1
|
Borges A, Bento L. Organ crosstalk and dysfunction in sepsis. Ann Intensive Care 2024; 14:147. [PMID: 39298039 DOI: 10.1186/s13613-024-01377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Sepsis-associated organ dysfunction involves multiple inflammatory mechanisms and complex metabolic reprogramming of cellular function. These mechanisms cooperate through multiple organs and systems according to a complex set of long-distance communications mediated by cellular pathways, solutes, and neurohormonal actions. In sepsis, the concept of organ crosstalk involves the dysregulation of one system, which triggers compensatory mechanisms in other systems that can induce further damage. Despite the abundance of studies published on organ crosstalk in the last decade, there is a need to formulate a more comprehensive framework involving all organs to create a more detailed picture of sepsis. In this paper, we review the literature published on organ crosstalk in the last 10 years and explore how these relationships affect the progression of organ failure in patients with septic shock. We explored these relationships in terms of the heart-kidney-lung, gut-microbiome-liver-brain, and adipose tissue-muscle-bone crosstalk in sepsis patients. A deep connection exists among these organs based on crosstalk. We also review how multiple therapeutic interventions administered in intensive care units, such as mechanical ventilation, antibiotics, anesthesia, nutrition, and proton pump inhibitors, affect these systems and must be carefully considered when managing septic patients. The progression to multiple organ dysfunction syndrome in sepsis patients is still one of the most frequent causes of death in critically ill patients. A better understanding and monitoring of the mechanics of organ crosstalk will enable the anticipation of organ damage and the development of individualized therapeutic strategies.
Collapse
Affiliation(s)
- André Borges
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal.
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal.
| | - Luís Bento
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal
| |
Collapse
|
2
|
Ramesh T, Shahid M. Bacoside-A repressed the differentiation and lipid accumulation of 3T3-L1 preadipocytes by modulating the expression of adipogenic genes. Biotechnol Appl Biochem 2024; 71:741-752. [PMID: 38419375 DOI: 10.1002/bab.2573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Obesity is one of the more complicated diseases, it can induce numerous life-threatening diseases mainly diabetes mellitus, cardiovascular disease, hypertension, and certain cancers. In this study, we assessed the efficacy of bacoside-A (a dammarane-type triterpenoid saponin derived from the plant Bacopa monniera Linn.) on the adipogenesis of 3T3-L1 preadipocytes. Results of this study illustrated that bacoside-A decreased the differentiation of 3T3-L1 cell, as evidenced by diminution of lipid droplets, which contains triglycerides and other lipids. During the differentiation process, transcription factors, which are mainly participating in adipogenesis such us CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ, peroxisome proliferator-activated receptor-γ (PPARγ), and sterol regulatory element-binding protein-1c (SREBP-1c), expressions were significantly suppressed by bacoside-A. In addition, bacoside-A showed a potent reduction in genes precise to adipocytes such as lipoprotein lipase (LPL), fatty acid synthase (FAS), adipocyte fatty acid-binding protein (FABP4), and leptin expressions. Further, bacoside-A stimulated the phosphorylation of acetyl CoA carboxylase (ACC) and AMP-activated protein kinase (AMPK). These results demonstrated that bacoside-A has anti-adipogenic effects by regulating the transcription factors involved in adipocyte differentiation. Therefore, bacoside-A might be considered as a potent therapeutic agent for alleviating obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Integrative Analysis of Proteomics and Transcriptomics of Longissimus dorsi with Different Feeding Systems in Yaks. Foods 2023; 12:foods12020257. [PMID: 36673349 PMCID: PMC9858148 DOI: 10.3390/foods12020257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Yaks (Bos grunniens) are a critical livestock breed in the plateau region, and changing the feeding system of yaks can significantly improve their growth performance. The effects of different feeding regimes on the growth performance and meat quality of yaks were comprehensively compared here. The transcriptome and proteome of the Longissimus dorsi muscle were determined using RNA-seq and Tandem Mass Tag (TMT) techniques. Indoor feeding significantly improved the growth performance (such as the average daily gain and carcass weight) and meat quality characteristics compared with traditional grazing feeding. In the grazing (Group G) vs. in-house fed group (Group HF) comparison, 40 differentially expressed genes/differentially abundant proteins exhibited the same mRNA and protein expression trends. These genes were associated with collagen binding, the lipoxygenase pathway, and the arachidonic acid metabolic process. Parallel reaction monitoring verified whether the TMT results were reliable. Moreover, some pathways, such as the AMPK signaling pathway, FoxO signaling pathway, PPAR signaling pathway, and fatty acid metabolism, were significantly enriched. These results expand our knowledge about meat quality in yaks and provide practical information and more evidence for further insight into the biological mechanisms underlying meat quality traits.
