1
|
Hoodbhoy Z, Jiwani U, Sattar S, Salam R, Hasan B, Das JK. Diagnostic Accuracy of Machine Learning Models to Identify Congenital Heart Disease: A Meta-Analysis. Front Artif Intell 2021; 4:708365. [PMID: 34308341 PMCID: PMC8297386 DOI: 10.3389/frai.2021.708365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Background: With the dearth of trained care providers to diagnose congenital heart disease (CHD) and a surge in machine learning (ML) models, this review aims to estimate the diagnostic accuracy of such models for detecting CHD. Methods: A comprehensive literature search in the PubMed, CINAHL, Wiley Cochrane Library, and Web of Science databases was performed. Studies that reported the diagnostic ability of ML for the detection of CHD compared to the reference standard were included. Risk of bias assessment was performed using Quality Assessment for Diagnostic Accuracy Studies-2 tool. The sensitivity and specificity results from the studies were used to generate the hierarchical Summary ROC (HSROC) curve. Results: We included 16 studies (1217 participants) that used ML algorithm to diagnose CHD. Neural networks were used in seven studies with overall sensitivity of 90.9% (95% CI 85.2-94.5%) and specificity was 92.7% (95% CI 86.4-96.2%). Other ML models included ensemble methods, deep learning and clustering techniques but did not have sufficient number of studies for a meta-analysis. Majority (n=11, 69%) of studies had a high risk of patient selection bias, unclear bias on index test (n=9, 56%) and flow and timing (n=12, 75%) while low risk of bias was reported for the reference standard (n=10, 62%). Conclusion: ML models such as neural networks have the potential to diagnose CHD accurately without the need for trained personnel. The heterogeneity of the diagnostic modalities used to train these models and the heterogeneity of the CHD diagnoses included between the studies is a major limitation.
Collapse
Affiliation(s)
- Zahra Hoodbhoy
- Department of Pediatrics and Child Health at the Aga Khan University, Karachi, Pakistan
| | - Uswa Jiwani
- Department of Pediatrics and Child Health at the Aga Khan University, Karachi, Pakistan
| | - Saima Sattar
- Department of Pediatrics and Child Health at the Aga Khan University, Karachi, Pakistan
| | - Rehana Salam
- Department of Pediatrics and Child Health at the Aga Khan University, Karachi, Pakistan
| | - Babar Hasan
- Department of Pediatrics and Child Health at the Aga Khan University, Karachi, Pakistan
| | - Jai K Das
- Department of Pediatrics and Child Health at the Aga Khan University, Karachi, Pakistan
| |
Collapse
|
2
|
Zhang Y, Kwon D, Pohl KM. Computing group cardinality constraint solutions for logistic regression problems. Med Image Anal 2017; 35:58-69. [PMID: 27318592 PMCID: PMC5099121 DOI: 10.1016/j.media.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 02/03/2023]
Abstract
We derive an algorithm to directly solve logistic regression based on cardinality constraint, group sparsity and use it to classify intra-subject MRI sequences (e.g. cine MRIs) of healthy from diseased subjects. Group cardinality constraint models are often applied to medical images in order to avoid overfitting of the classifier to the training data. Solutions within these models are generally determined by relaxing the cardinality constraint to a weighted feature selection scheme. However, these solutions relate to the original sparse problem only under specific assumptions, which generally do not hold for medical image applications. In addition, inferring clinical meaning from features weighted by a classifier is an ongoing topic of discussion. Avoiding weighing features, we propose to directly solve the group cardinality constraint logistic regression problem by generalizing the Penalty Decomposition method. To do so, we assume that an intra-subject series of images represents repeated samples of the same disease patterns. We model this assumption by combining series of measurements created by a feature across time into a single group. Our algorithm then derives a solution within that model by decoupling the minimization of the logistic regression function from enforcing the group sparsity constraint. The minimum to the smooth and convex logistic regression problem is determined via gradient descent while we derive a closed form solution for finding a sparse approximation of that minimum. We apply our method to cine MRI of 38 healthy controls and 44 adult patients that received reconstructive surgery of Tetralogy of Fallot (TOF) during infancy. Our method correctly identifies regions impacted by TOF and generally obtains statistically significant higher classification accuracy than alternative solutions to this model, i.e., ones relaxing group cardinality constraints.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94304, USA.
| | - Dongjin Kwon
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94304, USA; Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94304, USA; Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| |
Collapse
|
3
|
Zhang Y, Kwon D, Esmaeili-Firidouni P, Pfefferbaum A, Sullivan EV, Javitz H, Valcour V, Pohl KM. Extracting patterns of morphometry distinguishing HIV associated neurodegeneration from mild cognitive impairment via group cardinality constrained classification. Hum Brain Mapp 2016; 37:4523-4538. [PMID: 27489003 DOI: 10.1002/hbm.23326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/11/2016] [Accepted: 07/19/2016] [Indexed: 01/11/2023] Open
Abstract
HIV-Associated Neurocognitive Disorder (HAND) is the most common constellation of cognitive dysfunctions in chronic HIV infected patients age 60 or older in the U.S. Only few published methods assist in distinguishing HAND from other forms of age-associated cognitive decline, such as Mild Cognitive Impairment (MCI). In this report, a data-driven, nonparameteric model to identify morphometric patterns separating HAND from MCI due to non-HIV conditions in this older age group was proposed. This model enhanced the potential for group separation by combining a smaller, longitudinal data set containing HAND samples with a larger, public data set including MCI cases. Using cross-validation, a linear model on healthy controls to harmonize the volumetric scores extracted from MRIs for demographic and acquisition differences between the two independent, disease-specific data sets was trained. Next, patterns distinguishing HAND from MCI via a group sparsity constrained logistic classifier were identified. Unlike existing approaches, our classifier directly solved the underlying minimization problem by decoupling the minimization of the logistic regression function from enforcing the group sparsity constraint. The extracted patterns consisted of eight regions that distinguished HAND from MCI on a significant level while being indifferent to differences in demographics and acquisition between the two sets. Individually selecting regions through conventional morphometric group analysis resulted in a larger number of regions that were less accurate. In conclusion, simultaneously analyzing all brain regions and time points for disease specific patterns contributed to distinguishing with high accuracy HAND-related impairment from cognitive impairment found in the HIV uninfected, MCI cohort. Hum Brain Mapp 37:4523-4538, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, 94305
| | - Dongjin Kwon
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, 94305.,Center for Health Sciences, SRI International, Menlo Park, California, 94025
| | | | - Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, California, 94025
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, 94305
| | - Harold Javitz
- Center for Technology in Learning in the Education Division, SRI International, Menlo Park, California, 94025
| | - Victor Valcour
- Memory and Aging Center, UCSF, San Francisco, California
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, 94305.,Center for Health Sciences, SRI International, Menlo Park, California, 94025
| |
Collapse
|