injection of miR-195a-5p prevented the increase of NKCC2A mRNA abundance and phosphorylated NKCC2 expression when TNF was silenced. Intrarenal injection with miR-195a-5p markedly attenuated MAP after renal silencing of TNF in mice given 1% NaCl. CONCLUSIONS The study identifies miR-195a-5p as a salt-sensitive and TNF-inducible miRNA that attenuates NaCl-mediated increases in blood pressure by inhibiting NKCC2A.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla
| | - Hong Zhao
- Department of Pharmacology, New York Medical College, Valhalla
| | - David H Hao
- Department of Pharmacology, New York Medical College, Valhalla
| | | |
Collapse
|
6
|
Circulating cell-free micro-RNA as biomarkers: from myocardial infarction to hypertension. Clin Sci (Lond) 2022; 136:1341-1346. [PMID: 36129059 DOI: 10.1042/cs20220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
MicroRNA (miRNA) are small, single strand non-coding RNA molecules involved in the post-transcriptional regulation of target genes. Since their discovery in 1993, over 2000 miRNAs have been identified in humans and there is growing interest in both the diagnostic and therapeutic potential of miRNA. The identification of biomarkers for human disease progression remains an active area of research, and there is a growing number of miRNA and miRNA combinations that have been linked to the development and progression of numerous cardiovascular diseases, including hypertension. In 2010, Chen et al. reported in Clinical Science that cell-free circulating miRNA could serve as novel biomarkers for acute myocardial infarction [1]. In this commentary, we expand on this topic to discuss the potential of using miRNA as biomarkers for hypertension and hypertension-related end-organ damage.
Collapse
|
7
|
Glover F, Eisenberg ML, Belladelli F, Del Giudice F, Chen T, Mulloy E, Caudle WM. The association between organophosphate insecticides and blood pressure dysregulation: NHANES 2013-2014. Environ Health 2022; 21:74. [PMID: 35934697 PMCID: PMC9358881 DOI: 10.1186/s12940-022-00887-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/29/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Organophosphate (OP) insecticides represent one of the largest classes of sprayed insecticides in the U.S., and their use has been associated with various adverse health outcomes, including disorders of blood pressure regulation such as hypertension (HTN). METHODS In a study of 935 adults from the NHANES 2013-2014 cycle, we examined the relationship between systolic and diastolic blood pressure changes and urinary concentrations of three OP insecticides metabolites, including 3,5,6-trichloro-2-pyridinol (TCPy), oxypyrimidine, and para-nitrophenol. These metabolites correspond to the parent compounds chlorpyrifos, diazinon, and methyl parathion, respectively. Weighted, multivariable linear regression analysis while adjusting for potential confounders were used to model the relationship between OP metabolites and blood pressure. Weighted, multivariable logistic regression analysis was used to model the odds of HTN for quartile of metabolites. RESULTS We observed significant, inverse association between TCPy on systolic blood pressure (β-estimate = -0.16, p < 0.001) and diastolic blood pressure (β-estimate = -0.15, p < 0.001). Analysis with para-nitrophenol revealed a significant, positive association with systolic blood pressure (β-estimate = 0.03, p = 0.02), and an inverse association with diastolic blood pressure (β-estimate = -0.09, p < 0.001). For oxypyrimidine, we observed significant, positive associations between systolic blood pressure (β-estimate = 0.58, p = 0.03) and diastolic blood pressure (β-estimate = 0.31, p < 0.001). Furthermore, we observed significant interactions between TCPy and ethnicity on systolic blood pressure (β-estimate = 1.46, p = 0.0036). Significant interaction terms were observed between oxypyrimidine and ethnicity (β-estimate = -1.73, p < 0.001), as well as oxypyrimidine and BMI (β-estimate = 1.51 p < 0.001) on systolic blood pressure, and between oxypyrimidine and age (β-estimate = 1.96, p = 0.02), race (β-estimate = -3.81 p = 0.004), and BMI on diastolic blood pressure (β-estimate = 0.72, p = 0.02). A significant interaction was observed between para-nitrophenol and BMI for systolic blood pressure (β-estimate = 0.43, p = 0.01), and between para-nitrophenol and ethnicity on diastolic blood pressure (β-estimate = 2.19, p = 0.006). Lastly, we observed a significant association between the odds of HTN and TCPy quartiles (OR = 0.65, 95% CI [0.43,0.99]). CONCLUSION Our findings support previous studies suggesting a role for organophosphate insecticides in the etiology of blood pressure dysregulation and HTN. Future studies are warranted to corroborate these findings, evaluate dose-response relationships between organophosphate insecticides and blood pressure, determine clinical significance, and elucidate biological mechanisms underlying this association.
