1
|
Wagner WJ, Gross ML. Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta. MASS SPECTROMETRY REVIEWS 2024; 43:782-825. [PMID: 36224716 PMCID: PMC10090239 DOI: 10.1002/mas.21814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein-inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein-inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein-inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.
Collapse
Affiliation(s)
- Wesley J Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Azadmanesh J, Seleem MA, Struble L, Wood NA, Fisher DJ, Lovelace JJ, Artigues A, Fenton AW, Borgstahl GEO, Ouellette SP, Conda-Sheridan M. The structure of caseinolytic protease subunit ClpP2 reveals a functional model of the caseinolytic protease system from Chlamydia trachomatis. J Biol Chem 2023; 299:102762. [PMID: 36463962 PMCID: PMC9823225 DOI: 10.1016/j.jbc.2022.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Chlamydia trachomatis (ct) is the most reported bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Caseinolytic proteases (ClpP) from pathogenic bacteria are attractive antibiotic targets, particularly for bacterial species that form persister colonies with phenotypic resistance against common antibiotics. ClpP functions as a multisubunit proteolytic complex, and bacteria are eradicated when ClpP is disrupted. Although crucial for chlamydial development and the design of agents to treat chlamydia, the structures of ctClpP1 and ctClpP2 have yet to be solved. Here, we report the first crystal structure of full-length ClpP2 as an inactive homotetradecamer in a complex with a candidate antibiotic at 2.66 Å resolution. The structure details the functional domains of the ClpP2 protein subunit and includes the handle domain, which is integral to proteolytic activation. In addition, hydrogen-deuterium exchange mass spectroscopy probed the dynamics of ClpP2, and molecular modeling of ClpP1 predicted an assembly with ClpP2. By leveraging previous enzymatic experiments, we constructed a model of ClpP2 activation and its interaction with the protease subunits ClpP1 and ClpX. The structural information presented will be relevant for future rational drug design against these targets and will lead to a better understanding of ClpP complex formation and activation within this important human pathogen.
Collapse
Affiliation(s)
- Jahaun Azadmanesh
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mohamed A Seleem
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lucas Struble
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nicholas A Wood
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska, USA
| | - Derek J Fisher
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Jeffrey J Lovelace
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scot P Ouellette
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska, USA
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
3
|
Turzo SMBA, Seffernick JT, Rolland AD, Donor MT, Heinze S, Prell JS, Wysocki VH, Lindert S. Protein shape sampled by ion mobility mass spectrometry consistently improves protein structure prediction. Nat Commun 2022; 13:4377. [PMID: 35902583 PMCID: PMC9334640 DOI: 10.1038/s41467-022-32075-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Ion mobility (IM) mass spectrometry provides structural information about protein shape and size in the form of an orientationally-averaged collision cross-section (CCSIM). While IM data have been used with various computational methods, they have not yet been utilized to predict monomeric protein structure from sequence. Here, we show that IM data can significantly improve protein structure determination using the modelling suite Rosetta. We develop the Rosetta Projection Approximation using Rough Circular Shapes (PARCS) algorithm that allows for fast and accurate prediction of CCSIM from structure. Following successful testing of the PARCS algorithm, we use an integrative modelling approach to utilize IM data for protein structure prediction. Additionally, we propose a confidence metric that identifies near native models in the absence of a known structure. The results of this study demonstrate the ability of IM data to consistently improve protein structure prediction.