Collapse
|
4
|
Fatty acid metabolism in liver and muscle is strongly modulated by photoperiod in Fischer 344 rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112621. [PMID: 36525774 DOI: 10.1016/j.jphotobiol.2022.112621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Circadian and seasonal variations produce variations in physiological processes throughout the day and the year, respectively. In this sense, both the light and the moment of feeding are strong modulators of the central and peripheral clocks. However, little is known about its influence on certain metabolic parameters and on the composition of liver and muscle fatty acids (FA). In the present study, 24 Fischer 344 rats were exposed for 11 weeks to different photoperiods, L6, L12 and L18, with 6, 12 and 18 h of light/day, respectively. They were fed a standard diet. Serum metabolic parameters, gene expression of liver enzymes and gastrocnemius muscle involved in the synthesis, elongation, desaturation and β-oxidation of FA were analyzed. We have found that exposure to different hours of light has a clear effect on FA composition and gene expression in the liver. Mainly, the biosynthesis of unsaturated FA was altered in the L18 animals with respect to those exposed to L12, while the L6 did not show significant changes. At the muscle level, differences were observed in the concentration of mono and polyunsaturated FA. A multivariate analysis confirmed the differences between L12 and L18 in a significant way. We conclude that exposure to long days produces changes in the composition of liver and muscle FA, as well as changes in the gene expression of oxidative enzymes compared to exposure to L12, which could be a consequence of different seasonal eating patterns.
Collapse
|
5
|
Ding LN, Cheng Y, Xu LY, Zhou LQ, Guan L, Liu HM, Zhang YX, Li RM, Xu JW. The β3 Adrenergic Receptor Agonist CL316243 Ameliorates the Metabolic Abnormalities of High-Fat Diet-Fed Rats by Activating AMPK/PGC-1α Signaling in Skeletal Muscle. Diabetes Metab Syndr Obes 2021; 14:1233-1241. [PMID: 33776460 PMCID: PMC7987271 DOI: 10.2147/dmso.s297351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Skeletal muscle has a major influence on whole-body metabolic homeostasis. In the present study, we aimed to determine the metabolic effects of the β3 adrenergic receptor agonist CL316243 (CL) in the skeletal muscle of high-fat diet-fed rats. METHODS Sprague-Dawley rats were randomly allocated to three groups, which were fed a control diet (C) or a high-fat diet (HF), and half of the latter were administered 1 mg/kg CL by gavage once weekly (HF+CL), for 12 weeks. At the end of this period, the serum lipid profile and glucose tolerance of the rats were evaluated. In addition, the phosphorylation and protein and mRNA expression of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator (PGC)-1α, and carnitine palmitoyl transferase (CPT)-1b in skeletal muscle were measured by Western blot analysis and qPCR. The direct effects of CL on the phosphorylation (p-) and expression of AMPK, PGC-1α, and CPT-1b were also evaluated by Western blotting and immunofluorescence in L6 myotubes. RESULTS CL administration ameliorated the abnormal lipid profile and glucose tolerance of the high-fat diet-fed rats. In addition, the expression of p-AMPK, PGC-1α, and CPT-1b in the soleus muscle was significantly increased by CL. CL (1 µM) also increased the protein expression of p-AMPK, PGC-1α, and CPT-1b in L6 myotubes. However, the effect of CL on PGC-1α protein expression was blocked by the AMPK antagonist compound C, which suggests that CL increases PGC-1α protein expression via AMPK. CONCLUSION Activation of the β3 adrenergic receptor in skeletal muscle ameliorates the metabolic abnormalities of high-fat diet-fed rats, at least in part via activation of the AMPK/PGC-1α pathway.