Collapse
Affiliation(s)
- Frank Glover
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Michael L. Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Federico Belladelli
- Department of Maternal-Infant and Urological Sciences, “Sapienza” Rome University, Policlinico Umberto I Hospital, Rome, Italy
| | - Francesco Del Giudice
- Department of Maternal-Infant and Urological Sciences, “Sapienza” Rome University, Policlinico Umberto I Hospital, Rome, Italy
| | - Tony Chen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Evan Mulloy
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - W. Michael Caudle
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
8
|
miR-199a-5p Relieves Obstructive Sleep Apnea Syndrome-Related Hypertension by Targeting HIF-1α. J Immunol Res 2022; 2022:7236647. [PMID: 35935584 PMCID: PMC9348946 DOI: 10.1155/2022/7236647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction. Obstructive sleep apnea syndrome (OSAS) is related to hypertension. Vascular remodeling is both the pathogenesis and the structural change basis of OSAS-related hypertension. Exploring miRNA functioning in OSAS-related hypertension may offer novel diagnostic and therapeutic targets for controlling hypertension-associated cardiovascular diseases. However, the role of miR-199a-5p in OSAS-related hypertension has not been demonstrated yet. Methods. In this study, we investigated the role of miR-199a-5p and HIF-1α in OSAS-related hypertension by performing in vitro cell experiments and in vivo animal experiments. Rat aortic smooth muscle cells (A7r5) were cultured under hypoxia as an in vitro model. To establish the animal model of OSAS-related hypertension, the rats were under exposure to chronic intermittent hypoxia (CIH) in a hypoxic instrument. The rats were randomly grouped into normal, CIH, CIH+NC, and CIH+miR-199a-5p. Results. By establishing an animal model, we found decreased miR-199a-5p expression and increased HIF-1α expression in OSAS with hypertension. The overexpressed miR-199a-5p could reduce systolic blood pressure and relieve oxidase stress and inflammation. miR-199a-5p treatment could overturn the upregulation of HIF-1α and TGF-β1 and downregulation of α-SMA. Overexpressed miR-199a-5p might attenuate vascular remodeling through HIF-1α downregulation. miR-199a-5p/HIF-1α may inhibit proliferation of vascular smooth muscle cells under hypoxia. Conclusion. miR-199a-5p may relieve OSAS-related hypertension by targeting HIF-1α and be a novel potential therapeutic target.
Collapse
|
9
|
Golonka RM, Cooper JK, Issa R, Devarasetty PP, Gokula V, Busken J, Zubcevic J, Hill J, Vijay-Kumar M, Menon B, Joe B. Impact of Nutritional Epigenetics in Essential Hypertension: Targeting microRNAs in the Gut-Liver Axis. Curr Hypertens Rep 2021; 23:28. [PMID: 33961141 PMCID: PMC8105193 DOI: 10.1007/s11906-021-01142-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To review the current knowledge on interactions between dietary factors and microRNAs (miRNAs) in essential hypertension (EH) pathogenesis. RECENT FINDINGS There exists an integration of maintenance signals generated by genetic, epigenetic, immune, and environmental (e.g., dietary) factors that work to sustain balance in the gut-liver axis. It is well established that an imbalance in this complex, intertwined system substantially increases the risk for EH. As such, pertinent research has been taken to decipher how each signal operates in isolation and together in EH progression. Recent literature indicates that both macro- and micronutrients interrupt regulatory miRNA expressions and thus, alter multiple cellular processes that contribute to EH and its comorbidities. We highlight how carbohydrates, lipids, proteins, salt, and potassium modify miRNA signatures during EH. The disruption in miRNA expression can negatively impact communication systems such as over activating the renin-angiotensin-aldosterone system, modulating the vascular smooth muscle cell phenotype, and promoting angiogenesis to favor EH. We also delineate the prognostic value of miRNAs in EH and discuss the pros and cons of surgical vs dietary prophylactic approaches in EH prevention. We propose that dietary-dependent perturbation of the miRNA profile is one mechanism within the gut-liver axis that dictates EH development.
Collapse
Affiliation(s)
- Rachel M Golonka
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | | | - Rochell Issa
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Veda Gokula
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Joshua Busken
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jasenka Zubcevic
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer Hill
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Matam Vijay-Kumar
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Bindu Menon
- Department of Medical Education, University of Toledo College of Medicine and Life Sciences, Room 3105B, CCE Bldg, 2920 Arlington Ave, Toledo, OH, 43614, USA.
| | - Bina Joe
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA.