Collapse
Affiliation(s)
- S M Bargeen Alam Turzo
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Amber D Rolland
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Micah T Donor
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Sten Heinze
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - James S Prell
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Page BM, Martin TA, Wright CL, Fenton LA, Villar MT, Tang Q, Artigues A, Lamb A, Fenton AW, Swint‐Kruse L. Odd one out? Functional tuning of Zymomonas mobilis pyruvate kinase is narrower than its allosteric, human counterpart. Protein Sci 2022; 31:e4336. [PMID: 35762709 PMCID: PMC9202079 DOI: 10.1002/pro.4336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
Various protein properties are often illuminated using sequence comparisons of protein homologs. For example, in analyses of the pyruvate kinase multiple sequence alignment, the set of positions that changed during speciation ("phylogenetic" positions) were enriched for "rheostat" positions in human liver pyruvate kinase (hLPYK). (Rheostat positions are those which, when substituted with various amino acids, yield a range of functional outcomes). However, the correlation was moderate, which could result from multiple biophysical constraints acting on the same position during evolution and/or various sources of noise. To further examine this correlation, we here tested Zymomonas mobilis PYK (ZmPYK), which has <65% sequence identity to any other PYK sequence. Twenty-six ZmPYK positions were selected based on their phylogenetic scores, substituted with multiple amino acids, and assessed for changes in Kapp-PEP . Although we expected to identify multiple, strong rheostat positions, only one moderate rheostat position was detected. Instead, nearly half of the 271 ZmPYK variants were inactive and most others showed near wild-type function. Indeed, for the active ZmPYK variants, the total range of Kapp,PEP values ("tunability") was 40-fold less than that observed for hLPYK variants. The combined functional studies and sequence comparisons suggest that ZmPYK has evolved functional and/or structural attributes that differ from the rest of the family. We hypothesize that including such "orphan" sequences in MSA analyses obscures the correlations used to predict rheostat positions. Finally, results raise the intriguing biophysical question as to how the same protein fold can support rheostat positions in one homolog but not another.
Collapse
Affiliation(s)
- Braelyn M. Page
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Tyler A. Martin
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Collette L. Wright
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
- Department of Molecular BiosciencesThe University of KansasLawrenceKansasUSA
| | - Lauren A. Fenton
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Maite T. Villar
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Qingling Tang
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Antonio Artigues
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Audrey Lamb
- Department of Molecular BiosciencesThe University of KansasLawrenceKansasUSA
- Department of ChemistryUniversity of Texas at San AntonioSan AntonioTexasUSA
| | - Aron W. Fenton
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Liskin Swint‐Kruse
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
5
|
Tremblay CY, Limpikirati P, Vachet RW. Complementary Structural Information for Stressed Antibodies from Hydrogen-Deuterium Exchange and Covalent Labeling Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1237-1248. [PMID: 33886284 PMCID: PMC8177069 DOI: 10.1021/jasms.1c00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Identifying changes in the higher-order structure (HOS) of therapeutic monoclonal antibodies upon storage, stress, or mishandling is important for ensuring efficacy and avoiding adverse effects. Here, we demonstrate diethylpyrocarbonate (DEPC)-based covalent labeling (CL) mass spectrometry (MS) and hydrogen-deuterium exchange (HDX)/MS can be used together to provide site-specific information about subtle conformational changes that are undetectable by traditional techniques. Using heat-stressed rituximab as a model protein, we demonstrate that CL/MS is more sensitive than HDX/MS to subtle HOS structural changes under low stress conditions (e.g., 45 and 55 °C for 4 h). At higher heat stress (65 °C for 4 h), we find CL/MS and HDX/MS provide complementary information, as CL/MS reports on changes in side chain orientation while HDX/MS reveals changes in backbone dynamics. More interestingly, we demonstrate that the two techniques work synergistically to identify likely aggregation sites in the heat-stressed protein. In particular, the CH3 and CL domains experience decreases in deuterium uptake after heat stress, while only the CH3 domain experiences decreases in DEPC labeling extent as well, suggesting the CH3 domain is a likely site of aggregation and the CL domain only undergoes a decrease in backbone dynamics. The combination of DEPC-CL/MS and HDX/MS provides valuable structural information, and the two techniques should be employed together when investigating the HOS of protein therapeutics.