Collapse
Affiliation(s)
- Li-Na Ding
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Ya Cheng
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Lu-Yao Xu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Le-Quan Zhou
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Li Guan
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Hai-Mei Liu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Ya-Xing Zhang
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Run-Mei Li
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Jin-Wen Xu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Correspondence: Jin-Wen Xu Guangzhou University of Chinese Medicine, University Town, Waihuan East Road 232, Guangzhou, 510006, People’s Republic of ChinaTel +86-20-39358028Fax +86-20-39358020 Email
| |
Collapse
|
6
|
Caron A, Ahmed F, Peshdary V, Garneau L, Atlas E, Aguer C. Effects of PCB126 on Adipose-to-Muscle Communication in an in Vitro Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:107002. [PMID: 33026256 PMCID: PMC7539676 DOI: 10.1289/ehp7058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to coplanar polychlorinated biphenyls (PCBs) is linked to the development of insulin resistance. Previous studies suggested PCB126 alters muscle mitochondrial function through an indirect mechanism. Given that PCBs are stored in fat, we hypothesized that PCB126 alters adipokine secretion, which in turn affects muscle metabolism. OBJECTIVES We determined a) the impacts of PCB126 exposure on adipocyte cytokine/adipokine secretion in vitro; b) whether adipocyte-derived factors alter glucose metabolism and mitochondrial function in myotubes when exposed to PCB126; and c) whether preestablished insulin resistance alters the metabolic responses of adipocytes exposed to PCB126 and the communication between adipocytes and myotubes. METHODS 3T3-L1 adipocytes were exposed to PCB126 (1-100 nM) in two insulin sensitivity conditions [insulin sensitive (IS) and insulin resistant (IR) adipocytes], followed by the measurement of secreted adipokines, mitochondrial function, and insulin-stimulated glucose uptake. Communication between adipocytes and myotubes was reproduced by exposing C2C12 myotubes or mouse primary myotubes to conditioned medium (CM) derived from IS or IR 3T3-L1 adipocytes exposed to PCB126. Mitochondrial function and insulin-stimulated glucose uptake were then determined in myotubes. RESULTS IR 3T3-L1 adipocytes treated with PCB126 had significantly higher adipokine (adiponectin, IL-6, MCP-1, TNF-α) secretion and lower mitochondrial function, glucose uptake, and glycolysis. However, PCB126 did not significantly alter these parameters in IS adipocytes. Altered energy metabolism in IR 3T3-L1 adipocytes was linked to lower phosphorylation of AMP-activated protein kinase (p-AMPK) and higher superoxide dismutase 2 levels, an enzyme involved in reactive oxygen species detoxification. Myotubes exposed to the CM from PCB126-treated IR adipocytes had lower glucose uptake, with no alteration in glycolysis or mitochondrial function. Interestingly, p-AMPK levels were higher in myotubes exposed to the CM of PCB126-treated IR adipocytes. DISCUSSION Taken together, these data suggest that increased adipokine secretion from IR adipocytes exposed to PCB126 might explain impaired glucose uptake in myotubes. https://doi.org/10.1289/EHP7058.
Collapse
Affiliation(s)
- Audrey Caron
- Institut du Savoir Montfort—recherche, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Fozia Ahmed
- Institut du Savoir Montfort—recherche, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vian Peshdary
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Léa Garneau
- Institut du Savoir Montfort—recherche, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ella Atlas
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Céline Aguer
- Institut du Savoir Montfort—recherche, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Guo A, Li K, Xiao Q. Sarcopenic obesity: Myokines as potential diagnostic biomarkers and therapeutic targets? Exp Gerontol 2020; 139:111022. [PMID: 32707318 DOI: 10.1016/j.exger.2020.111022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Sarcopenic obesity (SO) is a condition characterized by the occurrence of both sarcopenia and obesity and imposes a heavy burden on the health of the elderly. Controversies and challenges regarding the definition, diagnosis and treatment of SO still remain because of its complex pathogenesis and limitations. Over the past few decades, numerous studies have revealed that myokines secreted from skeletal muscle play significant roles in the regulation of muscle mass and function as well as metabolic homeostasis. Abnormalities in myokines may trigger and promote the pathogenesis underlying age-related and metabolic diseases, including obesity, sarcopenia, type 2 diabetes (T2D), and SO. This review mainly focuses on the role of myokines as potential biomarkers for the early diagnosis and therapeutic targets in SO.