| |
Collapse
|
10
|
MicroRNA-212-5p and its target PAFAH1B2 suppress vascular proliferation and contraction via the downregulation of RhoA. PLoS One 2021; 16:e0249146. [PMID: 33760887 PMCID: PMC7990166 DOI: 10.1371/journal.pone.0249146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Vascular remodeling and contraction contribute to the development of hypertension. We investigated the role of miR-212-5p and its downstream target in vascular smooth muscle cell (VSMC) proliferation, migration, and contraction. MicroRNA microarray and PCR analyses showed that miR-212-5p expression was increased with angiotensin II treatment in vivo and in vitro. Moreover, miR-212-5p mimic treatment attenuated and miR-212-5p inhibitor treatment increased VSMC proliferation and migration. Additionally, miR-212-5p mimic treatment suppressed VSMC contraction and related gene expression [Ras homolog gene family member A (RhoA) and Rho-associated protein kinase 2], while miR-212-5p inhibitor treatment exerted opposite effects. Bioinformatics analysis revealed that platelet-activating factor acetylhydrolase 1B2 (PAFAH1B2) is a target of miR-212-5p. miR-212-5p mimic treatment significantly reduced and miR-212-5p inhibitor treatment increased PAFAH1B2 expression. Furthermore, PAFAH1B2 expression was decreased in angiotensin II-treated aortic tissues and VSMCs. PAFAH1B2 was ubiquitously expressed in most adult rat tissues. In the vasculature, PAFAH1B2 was only distributed in the cytoplasm. PAFAH1B2 overexpression decreased A10 cell proliferation, while PAFAH1B2 knockdown increased A10 cell proliferation and cyclin D1 mRNA levels. PAFAH1B2 knockdown stimulated VSMC contraction and RhoA expression. These results suggest that miR-212-5p and PAFAH1B2 are novel negative regulators of VSMC proliferation, migration, and contraction in hypertension.
Collapse
|
11
|
Hu Y, Li Q, Zhang L, Zhong L, Gu M, He B, Qu Q, Lao Y, Gu K, Zheng B, Yang H. Serum miR-195-5p Exhibits Clinical Significance in the Diagnosis of Essential Hypertension with Type 2 Diabetes Mellitus by Targeting DRD1. Clinics (Sao Paulo) 2021; 76:e2502. [PMID: 34495077 PMCID: PMC8382152 DOI: 10.6061/clinics/2021/e2502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Diagnosis and management of essential hypertension (EH) or type 2 diabetes mellitus (T2DM) by combining comprehensive treatment and classificatory diagnosis have been continuously improved. However, understanding the pathogenesis of EH patients with concomitant T2DM and subsequent treatment remain the major challenges owing to the lack of non-invasive biomarkers and information regarding the underlying mechanisms. METHODS Herein, we collected 200 serum samples from EH and/or T2DM patients and healthy donors (N). Gene-expression profiling was conducted to identify candidate microRNAs with clinical significance. Then, a larger cohort of the aforementioned patients and 50 N were used to identify the correlation between the tumor suppressor miR-195-5p and EH and/or T2DM. The dual-luciferase reporter assay was used to explore the target genes of miR-195-5p. The suppressive effects of miR-195-5p on the 3'-UTR of the dopamine receptor D1 (DRD1) transcript in EH patients with concomitant T2DM were verified as well. RESULTS Compared with that in other groups, serum miR-195-5p was highly downregulated in EH patients with concomitant T2DM. miR-195-5p overexpression efficiently suppressed DRD1 expression by binding to the two 3'-UTRs. Additionally, two single nucleotide polymorphisms, including 231T-A and 233C-G, in the miR-195-5p binding sites of the DRD1 3'-UTR were further identified. Collectively, we identified the potential clinical significance of DRD1 regulation by miR-195-5p in EH patients with concomitant T2DM. CONCLUSIONS Our data suggested that miR-195-5p circulating in the peripheral blood served as a novel biomarker and therapeutic target for EH and T2DM, which could eventually help address major challenges during the diagnosis and treatment of EH and T2DM.
Collapse
Affiliation(s)
- Yueyan Hu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Qian Li
- Transfusion Medicine Research Department, Yunnan Kunming Blood Center, Kunming, 650500, China
| | - Leisheng Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Joint laboratory of Tianjin University and Health-Biotech, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin, 301700, China
| | - Lianmei Zhong
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Man Gu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bo He
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Qiu Qu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yaling Lao
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Kunli Gu
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bingrong Zheng
- School of Medicine, Yunnan University, Kunming, 650091, China
- Corresponding authors. E-mails: /
| | - Hongju Yang
- Division of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Corresponding authors. E-mails: /
| |
Collapse
|
12
|
Florio MC, Magenta A, Beji S, Lakatta EG, Capogrossi MC. Aging, MicroRNAs, and Heart Failure. Curr Probl Cardiol 2020; 45:100406. [PMID: 30704792 PMCID: PMC10544917 DOI: 10.1016/j.cpcardiol.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022]
Abstract
Aging is a major risk factor for heart failure, one of the leading causes of death in Western society. The mechanisms that underlie the different forms of heart failure have been elucidated only in part and the role of noncoding RNAs is still poorly characterized. Specifically, microRNAs (miRNAs), a class of small noncoding RNAs that can modulate gene expression at the posttranscriptional level in all cells, including myocardial and vascular cells, have been shown to play a role in heart failure with reduced ejection fraction. In contrast, miRNAs role in heart failure with preserved ejection fraction, the predominant form of heart failure in the elderly, is still unknown. In this review, we will focus on age-dependent miRNAs in heart failure and on some other conditions that are prevalent in the elderly and are frequently associated with heart failure with preserved ejection fraction.