Collapse
Affiliation(s)
- Catherine Y. Tremblay
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Patanachai Limpikirati
- Current Address: Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- To whom correspondence should be addressed:
| |
Collapse
|
6
|
Screening of novel excipients for freeze-dried protein formulations. Eur J Pharm Biopharm 2021; 160:55-64. [PMID: 33508435 DOI: 10.1016/j.ejpb.2021.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 11/22/2022]
Abstract
The typical excipients used as bulking agents and lyoprotectants for freeze-drying are usually limited to only a few selected substances, such as sucrose and mannitol. Considering the sheer diversity amongst proteins, it is doubtful that this limited choice should, in every case, provide the best possible option in order to achieve the most stable product. In this work, a screening of 12 proteins with 64 excipients was conducted in order to increase the knowledge space of potential excipients. Three critical quality attributes (CQAs) of the freeze-dried products, namely the solid state, the cake appearance and the protein integrity based on changes in tryptophan fluorescence were investigated by high throughput X-ray powder diffraction, image analysis and intrinsic fluorescence spectroscopy, respectively. It was found, that in some cases the excipient had a dominating influence on the CQAs, whilst in other cases the CQAs were primarily protein dependent, or that the CQAs were dependent on the combination of both. In the course of this investigation, a general view of potentially relevant excipients, and their interplay with various proteins, was obtained, thereby furthermore paving the way for the use of novel freeze-drying excipients.
Collapse
|
7
|
Biehn SE, Lindert S. Accurate protein structure prediction with hydroxyl radical protein footprinting data. Nat Commun 2021; 12:341. [PMID: 33436604 PMCID: PMC7804018 DOI: 10.1038/s41467-020-20549-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
Hydroxyl radical protein footprinting (HRPF) in combination with mass spectrometry reveals the relative solvent exposure of labeled residues within a protein, thereby providing insight into protein tertiary structure. HRPF labels nineteen residues with varying degrees of reliability and reactivity. Here, we are presenting a dynamics-driven HRPF-guided algorithm for protein structure prediction. In a benchmark test of our algorithm, usage of the dynamics data in a score term resulted in notable improvement of the root-mean-square deviations of the lowest-scoring ab initio models and improved the funnel-like metric Pnear for all benchmark proteins. We identified models with accurate atomic detail for three of the four benchmark proteins. This work suggests that HRPF data along with side chain dynamics sampled by a Rosetta mover ensemble can be used to accurately predict protein structure.
Collapse
Affiliation(s)
- Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Ozohanics O, Ambrus A. Hydrogen-Deuterium Exchange Mass Spectrometry: A Novel Structural Biology Approach to Structure, Dynamics and Interactions of Proteins and Their Complexes. Life (Basel) 2020; 10:E286. [PMID: 33203161 PMCID: PMC7696067 DOI: 10.3390/life10110286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) is a rapidly evolving technique for analyzing structural features and dynamic properties of proteins. It may stand alone or serve as a complementary method to cryo-electron-microscopy (EM) or other structural biology approaches. HDX-MS is capable of providing information on individual proteins as well as large protein complexes. Owing to recent methodological advancements and improving availability of instrumentation, HDX-MS is becoming a routine technique for some applications. When dealing with samples of low to medium complexity and sizes of less than 150 kDa, conformation and ligand interaction analyses by HDX-MS are already almost routine applications. This is also well supported by the rapid evolution of the computational (software) background that facilitates the analysis of the obtained experimental data. HDX-MS can cope at times with analytes that are difficult to tackle by any other approach. Large complexes like viral capsids as well as disordered proteins can also be analyzed by this method. HDX-MS has recently become an established tool in the drug discovery process and biopharmaceutical development, as it is now also capable of dissecting post-translational modifications and membrane proteins. This mini review provides the reader with an introduction to the technique and a brief overview of the most common applications. Furthermore, the most challenging likely applications, the analyses of glycosylated and membrane proteins, are also highlighted.