Collapse
Affiliation(s)
- Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Huang B, Zhao H, Huang C, Wu L, Xiang L, Chen J, Wang B, Xiao T, Li M, Ren L, Niu J, Zhang JV. CMKLR1 deficiency attenuates androgen-induced lipid accumulation in mice. Am J Physiol Endocrinol Metab 2020; 318:E371-E380. [PMID: 31910029 DOI: 10.1152/ajpendo.00176.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excess androgen-induced obesity has become a public health problem, and its prevalence has increased substantially in recent years. Chemokine-like receptor 1 (CMKLR1), a receptor of chemerin secreted by adipose tissue, is linked to adipocyte differentiation, adipose tissue development, and obesity. However, the effect of CMKLR1 signaling on androgen-mediated adiposity in vivo remains unclear. Using CMKLR1-knockout mice, we constructed an androgen-excess female mouse model through 5α-dihydrotestosterone (DHT) treatment and an androgen-deficient male mouse model by orchidectomy (ORX). For mechanism investigation, we used 2-(α-Naphthoyl) ethyltrimethylammonium iodide (α-NETA), an antagonist of CMKLR1, to suppress CMKLR1 in vivo and wortmannin, a PI3K signaling antagonist, to treat brown adipose tissue (BAT) explant cultures in vitro. Furthermore, we used histological examination and quantitative PCR, as well as Western blot analysis, glucose tolerance tests, and biochemical analysis of serum, to describe the phenotypes and the changes in gene expression. We demonstrated that excess androgen in the female mice resulted in larger cells in the white adipose tissue (WAT) and the BAT, whereas androgen deprivation in the male mice induced a reduction in cell size. Both of these adipocyte size effects could be attenuated in the CMKLR1-knockout mice. CMKLR1 deficiency influenced the effect of androgen treatment on adipose tissue by regulating the mRNA expression of the androgen receptor (AR) and adipocyte markers (such as Fabp4 and Cidea). Moreover, suppression of CMKLR1 by α-NETA could also reduce the extent of the adipocyte cell enlargement caused by DHT. Furthermore, we found that DHT could reduce the levels of phosphorylated ERK (pERK) in the BAT, while CMKLR1 inactivation inhibited this effect, which had been induced by DHT, through the PI3K signaling pathway. These findings reveal an antiobesity role of CMKLR1 deficiency in regulating lipid accumulation, highlighting the scientific importance for the further development of small-molecule CMKLR1 antagonists as fundamental research tools and/or as potential drugs for use in the treatment of adiposity.
Collapse
Affiliation(s)
- Binbin Huang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huashan Zhao
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chen Huang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Linlin Wu
- Shenzhen Maternity and Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen, China
| | - Liang Xiang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Chen
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baobei Wang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tianxia Xiao
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengxia Li
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lirong Ren
- Department of Obstetric, ShenZhen Baoan Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jianmin Niu
- Shenzhen Maternity and Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen, China
| | - Jian V Zhang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Association of Circulating COMP and YKL-40 as Markers of Metabolic Changes of Cartilage with Adipocytokines in Juvenile Idiopathic Arthritis. Metabolites 2020; 10:metabo10020061. [PMID: 32050571 PMCID: PMC7073573 DOI: 10.3390/metabo10020061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to evaluate the association of circulating cartilage oligomeric matrix protein (COMP) and human cartilage glycoprotein-39 (YKL-40) as markers of metabolic changes of cartilage, with leptin, adiponectin, and resistin in juvenile idiopathic arthritis (JIA) patients before and after treatment. A significant decrease of COMP and an increase of YKL-4 were found in blood of untreated patients. JIA treatment leading to clinical improvement resulted in normalization of COMP levels only. Concentrations of both markers in treated patients, while showing no clinical improvement, differed from those in controls and patients with remission. The leptin level decreased (p < 0.05) in untreated patients; however, concentrations of adiponectin and resistin increased (p < 0.05) as compared to controls. JIA treatment resulted in normalization of adipocytokine levels in remissive patients but not those with active JIA. Untreated patients showed a correlation between COMP and leptin, adiponectin, and body mass index (BMI) and between YKL-40 and leptin, adiponectin, BMI, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). In inactive JIA, a correlation between YKL-40 and leptin was shown. Treated patients with an active JIA demonstrated a correlation between COMP and adiponectin and between YKL-40 and leptin, adiponectin, BMI, CRP, and ESR. The results of this work indicate that leptin and adiponectin but not resistin may be involved in the development and progression of joint dysfunction in JIA. Additionally, we suggest that YKL-40 may be a useful biomarker of disease activity and may be used to assess treatment towards remission, as compared to COMP.