Collapse
|
13
|
Peters LJF, Biessen EAL, Hohl M, Weber C, van der Vorst EPC, Santovito D. Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Front Physiol 2020; 11:793. [PMID: 32733281 PMCID: PMC7358539 DOI: 10.3389/fphys.2020.00793] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of non-coding RNA that play an important role in the regulation of gene expression and thereby in many physiological and pathological processes. Furthermore, miRNAs are released in the extracellular space, for example in vesicles, and are detectable in various biological fluids, such as serum, plasma, and urine. Over the last years, it has been shown that miRNAs are crucial in the development of several cardiovascular diseases (CVDs). This review discusses the (patho)physiological implications of miRNAs in CVD, ranging from cardiovascular risk factors (i.e., hypertension, diabetes, dyslipidemia), to atherosclerosis, myocardial infarction, and cardiac remodeling. Moreover, the intriguing possibility of their use as disease-specific diagnostic and prognostic biomarkers for human CVDs will be discussed in detail. Finally, as several approaches have been developed to alter miRNA expression and function (i.e., mimics, antagomirs, and target-site blockers), we will highlight the miRNAs with the most promising therapeutic potential that may represent suitable candidates for therapeutic intervention in future translational studies and ultimately in clinical trials. All in all, this review gives a comprehensive overview of the most relevant miRNAs in CVD and discusses their potential use as biomarkers and even therapeutic targets.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mathias Hohl
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg, Germany
| | - Christian Weber
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Donato Santovito
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
14
|
Prestes PR, Maier MC, Woods BA, Charchar FJ. A Guide to the Short, Long and Circular RNAs in Hypertension and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21103666. [PMID: 32455975 PMCID: PMC7279167 DOI: 10.3390/ijms21103666] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in adults in developed countries. CVD encompasses many diseased states, including hypertension, coronary artery disease and atherosclerosis. Studies in animal models and human studies have elucidated the contribution of many genetic factors, including non-coding RNAs. Non-coding RNAs are RNAs not translated into protein, involved in gene expression regulation post-transcriptionally and implicated in CVD. Of these, circular RNAs (circRNAs) and microRNAs are relevant. CircRNAs are created by the back-splicing of pre-messenger RNA and have been underexplored as contributors to CVD. These circRNAs may also act as biomarkers of human disease, as they can be extracted from whole blood, plasma, saliva and seminal fluid. CircRNAs have recently been implicated in various disease processes, including hypertension and other cardiovascular disease. This review article will explore the promising and emerging roles of circRNAs as potential biomarkers and therapeutic targets in CVD, in particular hypertension.
Collapse
|
15
|
Srinivasan S, Treacy R, Herrero T, Olsen R, Leonardo TR, Zhang X, DeHoff P, To C, Poling LG, Fernando A, Leon-Garcia S, Knepper K, Tran V, Meads M, Tasarz J, Vuppala A, Park S, Laurent CD, Bui T, Cheah PS, Tabitha Overcash R, Ramos GA, Roeder H, Ghiran I, Parast M, Breakefield XO, Lueth AJ, Rust SR, Dufford MT, Fox AC, Hickok DE, Burchard J, Boniface JJ, Laurent LC. Discovery and Verification of Extracellular miRNA Biomarkers for Non-invasive Prediction of Pre-eclampsia in Asymptomatic Women. Cell Rep Med 2020; 1:100013. [PMID: 32864636 PMCID: PMC7455024 DOI: 10.1016/j.xcrm.2020.100013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/01/2019] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Development of effective prevention and treatment strategies for pre-eclampsia is limited by the lack of accurate methods for identification of at-risk pregnancies. We performed small RNA sequencing (RNA-seq) of maternal serum extracellular RNAs (exRNAs) to discover and verify microRNAs (miRNAs) differentially expressed in patients who later developed pre-eclampsia. Sera collected from 73 pre-eclampsia cases and 139 controls between 17 and 28 weeks gestational age (GA), divided into separate discovery and verification cohorts, are analyzed by small RNA-seq. Discovery and verification of univariate and bivariate miRNA biomarkers reveal that bivariate biomarkers verify at a markedly higher rate than univariate biomarkers. The majority of verified biomarkers contain miR-155-5p, which has been reported to mediate the pre-eclampsia-associated repression of endothelial nitric oxide synthase (eNOS) by tumor necrosis factor alpha (TNF-α). Deconvolution analysis reveals that several verified miRNA biomarkers come from the placenta and are likely carried by placenta-specific extracellular vesicles.
