1
|
Nóbrega PR, Bernardes AM, Ribeiro RM, Vasconcelos SC, Araújo DABS, Gama VCDV, Fussiger H, Santos CDF, Dias DA, Pessoa ALS, Pinto WBVDR, Saute JAM, de Souza PVS, Braga-Neto P. Cerebrotendinous Xanthomatosis: A practice review of pathophysiology, diagnosis, and treatment. Front Neurol 2022; 13:1049850. [PMID: 36619921 PMCID: PMC9816572 DOI: 10.3389/fneur.2022.1049850] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cerebrotendinous Xanthomatosis represents a rare and underdiagnosed inherited neurometabolic disorder due to homozygous or compound heterozygous variants involving the CYP27A1 gene. This bile acid metabolism disorder represents a key potentially treatable neurogenetic condition due to the wide spectrum of neurological presentations in which it most commonly occurs. Cerebellar ataxia, peripheral neuropathy, spastic paraparesis, epilepsy, parkinsonism, cognitive decline, intellectual disability, and neuropsychiatric disturbances represent some of the most common neurological signs observed in this condition. Despite representing key features to increase diagnostic index suspicion, multisystemic involvement does not represent an obligatory feature and can also be under evaluated during diagnostic work-up. Chenodeoxycholic acid represents a well-known successful therapy for this inherited metabolic disease, however its unavailability in several contexts, high costs and common use in patients at late stages of disease course limit more favorable neurological outcomes for most individuals. This review article aims to discuss and highlight the most recent and updated knowledge regarding clinical, pathophysiological, neuroimaging, genetic and therapeutic aspects related to Cerebrotendinous Xanthomatosis.
Collapse
Affiliation(s)
- Paulo Ribeiro Nóbrega
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil,Neurogenetics Unit, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Anderson Moura Bernardes
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Rodrigo Mariano Ribeiro
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Sophia Costa Vasconcelos
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Helena Fussiger
- School of Medicine, Universidade Federação de Estabelecimentos de Ensino Superior em Novo Hamburgo, Novo Hamburgo, Brazil,Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - André Luíz Santos Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, Brazil,Center of Health Science, Universidade Estadual do Ceará, Fortaleza, Brazil
| | | | - Jonas Alex Morales Saute
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,Medical Genetics Service and Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Victor Sgobbi de Souza
- Neurometabolic Unit, Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil,*Correspondence: Paulo Victor Sgobbi de Souza ✉
| | - Pedro Braga-Neto
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil,Center of Health Science, Universidade Estadual do Ceará, Fortaleza, Brazil
| |
Collapse
|
2
|
Oliva F, Marsilio E, Asparago G, Giai Via A, Biz C, Padulo J, Spoliti M, Foti C, Oliva G, Mannarini S, Rossi AA, Ruggieri P, Maffulli N. Achilles Tendon Rupture and Dysmetabolic Diseases: A Multicentric, Epidemiologic Study. J Clin Med 2022; 11:jcm11133698. [PMID: 35806982 PMCID: PMC9267833 DOI: 10.3390/jcm11133698] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: Achilles tendon ruptures are common. Metabolic disorders, such as diabetes mellitus, hypercholesterolemia, thyroid disorders, and obesity, impair tendons health, leading to Achilles tendinopathy and likely predisposing patients to Achilles tendon ruptures. Materials and methods: Patients who visited the Orthopedic Outpatient Clinics and the Accident and Emergency Departments of five different hospitals in Italy were recruited. Through telephone interviews, we administered a questionnaire to all the patients who had undergone surgical ATR repair, evaluating their past medical history, sport- and work-related activities, drug use, and post-operative rehabilitation outcomes. Results: “Return to work activities/sport” was negatively predicted by the presence of a metabolic disorder (β = −0.451; OR = 0.637) and ‘open’ surgery technique (β = −0.389; OR = 0.678). “Medical complications” were significantly predicted by metabolic disorders (β = 0.600 (0.198); OR = 1.822) and was negatively related to ‘mini-invasive’ surgery (i.e., not ‘open’ nor ‘percutaneous’) (β = −0.621; OR = 0.537). “Immediate weightbearing” and “immediate walking without assistance” were negatively predicted by ‘open’ technique (β = −0.691; OR = 0.501 and β = −0.359 (0.174; OR = 0.698)). Conclusions: Metabolic conditions can strongly affect post-operative outcomes following surgical repair of acute Achilles tendon tears.