Collapse
Affiliation(s)
- Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| |
Collapse
|
9
|
Mitra G. Emerging Role of Mass Spectrometry-Based Structural Proteomics in Elucidating Intrinsic Disorder in Proteins. Proteomics 2020; 21:e2000011. [PMID: 32959512 DOI: 10.1002/pmic.202000011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Inherent disorder is an integral part of all proteomes, represented as fully or partially unfolded proteins. The lack of order in intrinsically disordered proteins (IDPs) results in an incredibly flexible, floppy, and heterogeneous ensemble, contrary to the well-structured and unique organization of folded proteins. Despite such unusual demeanor, IDPs are crucial for numerous cellular processes and are increasingly being associated with disease-causing pathologies. These warrant more intensive investigation of this atypical class of protein. Traditional biophysical tools, however, fall short of analyzing IDPs, thus making their structure-function characterization challenging. Mass spectrometry (MS) in recent years has evolved as a valuable tool for elucidating the unusual conformational facets of IDPs. In this review, the features of advanced MS techniques such as Hydrogen-deuterium exchange (HDX)-MS, native MS, limited proteolysis (LiP)-MS, chemical cross-linking (XL)-MS, and Fast photochemical oxidation of proteins (FPOP)-MS are briefly discussed. Recent MS studies on IDPs and the unique advantages/shortfalls associated with the above methods while evaluating structural proteomics of IDPs, are illustrated. Eventually the future scope of the MS methods in further decoding the unexplored landscapes of IDPs is presented.
Collapse
Affiliation(s)
- Gopa Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St John's Medical College, St. John's National Academy of Health Sciences, 100 Feet Road, Koramangala, Bangalore, Karnataka, 560034, India
| |
Collapse
|
10
|
Chiang S, Zhang W, Farnsworth C, Zhu Y, Lee K, Ouyang Z. Targeted Quantification of Peptides Using Miniature Mass Spectrometry. J Proteome Res 2020; 19:2043-2052. [PMID: 32202427 DOI: 10.1021/acs.jproteome.9b00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteomics by mass spectrometry (MS) allows for the identification of amino acid/peptide sequences in complex mixtures. Peptide analysis and quantitation enables screening of protein biomarkers and targeted protein biomarker analysis for clinical applications. Whereas miniature mass spectrometers have primarily demonstrated point-of-care analyses with simple procedures aiming at drugs and lipids, it would be interesting to explore their potential in analyzing proteins and peptides. In this work, we adapted a miniature MS instrument for peptide analysis. A mass range as wide as 100-2000 m/z was achieved for obtaining peptide spectra using this instrument with dual linear ion traps. MS2 and MS3 can be performed to analyze a wide range of peptides. The parameters of pressure, electric potentials, and solution conditions were optimized to analyze peptides with molecular weights between 900 and 1800 Da. The amino acid sequences were identified using both beam-type and in-trap collision-induced dissociation, and the results were comparable to those obtained by a commercial quadrupole time-of-flight mass spectrometer. With product ion monitoring scan mode, peptide quantitation was performed with a limit of detection of 20 nM achieved for the Met peptide. The method developed has also been applied to the analysis of the trypsin-digested cell lysate of SKBR3 cells with a low expression level of the Met gene.