Collapse
Affiliation(s)
- Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ryan Treacy
- Sera Prognostics, 2749 East Parleys Way, Salt Lake City, UT 84109, USA
| | - Tiffany Herrero
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, CA 94305, USA
| | - Richelle Olsen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- Franciscan Maternal-Fetal Medicine Associates at St. Joseph, Tacoma, WA 98405, USA
| | - Trevor R. Leonardo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xuan Zhang
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Cuong To
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Lara G. Poling
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Aileen Fernando
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Sandra Leon-Garcia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Katharine Knepper
- Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Vy Tran
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Morgan Meads
- Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jennifer Tasarz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Aishwarya Vuppala
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Soojin Park
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Clara D. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Tony Bui
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Pike See Cheah
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Rachael Tabitha Overcash
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Gladys A. Ramos
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Hilary Roeder
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- Kaiser Permanente San Diego, San Diego, CA 92120, USA
| | - Ionita Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Mana Parast
- Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Xandra O. Breakefield
- Neurology and Radiology Services and Program in Neuroscience, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Amir J. Lueth
- Sera Prognostics, 2749 East Parleys Way, Salt Lake City, UT 84109, USA
| | - Sharon R. Rust
- Sera Prognostics, 2749 East Parleys Way, Salt Lake City, UT 84109, USA
| | - Max T. Dufford
- Sera Prognostics, 2749 East Parleys Way, Salt Lake City, UT 84109, USA
| | - Angela C. Fox
- Sera Prognostics, 2749 East Parleys Way, Salt Lake City, UT 84109, USA
| | - Durlin E. Hickok
- Sera Prognostics, 2749 East Parleys Way, Salt Lake City, UT 84109, USA
| | - Julja Burchard
- Sera Prognostics, 2749 East Parleys Way, Salt Lake City, UT 84109, USA
| | - J. Jay Boniface
- Sera Prognostics, 2749 East Parleys Way, Salt Lake City, UT 84109, USA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Affiliation(s)
- Mingyu Liang
- From the Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
17
|
Duni A, Dounousi E, Pavlakou P, Eleftheriadis T, Liakopoulos V. Hypertension in Chronic Kidney Disease: Novel Insights. Curr Hypertens Rev 2019; 16:45-54. [PMID: 30987570 DOI: 10.2174/1573402115666190415153554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
Management of arterial hypertension in patients with chronic kidney disease (CKD) remains a major challenge due to its high prevalence and associations with cardiovascular disease (CVD) and CKD progression. Several clinical trials and meta-analyses have demonstrated that aggressive treatment of hypertension in patients with and without CKD lowers the risk of CVD and all-cause mortality, nevertheless the effects of blood pressure (BP) lowering in terms of renal protection or harm remain controversial. Both home and ambulatory BP estimation have shown that patients with CKD display abnormal BP patterns outside of the office and further investigation is required, so as to compare the association of ambulatory versus office BP measurements with hard outcomes and adjust treatment strategies accordingly. Although renin-angiotensin system blockade appears to be beneficial in patients with advanced CKD, especially in the setting of proteinuria, discontinuation of renin-angiotensin system inhibition should be considered in the setting of frequent episodes of acute kidney injury or hypotension while awaiting the results of ongoing trials. In light of the new evidence in favor of renal denervation in arterial hypertension, the indications and benefits of its application in individuals with CKD need to be clarified by future studies. Moreover, the clinical utility of the novel players in the pathophysiology of arterial hypertension and CKD, such as microRNAs and the gut microbiota, either as markers of disease or as therapeutic targets, remains a subject of intensive research.
Collapse
Affiliation(s)
- Anila Duni
- Department of Nephrology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Paraskevi Pavlakou
- Department of Nephrology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | | | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
Circular RNAs in Vascular Functions and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1087:287-297. [PMID: 30259375 DOI: 10.1007/978-981-13-1426-1_23] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular disease is one of the top five causes of death and affects a variety of other diseases, such as heart, nervous system, and metabolic disorders. Vascular dysfunction is a hallmark of ischemia, cancer, and inflammatory diseases and can accelerate the progression of diseases. Circular RNAs (circRNAs) are a new type of noncoding RNAs with covalent bond ring structure, which have been reported to be abnormally expressed in many human diseases. circRNAs regulate gene expression through the sponging of microRNAs (miRNAs) and can also be used as disease biomarkers. Here we will summarize the functions of circRNAs in vascular diseases, including vascular dysfunction, atherosclerosis, diabetes mellitus-related retinal vascular dysfunction, chronic thromboembolic pulmonary hypertension, carotid atherosclerotic disease, hepatic vascular invasion in hepatocellular carcinoma, aortic aneurysm, coronary artery disease, and type 2 diabetes mellitus.