Collapse
|
10
|
Mirghani SJ, Azarbayjani MA, Peeri M. Effects of Endurance Training and Isocaloric High Intensity Interval Training on Anthropometric Indices and Insulin Resistance in High Fat Diet-Fed Wistar Rats. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.6.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev 2018; 39:489-517. [PMID: 29697773 PMCID: PMC6093334 DOI: 10.1210/er.2017-00211] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage, and utilization, dependent on availability and requirement, is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue, and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage, and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways, which are regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors such as dietary composition and feeding frequency, exercise training, and use of pharmacological compounds, influence metabolic flexibility and will be discussed here. Last, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.
Collapse
Affiliation(s)
- Reuben L Smith
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Maarten R Soeters
- Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Department of Endocrinology and Metabolism, Internal Medicine, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Rob C I Wüst
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Movement Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| |
Collapse
|
12
|
Han MH, Kim HJ, Jeong JW, Park C, Kim BW, Choi YH. Inhibition of Adipocyte Differentiation by Anthocyanins Isolated from the Fruit of Vitis coignetiae Pulliat is Associated with the Activation of AMPK Signaling Pathway. Toxicol Res 2018; 34:13-21. [PMID: 29371997 PMCID: PMC5776908 DOI: 10.5487/tr.2018.34.1.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022] Open
Abstract
Anthocyanins are naturally occurring water-soluble polyphenolic pigments in plants that have been shown to protect against cardiovascular diseases, and certain cancers, as well as other chronic human disorders. However, the anti-obesity effects of anthocyanins are not fully understood. In this study, we investigated the effects of anthocyanins isolated from the fruit of Vitis coignetiae Pulliat on the adipogenesis of 3T3-L1 preadipocytes. Our data indicated that anthocyanins attenuated the terminal differentiation of 3T3-L1 preadipocytes, as confirmed by a decrease in the number of lipid droplets, lipid content, and triglyceride production. During this process, anthocyanins effectively enhanced the activation of the AMP-activated protein kinase (AMPK); however, this phenomenon was inhibited by the co-treatment of compound C, an inhibitor of AMPK. Anthocyanins also inhibited the expression of adipogenic transcription factors, including peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein a and b, and sterol regulatory element-binding protein-1c. In addition, anthocyanins were found to potently inhibit the expression of adipocyte-specific genes, including adipocyte fatty acid-binding protein, leptin, and fatty acid synthase. These results indicate that anthocyanins have potent anti-obesity effects due to the inhibition of adipocyte differentiation and adipogenesis, and thus may have applications as a potential source for an anti-obesity functional food agent.
Collapse
Affiliation(s)
- Min Ho Han
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon, Korea
| | - Hong Jae Kim
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Korea.,Anti-Aging Research Center, Dongeui University, Busan, Korea
| | - Jin-Woo Jeong
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Korea.,Anti-Aging Research Center, Dongeui University, Busan, Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University, Busan, Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dongeui University, Busan, Korea
| | - Yung Hyun Choi
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Korea.,Anti-Aging Research Center, Dongeui University, Busan, Korea
| |
Collapse
|
13
|
Han MH, Jeong JS, Jeong JW, Choi SH, Kim SO, Hong SH, Park C, Kim BW, Choi YH. Ethanol extracts of Aster yomena (Kitam.) Honda inhibit adipogenesis through the activation of the AMPK signaling pathway in 3T3-L1 preadipocytes. Drug Discov Ther 2017; 11:281-287. [PMID: 29021504 DOI: 10.5582/ddt.2017.01046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The leaves of Aster yomena (Kitam.) Honda have long been used as a traditional herb for treating disorders including coughs, asthma, and insect bites. According to recent studies, A. yomena leaf extracts have several pharmacological properties, including anti-inflammatory, antioxidant, and anti-asthmatic activities. However, little information is available regarding their anti-obesity effect. In this study, we investigated the inhibitory effect of the ethanol extracts of A. yomena leaves (EEAY) on adipocyte differentiation and adipogenesis using 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were treated with various concentrations of EEAY (ranging from non-toxic), the number of lipid droplets, lipid content, and triglyceride production, the typical characteristics of adipocytes, were suppressed in a concentration-dependent manner. During this process, EEAY significantly reduced the expression of adipogenic transcription factors, including peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein α and β, and sterol regulatory element-binding protein-1c. In addition, EEAY was also found to potently inhibit the expression of adipocyte-specific genes, including adipocyte fatty acid-binding protein and leptin. In particular, EEAY treatment effectively enhanced the activation of the AMP-activated protein kinase (AMPK) signaling pathway; however, the co-treatment with compound C, an inhibitor of AMPK, significantly restored the EEAY-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results indicate that EEAY may exert an anti-obesity effect by controlling the AMPK signaling pathway, suggesting that the leaf extract of A. yomena may be a potential anti-obesity agent.