Collapse
Affiliation(s)
- Spencer Chiang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wenpeng Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Yiying Zhu
- Cell Signaling Technology, Danvers, Massachusetts 01923, United States
| | - Kimberly Lee
- Cell Signaling Technology, Danvers, Massachusetts 01923, United States
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Xiong Y, Zhang Y, Liu X, Yao J, Lu H. A novel method for large-scale confirmation of protein structures and surface accessible modification sites. Talanta 2020; 211:120697. [DOI: 10.1016/j.talanta.2019.120697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022]
|
12
|
Danquah BD, Röwer C, Opuni KM, El-Kased R, Frommholz D, Illges H, Koy C, Glocker MO. Intact Transition Epitope Mapping - Targeted High-Energy Rupture of Extracted Epitopes (ITEM-THREE). Mol Cell Proteomics 2019; 18:1543-1555. [PMID: 31147491 PMCID: PMC6683010 DOI: 10.1074/mcp.ra119.001429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Epitope mapping, which is the identification of antigenic determinants, is essential for the design of novel antibody-based therapeutics and diagnostic tools. ITEM-THREE is a mass spectrometry-based epitope mapping method that can identify epitopes on antigens upon generating an immune complex in electrospray-compatible solutions by adding an antibody of interest to a mixture of peptides from which at least one holds the antibody's epitope. This mixture is nano-electrosprayed without purification. Identification of the epitope peptide is performed within a mass spectrometer that provides an ion mobility cell sandwiched in-between two collision cells and where this ion manipulation setup is flanked by a quadrupole mass analyzer on one side and a time-of-flight mass analyzer on the other side. In a stepwise fashion, immune-complex ions are separated from unbound peptide ions and dissociated to release epitope peptide ions. Immune complex-released peptide ions are separated from antibody ions and fragmented by collision induced dissociation. Epitope-containing peptide fragment ions are recorded, and mass lists are submitted to unsupervised data base search thereby retrieving both, the amino acid sequence of the epitope peptide and the originating antigen. ITEM-THREE was developed with antiTRIM21 and antiRA33 antibodies for which the epitopes were known, subjecting them to mixtures of synthetic peptides of which one contained the respective epitope. ITEM-THREE was then successfully tested with an enzymatic digest of His-tagged recombinant human β-actin and an antiHis-tag antibody, as well as with an enzymatic digest of recombinant human TNFα and an antiTNFα antibody whose epitope was previously unknown.
Collapse
Affiliation(s)
- Bright D Danquah
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Claudia Röwer
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | | | - Reham El-Kased
- ¶Microbiology and Immunology Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - David Frommholz
- ‖University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany
| | - Harald Illges
- ‖University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany;; **University of Applied Sciences Bonn-Rhein-Sieg, Institute for Functional Gene Analytics, Rheinbach, Germany
| | - Cornelia Koy
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Michael O Glocker
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
13
|
Jebarupa B, Mathew B, Srinivasu BY, Sasikumaran A, Joseph S, Mandal AK, Thomas T, Mitra G. Understanding molecular features of aggregation-resistant tau conformer using oxidized monomer. Biochim Biophys Acta Gen Subj 2019; 1863:993-1005. [DOI: 10.1016/j.bbagen.2019.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
14
|
Konno S, La Clair JJ, Burkart MD. Trapping the Complex Molecular Machinery of Polyketide and Fatty Acid Synthases with Tunable Silylcyanohydrin Crosslinkers. Angew Chem Int Ed Engl 2018; 57:17009-17013. [PMID: 30379389 PMCID: PMC6407627 DOI: 10.1002/anie.201806865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/19/2018] [Indexed: 12/14/2022]
Abstract
Many families of natural products are synthesized by large multidomain biological machines commonly referred to as megasynthases. While the advance of mechanism-based tools has opened new windows into the structural features within the protein-protein interfaces guiding carrier protein dependent enzymes, there is an immediate need for tools that can be engaged to link co-translated domains in a site-selective manner. Now, the use of silylcyanohydrins is demonstrated in a two-step, two-site selective crosslinking for the trapping of carrier-protein interactions within megasynthases. This advance provides a new tool to trap intermediate states within multimodular systems, a key step toward understanding the specificities within fatty acid (FAS) and polyketide (PKS) synthases.