Collapse
|
19
|
Halushka PV, Goodwin AJ, Halushka MK. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. ANNUAL REVIEW OF PATHOLOGY 2019; 14:211-238. [PMID: 30332561 PMCID: PMC6442682 DOI: 10.1146/annurev-pathmechdis-012418-012827] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases exist across all developed countries. Biomarkers that can predict or diagnose diseases early in their pathogeneses can reduce their morbidity and mortality in afflicted individuals. microRNAs are small regulatory RNAs that modulate translation and have been identified as potential fluid-based biomarkers across numerous maladies. We describe the current state of cardiovascular disease biomarkers across a range of diseases, including myocardial infarction, acute coronary syndrome, myocarditis, hypertension, heart failure, heart transplantation, aortic stenosis, diabetic cardiomyopathy, atrial fibrillation, and sepsis. We present the current understanding of microRNAs as possible biomarkers in these categories and where their best opportunities exist to enter clinical practice.
Collapse
Affiliation(s)
- Perry V Halushka
- Department of Pharmacology, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
- Department of Medicine, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
20
|
Affiliation(s)
- Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Pedro A. Jose
- Division of Renal Disease & Hypertension, Departments of Medicine and Pharmacology/Physiology.The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
21
|
Maheswari TNU, Venugopal A, Sureshbabu NM, Ramani P. Salivary micro RNA as a potential biomarker in oral potentially malignant disorders: A systematic review. Tzu Chi Med J 2018; 30:55-60. [PMID: 29875583 PMCID: PMC5968743 DOI: 10.4103/tcmj.tcmj_114_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/28/2017] [Accepted: 12/06/2017] [Indexed: 12/25/2022] Open
Abstract
Oral potentially malignant disorders (OPMD) are oral mucosal disorders which have a high potential to turn into malignancy. A recent report suggests that 16%-62% of epithelial dysplasia cases of OPMD undergo malignant transformation, showing the need for early detection of malignancy in these disorders. Micro RNA (miRNA) plays an important role in cellular growth, differentiation, apoptosis, and immune response, and hence, deregulation of miRNA is considered a signature of oral carcinogenesis. A search was done using MeSH terms in the PubMed, ScienceDirect databases, hand search, and finally, six studies were included in this systematic review. A total of 167 patients with oral cancer, 78 with OPMDs, 147 healthy controls, and 20 disease controls were analyzed for the expression of salivary miRNAs. Quality assessment based on the Quality Assessment of Diagnostic Accuracy Studies 2 tool was used to obtain a risk of bias chart using Revman 5.3 software and it was proved that the study done by Zahran et al. in 2015 had a low risk of bias. The results of this study revealed upregulated miRNA 184 with an area under the curve (AUC) of 0.86 and miRNA 21 with an AUC of 0.73 and downregulated miRNA 145 with an AUC of 0.68, which proved that these miRNAs are significant in detecting early malignancy in OPMD and should be further analyzed in various populations. This systematic review explored the potential of expression of salivary miRNA in OPMD for future studies. This could pave the way to utilize saliva as a surrogate marker in diagnosing early malignant changes in OPMD.