Collapse
Affiliation(s)
- Min Ho Han
- National Marine Biodiversity Institute of Korea
| | - Ji-Suk Jeong
- Gurye Wild Flower Institute and Gurye-gun Agricultural Center
| | - Jin-Woo Jeong
- Anti-Aging Research Center, Dongeui University.,Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine
| | | | - Sung Ok Kim
- Department of Food Science & Biotechnology, College of Engineering, Kyungsung University
| | - Su Hyun Hong
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dongeui University
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dongeui University.,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dongeui University
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Adiponectin is an adipokine with anti-inflammatory, antioxidant, antiatherogenic, pro-angiogenic, vasoprotective and insulin-sensitizing properties. Several factors may influence adiponectin levels, such as genetic polymorphisms, obesity / body fat distribution, diet and exercise as well as cardiovascular risk factors such as sleep deprivation and smoking as well as medications. Adiponectin has been proposed as a potential prognostic biomarker and a therapeutic target in patients with cardiometabolic diseases. RECENT FINDINGS This narrative review discusses the associations of adiponectin with obesity-related metabolic disorders (metabolic syndrome, nonalcoholic fatty liver disease, hyperuricaemia and type 2 diabetes mellitus). We also focus on the links between adiponectin and lipid disorders and with coronary heart disease and noncardiac vascular diseases (i.e. stroke, peripheral artery disease, carotid artery disease, atherosclerotic renal artery stenosis, abdominal aortic aneurysms and chronic kidney disease). Further, the effects of lifestyle interventions and drug therapy on adiponectin levels are briefly reviewed. SUMMARY Based on available data, adiponectin represents a multifaceted biomarker that may beneficially affect atherosclerosis, inflammation and insulin resistance pathways. However, there are conflicting results with regard to the associations between adiponectin levels and the prevalence and outcomes of cardiometabolic diseases. Further research on the potential clinical implications of adiponectin in the diagnosis and treatment of such diseases is needed.
Collapse
Affiliation(s)
- Niki Katsiki
- aSecond Department of Propaedeutic Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece bDivision of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA cDepartment of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| | | | | |
Collapse
|
15
|
Adiponectina plasmática en mujeres obesas y no obesas con síndrome de ovarios poliquísticos. PERINATOLOGÍA Y REPRODUCCIÓN HUMANA 2017. [DOI: 10.1016/j.rprh.2017.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
González-Álvarez C, Ramos-Ibáñez N, Azprioz-Leehan J, Ortiz-Hernández L. Intra-abdominal and subcutaneous abdominal fat as predictors of cardiometabolic risk in a sample of Mexican children. Eur J Clin Nutr 2017; 71:1068-1073. [PMID: 28378850 DOI: 10.1038/ejcn.2017.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 01/22/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND/OBJECTIVE Few studies in Latin American paediatric populations have differentiated fat deposits in specific areas, such as intra-abdominal fat (IAF) and subcutaneous abdominal fat (SAF). Research in diverse populations is needed, as patterns of fat accumulation vary by ethnicity. The aim of this study was to determine whether IAF and/or SAF are related to cardiometabolic risk factors, independent of total body fat (TBF), in a group of Mexican schoolchildren. SUBJECTS/METHODS A cross-sectional study was conducted in Mexico City with 94 children aged between 5 and 11 years. IAF and SAF were assessed by magnetic resonance using two different estimation methods: (a) at the midpoint of lumbar vertebras 4 and 5 (L4-L5) and (b) the sum of the areas of four slices (L1-L2, L2-L3, L3-L4 and L4-L5, which will be referred to as 'total' IAF and SAF). TBF was measured by dual-energy X-ray absorptiometry. The following cardiometabolic risk factors were assessed: total cholesterol, low-density lipoprotein-cholesterol, triglycerides, glucose, insulin, high-density lipoprotein-cholesterol, blood pressure, insulin resistance, number of risk factors and metabolic syndrome score. RESULTS After adjusting for sex, age and TBF, total SAF was related to the number of cardiometabolic risk factors and metabolic syndrome score. Although IAF at L4-L5 was also related to the number of cardiometabolic risk factors, there was evidence of collinearity with TBF. CONCLUSIONS In this sample of Mexican schoolchildren, TBF and SAF, but not IAF, were associated with higher cardiometabolic risk.