Collapse
Affiliation(s)
- Sho Konno
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
15
|
Santambrogio C, Natalello A, Brocca S, Ponzini E, Grandori R. Conformational Characterization and Classification of Intrinsically Disordered Proteins by Native Mass Spectrometry and Charge‐State Distribution Analysis. Proteomics 2018; 19:e1800060. [DOI: 10.1002/pmic.201800060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Carlo Santambrogio
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Antonino Natalello
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Stefania Brocca
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Erika Ponzini
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Rita Grandori
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
16
|
Konno S, La Clair JJ, Burkart MD. Trapping the Complex Molecular Machinery of Polyketide and Fatty Acid Synthases with Tunable Silylcyanohydrin Crosslinkers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sho Konno
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - James J. La Clair
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
17
|
Yatabe K, Hisada M, Tabuchi Y, Taki M. A Cysteine-Reactive Small Photo-Crosslinker Possessing Caged-Fluorescence Properties: Binding-Site Determination of a Combinatorially-Selected Peptide by Fluorescence Imaging/Tandem Mass Spectrometry. Int J Mol Sci 2018; 19:E3682. [PMID: 30469338 PMCID: PMC6274937 DOI: 10.3390/ijms19113682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 11/17/2022] Open
Abstract
To determine the binding-site of a combinatorially-selected peptide possessing a fluoroprobe, a novel cysteine reactive small photo-crosslinker that can be excited by a conventional long-wavelength ultraviolet handlamp (365 nm) was synthesized via Suzuki coupling with three steps. The crosslinker is rationally designed, not only as a bioisostere of the fluoroprobe, but as a caged-fluorophore, and the photo-crosslinked target protein became fluorescent with a large Stokes-shift. By introducing the crosslinker to a designated sulfhydryl (SH) group of a combinatorially-selected peptide, the protein-binding site of the targeted peptide was deduced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/fluorescence imaging followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry (MALDI-TOF-MS/MS) analysis.
Collapse
Affiliation(s)
- Kazuki Yatabe
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Masaru Hisada
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Yudai Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Masumi Taki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| |
Collapse
|
18
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Chemical crosslinking analysis of β-dystroglycan in dystrophin-deficient skeletal muscle. HRB Open Res 2018; 1:17. [PMID: 35528858 PMCID: PMC9039762 DOI: 10.12688/hrbopenres.12846.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Background: In Duchenne muscular dystrophy, primary abnormalities in the membrane cytoskeletal protein dystrophin trigger the loss of sarcolemmal linkage between the extracellular matrix component laminin-211 and the intracellular cortical actin membrane cytoskeleton. The disintegration of the dystrophin-associated glycoprotein complex renders the plasma membrane of contractile fibres more susceptible to micro-rupturing, which is associated with abnormal calcium handling and impaired cellular signalling in dystrophinopathy. Methods: The oligomerisation pattern of β-dystroglycan, an integral membrane protein belonging to the core dystrophin complex, was studied using immunoprecipitation and chemical crosslinking analysis. A homo-bifunctional and non-cleavable agent with water-soluble and amine-reactive properties was employed to study protein oligomerisation in normal versus dystrophin-deficient skeletal muscles. Crosslinker-induced protein oligomerisation was determined by a combination of gel-shift analysis and immunoblotting. Results: Although proteomics was successfully applied for the identification of dystroglycan as a key component of the dystrophin-associated glycoprotein complex in the muscle membrane fraction, mass spectrometric analysis did not efficiently recognize this relatively low-abundance protein after immunoprecipitation or chemical crosslinking. As an alternative approach, comparative immunoblotting was used to evaluate the effects of chemical crosslinking. Antibody decoration of the crosslinked microsomal protein fraction from wild type versus the