Collapse
Affiliation(s)
- Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (F.O.); (G.A.); (N.M.)
| | - Emanuela Marsilio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (F.O.); (G.A.); (N.M.)
- Correspondence: ; Tel.: +39-3465115396
| | - Giovanni Asparago
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (F.O.); (G.A.); (N.M.)
| | - Alessio Giai Via
- Department of Orthopaedic Surgery and Traumatology, San Camillo-Forlanini Hospital, 00152 Rome, Italy;
| | - Carlo Biz
- Orthopaedics and Orthopaedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padua, 35128 Padova, Italy; (C.B.); (P.R.)
| | - Johnny Padulo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Marco Spoliti
- Orthopaedics and Traumatology Unit, Department of Emergency and Acceptance, Azienda Ospedaliera San Camillo-Forlanini, 00152 Rome, Italy;
| | - Calogero Foti
- Physical and Rehabilitation Medicine, Clinical Sciences and Translational Medicine Department, Tor Vergata University, 00133 Rome, Italy;
| | - Gabriella Oliva
- Department of Internal Medicine, Ospedale del Mare, ASL1, 80147 Napoli, Italy;
| | - Stefania Mannarini
- Department of Philosophy, Sociology, Education, and Applied Psychology, Section of Applied Psychology, University of Padova, 35128 Padova, Italy; (S.M.); (A.A.R.)
- Interdepartmental Center for Family Research, University of Padova, 35128 Padova, Italy
| | - Alessandro Alberto Rossi
- Department of Philosophy, Sociology, Education, and Applied Psychology, Section of Applied Psychology, University of Padova, 35128 Padova, Italy; (S.M.); (A.A.R.)
- Interdepartmental Center for Family Research, University of Padova, 35128 Padova, Italy
| | - Pietro Ruggieri
- Orthopaedics and Orthopaedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padua, 35128 Padova, Italy; (C.B.); (P.R.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (F.O.); (G.A.); (N.M.)
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke on Trent ST4 7QB, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
| |
Collapse
|
3
|
Sekaran S, Vimalraj S, Thangavelu L. The Physiological and Pathological Role of Tissue Nonspecific Alkaline Phosphatase beyond Mineralization. Biomolecules 2021; 11:1564. [PMID: 34827562 PMCID: PMC8615537 DOI: 10.3390/biom11111564] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a key enzyme responsible for skeletal tissue mineralization. It is involved in the dephosphorylation of various physiological substrates, and has vital physiological functions, including extra-skeletal functions, such as neuronal development, detoxification of lipopolysaccharide (LPS), an anti-inflammatory role, bile pH regulation, and the maintenance of the blood brain barrier (BBB). TNAP is also implicated in ectopic pathological calcification of soft tissues, especially the vasculature. Although it is the crucial enzyme in mineralization of skeletal and dental tissues, it is a logical clinical target to attenuate vascular calcification. Various tools and studies have been developed to inhibit its activity to arrest soft tissue mineralization. However, we should not neglect its other physiological functions prior to therapies targeting TNAP. Therefore, a better understanding into the mechanisms mediated by TNAP is needed for minimizing off targeted effects and aid in the betterment of various pathological scenarios. In this review, we have discussed the mechanism of mineralization and functions of TNAP beyond its primary role of hard tissue mineralization.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
| | - Selvaraj Vimalraj
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
| |
Collapse
|