Collapse
Affiliation(s)
- C González-Álvarez
- Programa de Maestría y Doctorado en Ciencias de la Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - N Ramos-Ibáñez
- Departmento de Atención a la Salud, Universidad Autónoma Metropolitana unidad Xochimilco, Mexico
| | - J Azprioz-Leehan
- Centro de Investigación en Instrumentación e Imagenología Médica, Universidad Autónoma Metropolitana unidad Iztapalapa, Mexico
| | - L Ortiz-Hernández
- Departmento de Atención a la Salud, Universidad Autónoma Metropolitana unidad Xochimilco, Mexico
| |
Collapse
|
17
|
Niu M, Xiang L, Liu Y, Zhao Y, Yuan J, Dai X, Chen H. Adiponectin induced AMP-activated protein kinase impairment mediates insulin resistance in Bama mini-pig fed high-fat and high-sucrose diet. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1190-1197. [PMID: 28423886 PMCID: PMC5494494 DOI: 10.5713/ajas.17.0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 03/19/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Adipose tissue is no longer considered as an inert storage organ for lipid, but instead is thought to play an active role in regulating insulin effects via secretion adipokines. However, conflicting reports have emerged regarding the effects of adipokines. In this study, we investigated the role of adipokines in glucose metabolism and insulin sensitivity in obese Bama mini-pigs. METHODS An obesity model was established in Bama mini-pigs, by feeding with high-fat and high-sucrose diet for 30 weeks. Plasma glucose and blood biochemistry levels were measured, and intravenous glucose tolerance test was performed. Adipokines, including adiponectin, interleukin-6 (IL-6), resistin and tumor necrosis factor alpha (TNF-α), and glucose-induced insulin secretion were also examined by radioimmunoassay. AMP-activated protein kinase (AMPK) phosphorylation in skeletal muscle, which is a useful insulin resistance marker, was examined by immunoblotting. Additionally, associations of AMPK phosphorylation with plasma adipokines and homeostasis model assessment of insulin resistance (HOMA-IR) index were assessed by Pearce's correlation analysis. RESULTS Obese pigs showed hyperglycemia, high triglycerides, and insulin resistance. Adiponectin levels were significantly decreased (p<0.05) and IL-6 amounts dramatically increased (p<0.05) in obese pigs both in serum and adipose tissue, corroborating data from obese mice and humans. However, circulating resistin and TNF-α showed no difference, while the values of TNF-α in adipose tissue were significantly higher in obese pigs, also in agreement with data from obese humans but not rodent models. Moreover, strong associations of skeletal muscle AMPK phosphorylation with plasma adiponectin and HOMA-IR index were obtained. CONCLUSION AMPK impairment induced by adiponectin decrease mediates insulin resistance in high-fat and high-sucrose diet induction. In addition, Bama mini-pig has the possibility of a conformable model for human metabolic diseases.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqian Liu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing 100853, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
18
|
Boa BCS, Yudkin JS, van Hinsbergh VWM, Bouskela E, Eringa EC. Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function. Br J Pharmacol 2017; 174:3466-3481. [PMID: 28147449 DOI: 10.1111/bph.13732] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
Obesity is a global epidemic, accompanied by increased risk of type 2 diabetes and cardiovascular disease. Adipose tissue hypertrophy is associated with adipose tissue inflammation, which alters the secretion of adipose tissue-derived bioactive products, known as adipokines. Adipokines determine vessel wall properties such as smooth muscle tone and vessel wall inflammation. Exercise is a mainstay of prevention of chronic, non-communicable diseases, type 2 diabetes and cardiovascular disease in particular. Aside from reducing adipose tissue mass, exercise has been shown to reduce inflammatory activity in this tissue. Mechanistically, contracting muscles release bioactive molecules known as myokines, which alter the metabolic phenotype of adipose tissue. In adipose tissue, myokines induce browning, enhance fatty acid