Collapse
Affiliation(s)
- T. N. Uma Maheswari
- Department of Oral Medicine and Radiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Archana Venugopal
- Department of Oral Medicine and Radiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Nivedhita Malli Sureshbabu
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Prathiba Ramani
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
NO Signaling in the Cardiovascular System and Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:211-245. [DOI: 10.1007/978-981-10-4304-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Klimczak D, Kuch M, Pilecki T, Żochowska D, Wirkowska A, Pączek L. Plasma microRNA-155-5p is increased among patients with chronic kidney disease and nocturnal hypertension. ACTA ACUST UNITED AC 2017; 11:831-841.e4. [PMID: 29146158 DOI: 10.1016/j.jash.2017.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs play multiple roles in the regulation of blood pressure (BP). Nevertheless, to date, no study has assessed the association between microRNA plasma expression and BP control in chronic kidney disease (CKD) patients. Given this background, we evaluated the plasma expression of miR-155-5p, a translational inhibitor of angiotensin receptor type I, in CKD patients, to determine the association between miR-155-5p level and BP control. In this single-center cross-sectional study, we analyzed the miR-155-5p concentration by quantitative reverse transcriptase polymerase chain reaction using the U6 snRNA as a reference gene and 24-hour ambulatory blood pressure monitoring in CKD patients (stage ≥2) in relation to a control group of healthy age-matched and gender-matched individuals, with normal BP proven by the ambulatory blood pressure monitoring. We enrolled a total of 105 patients with CKD (stages 2-5, including 33 kidney renal transplant recipients), aged 59 ± 14 years; 47% males and 26 healthy volunteers (aged 55 ± 13, 50% male). Within the study group, a total of 36 patients (40%) presented with an average 24-hour systolic BP (SBP) ≥130 mm Hg and 41 patients (45%) presented nocturnal hypertension (NHT; SBP ≥120 mm Hg or diastolic BP ≥ 70 mm Hg). miRNA-155-5p was increased in plasma of CKD patients with median expression relative to control subjects equal to 2.92 (1.34-5.58). Interestingly, the plasma miRNA-155-5p expression was significantly higher in patients with NHT: 4.04 (2.92-10.8) versus 2.01 (1.21-3.07), P = .001 and its expression maintained an independent association with the average nocturnal SBP (coefficient B = 4.368, P = .047) by a multivariate regression analysis adjusted for confounders. The miR-155-5p was increased among CKD patients and further increased among subjects presenting with NHT. Further studies are warranted to determine the role of this non-coding RNA as a potential novel biomarker and therapeutic target in the non-dipping CKD individuals, characterized by increased cardiovascular risk.
Collapse
Affiliation(s)
- Dominika Klimczak
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Heart Failure and Cardiac Rehabilitation, Second Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marek Kuch
- Department of Cardiology, Hypertension and Internal Medicine, Second Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Pilecki
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Żochowska
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Wirkowska
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
24
|
Currie G, Delles C. Use of Biomarkers in the Evaluation and Treatment of Hypertensive Patients. Curr Hypertens Rep 2017; 18:54. [PMID: 27221728 DOI: 10.1007/s11906-016-0661-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The current definition of hypertension is based on blood pressure values, and blood pressure also drives treatment decisions, is the most important treatment monitoring tool and helps estimating risk of hypertension-related organ damage. In an era of precision medicine, additional biomarkers are needed in the diagnosis and management of patients with hypertension. In this review, we outline the areas in which functional, imaging and circulating biomarkers could help in a more individualised definition of hypertension and associated risk. We will cover biomarkers for diagnosis; of pathophysiology and prediction of hypertension; response to treatment, organ damage; and to monitor treatment. A clear focus is on the vasculature, the heart and the kidneys, whereas we see a need to further develop biomarkers of cerebral function in order to diagnose cognition deficits and monitor changes in cognition in the future to support addressing the growing burden of hypertension-associated vascular dementia.
Collapse
Affiliation(s)
- Gemma Currie
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK.
| |
Collapse
|
25
|
Fabiani I, Pugliese NR, La Carrubba S, Conte L, Antonini-Canterin F, Colonna P, Benedetto F, Calogero E, Barletta V, Carerj S, Buralli S, Taddei S, Romano MF, Di Bello V. Incremental prognostic value of a complex left ventricular remodeling classification in asymptomatic for heart failure hypertensive patients. ACTA ACUST UNITED AC 2017; 11:412-419. [DOI: 10.1016/j.jash.2017.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/06/2017] [Accepted: 05/16/2017] [Indexed: 01/19/2023]
|
26
|
Luo HC, Luo QS, Wang CF, Lei M, Li BL, Wei YS. Association of miR-146a, miR-149, miR-196a2, miR-499 gene polymorphisms with ischemic stroke in a Chinese people. Oncotarget 2017; 8:81295-81304. [PMID: 29113388 PMCID: PMC5655283 DOI: 10.18632/oncotarget.18333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/21/2017] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate genetic polymorphisms of miR-146a, miR-149, miR-196a2, and miR-499 and genetic susceptibility of ischemic stroke in the population of Guangxi in China. A case–control study was used to investigate miRNAs genetic polymorphisms in 298 patients with ischemic stroke and 303 healthy controls. Single-base extension polymerase chain reaction genotyping principle was used to detect genetic polymorphisms of miRNAs,and the relationship of genotype in each group and blood lipid was compared and analyzed. The genetic polymorphism of miR-499A>G (rs3746444) was associated with ischemic stroke (P < 0.05), and the risk of ischemic stroke was high in patients with G allele (OR = 1.455; 95% CI = 0.531–2.381; P = 0.039) and AG (OR = 1.339; 95% CI = 1.126–1.967; P = 0.037) genotype. The levels of low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, homocysteine, and lipoprotein in the ischemic stroke group were higher than those in the control group (P < 0.05). The genetic polymorphism of miR-499A>G (rs3746444) was related to ischemic stroke, and G allele and AG genotype may increase the risk of ischemic stroke in the population of Guangxi in China.