mdx-4cv mouse model of dystrophinopathy revealed oligomers that contain β-dystroglycan. The protein exhibited a comparable reduction in gel electrophoretic mobility in both normal and dystrophic samples. The membrane repair proteins dysferlin and myoferlin, which are essential components of fibre regeneration, as well as the caveolae-associated protein cavin-1, were also shown to exist in high-molecular mass complexes. Conclusions: The muscular dystrophy-related reduction in the concentration of β-dystroglycan, which forms in conjunction with its extracellular binding partner α-dystroglycan a critical plasmalemmal receptor for laminin-211, does not appear to alter its oligomeric status. Thus, independent of direct interactions with dystrophin, this sarcolemmal glycoprotein appears to exist in a supramolecular assembly in muscle.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | | | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
19
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Chemical crosslinking analysis of β-dystroglycan in dystrophin-deficient skeletal muscle. HRB Open Res 2018; 1:17. [PMID: 35528858 PMCID: PMC9039762 DOI: 10.12688/hrbopenres.12846.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 07/30/2023] Open
Abstract
Background: In Duchenne muscular dystrophy, primary abnormalities in the membrane cytoskeletal protein dystrophin trigger the loss of sarcolemmal linkage between the extracellular matrix component laminin-211 and the intracellular cortical actin membrane cytoskeleton. The disintegration of the dystrophin-associated glycoprotein complex renders the plasma membrane of contractile fibres more susceptible to micro-rupturing, which is associated with abnormal calcium handling and impaired cellular signalling in dystrophinopathy. Methods: The oligomerisation pattern of β-dystroglycan, an integral membrane protein belonging to the core dystrophin complex, was studied using immunoprecipitation and chemical crosslinking analysis. A homo-bifunctional and non-cleavable agent with water-soluble and amine-reactive properties was employed to study protein oligomerisation in normal versus dystrophin-deficient skeletal muscles. Crosslinker-induced protein oligomerisation was determined by a combination of gel-shift analysis and immunoblotting. Results: Although proteomics was successfully applied for the identification of dystroglycan as a key component of the dystrophin-associated glycoprotein complex in the muscle membrane fraction, mass spectrometric analysis did not efficiently recognize this relatively low-abundance protein after immunoprecipitation or chemical crosslinking. As an alternative approach, comparative immunoblotting was used to evaluate the effects of chemical crosslinking. Antibody decoration of the crosslinked microsomal protein fraction from wild type versus the mdx-4cv mouse model of dystrophinopathy revealed oligomers that contain β-dystroglycan. The protein exhibited a comparable reduction in gel electrophoretic mobility in both normal and dystrophic samples. The membrane repair proteins dysferlin and myoferlin, which are essential components of fibre regeneration, as well as the caveolae-associated protein cavin-1, were also shown to exist in high-molecular mass complexes. Conclusions: The muscular dystrophy-related reduction in the concentration of β-dystroglycan, which forms in conjunction with its extracellular binding partner α-dystroglycan a critical plasmalemmal receptor for laminin-211, does not appear to alter its oligomeric status. Thus, independent of direct interactions with dystrophin, this sarcolemmal glycoprotein appears to exist in a supramolecular assembly in muscle.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | | | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
20
|
Brielle ES, Arkin IT. Site-Specific Hydrogen Exchange in a Membrane Environment Analyzed by Infrared Spectroscopy. J Phys Chem Lett 2018; 9:4059-4065. [PMID: 29957958 DOI: 10.1021/acs.jpclett.8b01675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogen exchange is a powerful method to examine macromolecules. In membrane proteins, exchange can distinguish between solvent-accessible and -inaccessible residues due to shielding by the hydrophobic environment of the lipid bilayer. Herein, rather than examining which residues undergo hydrogen exchange, we employ a protocol that enables the full deuteration of all polar hydrogens in a membrane protein. We then measure the impact of hydrogen exchange on the shift of the amide I vibrational mode of individually labeled sites. The results enable us to correlate polarity with vibrational shifts, thereby providing a powerful tool to examine specific locations within a membrane protein in its native membrane environment.