oxidation and improve insulin sensitivity. In the past years, the perivascular adipose tissue (PVAT) which surrounds the vasculature, has been shown to control vascular tone and inflammation through local release of adipokines. In obesity, an increase in mass and inflammation of PVAT culminate in dysregulation of adipokine secretion, which contributes to vascular dysfunction. This review describes our current understanding of the mechanisms by which active muscles interact with adipose tissue and improve vascular function. Aside from the exercise-dependent regulation of canonical adipose tissue function, we will focus on the interactions between skeletal muscle and PVAT and the role of novel myokines, such as IL-15, FGF21 and irisin, in these interactions. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- B C S Boa
- Department of Physiology, VU University Medical Centre, Amsterdam, The Netherlands.,Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S Yudkin
- Department of Medicine, University College London, London, UK
| | - V W M van Hinsbergh
- Department of Physiology, VU University Medical Centre, Amsterdam, The Netherlands
| | - E Bouskela
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E C Eringa
- Department of Physiology, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Pierard M, Conotte S, Tassin A, Boutry S, Uzureau P, Boudjeltia KZ, Legrand A. Interactions of exercise training and high-fat diet on adiponectin forms and muscle receptors in mice. Nutr Metab (Lond) 2016; 13:75. [PMID: 27822289 PMCID: PMC5094086 DOI: 10.1186/s12986-016-0138-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/21/2016] [Indexed: 01/08/2023] Open
Abstract
Background Metabolic syndrome (MetS) is characterized by systemic disturbances that increase cardiovascular risk. Adiponectin (Ad) exhibits a cardioprotective function because of its anti-inflammatory and anti-atherosclerotic properties. In the bloodstream, this adipocytokine circulates on multimers (Admer), among which high molecular weight (HMW) are the most active forms. Because alterations of Ad plasmatic levels, Admer distribution and receptor (AdipoR) expression have been described in murine models and obese patients, strategies that aim to enhance Ad production or its effect on target tissues are the subject of intense investigations. While exercise training is well known to be beneficial for reducing cardiovascular risk, the contribution of Ad is still controversial. Our aim was to evaluate the effect of exercise training on Ad production, Admer distribution and AdipoR muscle expression in a murine model of MetS. Methods At 6 weeks of age, mice were submitted to a standard (SF) or high-fat high-sugar (HF) diet for 10 weeks. After 2 weeks, the SF- and HF-fed animals were randomly assigned to a training program (SFT, HFT) or not (SFC, HFC). The trained groups were submitted to sessions of running on a treadmill 5 days a week. Results and conclusions The HF mice presented the key problems associated with MetS (increased caloric intake, body weight, glycemia and fat mass), a change in Admer distribution in favor of the less-active forms and increased AdipoR2 expression in muscle. In contrast, exercise training reversed some of the adverse effects of a HF diet (increased glucose tolerance, better caloric intake control) without any modifications in Ad production and Admer distribution. However, increased AdipoR1 muscle expression was observed in trained mice, but this effect was hampered by HF diet. These data corroborate a recent hypothesis suggesting a functional divergence between AdipoR1 and AdipoR2, with AdipoR1 having the predominant protective action on metabolic function. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0138-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mélany Pierard
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Stéphanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Sébastien Boutry
- Department of General, Organic and Biomedical Chemistry, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Pierrick Uzureau
- Experimental Medicine Laboratory, Free University of Brussels, CHU de Charleroi, Belgium
| | | | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| |
Collapse
|