Collapse
Affiliation(s)
- Hong-Cheng Luo
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Qi-Sheng Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chun-Fang Wang
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ming Lei
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Bei-Lin Li
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ye-Sheng Wei
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| |
Collapse
|
27
|
Ma Z, Li H, Zheng H, Jiang K, Yan F, Tian Y, Kang X, Wang Y, Liu X. Hepatic ELOVL6 mRNA is regulated by the gga-miR-22-3p in egg-laying hen. Gene 2017; 623:72-79. [PMID: 28445717 DOI: 10.1016/j.gene.2017.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 01/22/2023]
Abstract
The elongation of very long chain fatty acids protein 6 (ELOVL6) encodes a fatty acid elongase that is responsible for the final step in endogenous saturated fatty acid synthesis and involves in de novo lipogenesis. Though the regulatory mechanism of ELOVL6 expression has been studied extensively, little is known about the role of miRNA in regulating ELOVL6 gene expression in chicken until now. To investigate the regulatory mechanism of miRNA on the expression of ELOVL6 gene, bioinformatics analysis was employed to predict the potential miRNAs that binding with the 3'untranslated region (3'UTR) of ELOVL6. The putative miRNA was further screened by comparative analysis with previous miRNA-seq results. Gga-miR-22-3p, which could bind with the 3'UTR of ELOVL6 and showed negative expression correlation with ELOVL6 gene in chicken liver, was obtained. Tissue expression profiles showed that gga-miR-22-3p and ELOVL6 are extensively expressed in many tissues, and ELOVL6 with high expression level in kidney and liver tissues, and gga-miR-22-3p with high expression in lung and heart. Dual-luciferase reporter assays results indicated that the expression of luciferase reporter gene linked with part sequence of the 3'UTR of chicken ELOVL6 gene was down-regulated by the overexpression of gga-miR-22-3p in the DF1 cells, and the down-regulation behavior was abolished when the gga-miR-22-3p binding site in 3'UTR of ELOVL6 was mutated (P>0.05). Furthermore, the ELOVL6 expression in chicken hepatocytes was down-regulated when miR-22-3p was over-expressed. Therefore, we concluded that miR-22-3p might involve in controlling the hepatic lipid composition through affecting the expression of ELOVL6 gene, and could serve as a regulator of lipid metabolism in the liver of egg-laying hen.
Collapse
Affiliation(s)
- Zheng Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Hang Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Keren Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
28
|
Duggal B, Gupta MK, Naga Prasad SV. Potential Role of microRNAs in Cardiovascular Disease: Are They up to Their Hype? Curr Cardiol Rev 2016; 12:304-310. [PMID: 26926293 PMCID: PMC5304257 DOI: 10.2174/1573403x12666160301120642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE OF REVIEW Cardiovascular diseases remain the foremost cause of mortality globally. As molecular medicine unravels the alterations in genomic expression and regulation of the underlying atherosclerotic process, it opens new vistas for discovering novel diagnostic biomarkers and therapeutics for limiting the disease process. miRNAs have emerged as powerful regulators of protein translation by regulating gene expression at the post-transcriptional level. RECENT FINDINGS Overexpression and under-expression of specific miRNAs are being evaluated as a novel approach to diagnosis and treatment of cardiovascular disease. This review sheds light on the current knowledge of the miRNA evaluated in cardiovascular disease. CONCLUSION In this review we summarize the data, including the more recent data, regarding miRNAs in cardiovascular disease and their potential role in future in diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Bhanu Duggal
- Department of Cardiology, 4th floor, Main Building, Grant Medical College & Sir JJ Group of Hospitals, Mumbai, 400008, India.
| | | | | |
Collapse
|
29
|
Epigenetic Modifications in Essential Hypertension. Int J Mol Sci 2016; 17:451. [PMID: 27023534 PMCID: PMC4848907 DOI: 10.3390/ijms17040451] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Essential hypertension (EH) is a complex, polygenic condition with no single causative agent. Despite advances in our understanding of the pathophysiology of EH, hypertension remains one of the world’s leading public health problems. Furthermore, there is increasing evidence that epigenetic modifications are as important as genetic predisposition in the development of EH. Indeed, a complex and interactive genetic and environmental system exists to determine an individual’s risk of EH. Epigenetics refers to all heritable changes to the regulation of gene expression as well as chromatin remodelling, without involvement of nucleotide sequence changes. Epigenetic modification is recognized as an essential process in biology, but is now being investigated for its role in the development of specific pathologic conditions, including EH. Epigenetic research will provide insights into the pathogenesis of blood pressure regulation that cannot be explained by classic Mendelian inheritance. This review concentrates on epigenetic modifications to DNA structure, including the influence of non-coding RNAs on hypertension development.
Collapse
|