Collapse
Affiliation(s)
- Esther S Brielle
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Jerusalem 91904 , Israel
| | - Isaiah T Arkin
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Jerusalem 91904 , Israel
| |
Collapse
|
21
|
Oganesyan I, Lento C, Wilson DJ. Contemporary hydrogen deuterium exchange mass spectrometry. Methods 2018; 144:27-42. [DOI: 10.1016/j.ymeth.2018.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 02/07/2023] Open
|
22
|
Xiao K, Zhao Y, Choi M, Liu H, Blanc A, Qian J, Cahill TJ, Li X, Xiao Y, Clark LJ, Li S. Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping. Nat Protoc 2018; 13:1403-1428. [PMID: 29844522 DOI: 10.1038/nprot.2018.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many cellular functions necessitate structural assemblies of two or more associated proteins. The structural characterization of protein complexes using standard methods, such as X-ray crystallography, is challenging. Herein, we describe an orthogonal approach using hydrogen-deuterium-exchange mass spectrometry (HDXMS), cross-linking mass spectrometry (CXMS), and disulfide trapping to map interactions within protein complexes. HDXMS measures changes in solvent accessibility and hydrogen bonding upon complex formation; a decrease in HDX rate could account for newly formed intermolecular or intramolecular interactions. To distinguish between inter- and intramolecular interactions, we use a CXMS method to determine the position of direct interface regions by trapping intermolecular residues in close proximity to various cross-linkers (e.g., disuccinimidyl adipate (DSA)) of different lengths and reactive groups. Both MS-based experiments are performed on high-resolution mass spectrometers (e.g., an Orbitrap Elite hybrid mass spectrometer). The physiological relevance of the interactions identified through HDXMS and CXMS is investigated by transiently co-expressing cysteine mutant pairs, one mutant on each protein at the discovered interfaces, in an appropriate cell line, such as HEK293. Disulfide-trapped protein complexes are formed within cells spontaneously or are facilitated by addition of oxidation reagents such as H2O2 or diamide. Western blotting analysis, in the presence and absence of reducing reagents, is used to determine whether the disulfide bonds are formed in the proposed complex interface in physiologically relevant milieus. The procedure described here requires 1-2 months. We demonstrate this approach using the β2-adrenergic receptor-β-arrestin1 complex as the model system.
Collapse
Affiliation(s)
- Kunhong Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Biomedical Mass Spectrometry Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yang Zhao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Minjung Choi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adi Blanc
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jiang Qian
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas J Cahill
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Xue Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Yunfang Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lisa J Clark
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sheng Li
- Department of Chemistry, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
23
|
Rimmer MA, Nadeau OW, Yang J, Artigues A, Zhang Y, Carlson GM. The structure of the large regulatory α subunit of phosphorylase kinase examined by modeling and hydrogen-deuterium exchange. Protein Sci 2017; 27:472-484. [PMID: 29098725 DOI: 10.1002/pro.3339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 01/31/2023]
Abstract
Phosphorylase kinase (PhK), a 1.3 MDa regulatory enzyme complex in the glycogenolysis cascade, has four copies each of four subunits, (αβγδ)4 , and 325 kDa of unique sequence (the mass of an αβγδ protomer). The α, β and δ subunits are regulatory, and contain allosteric activation sites that stimulate the activity of the catalytic γ subunit in response to diverse signaling molecules. Due to its size and complexity, no high resolution structures have been solved for the intact complex or its regulatory α and β subunits. Of PhK's four subunits, the least is known about the structure and function of its largest subunit, α. Here, we have modeled the full-length α subunit, compared that structure against previously predicted domains within this subunit, and performed hydrogen-deuterium exchange on the intact subunit within the PhK complex. Our modeling results show α to comprise two major domains: an N-terminal glycoside hydrolase domain and a large C-terminal importin α/β-like domain. This structure is similar to our previously published model for the homologous β subunit, although clear structural differences are present. The overall highly helical structure with several intervening hinge regions is consistent with our hydrogen-deuterium exchange results obtained for this subunit as part of the (αβγδ)4 PhK complex. Several low exchanging regions predicted to lack ordered secondary structure are consistent with inter-subunit contact sites for α in the quaternary structure of PhK; of particular interest is a low-exchanging region in the C-terminus of α that is known to bind the regulatory domain of the catalytic γ subunit.
Collapse
Affiliation(s)
- Mary Ashley Rimmer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, KS, 66160
| | - Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, KS, 66160
| | - Jianyi Yang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, MI, 48109
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, KS, 66160
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, MI, 48109
| | - Gerald M Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, KS, 66160
| |
Collapse
|
24
|
Adeola HA, Van Wyk JC, Arowolo A, Ngwanya RM, Mkentane K, Khumalo NP. Emerging Diagnostic and Therapeutic Potentials of Human Hair Proteomics. Proteomics Clin Appl 2017; 12. [PMID: 28960873 DOI: 10.1002/prca.201700048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/09/2017] [Indexed: 01/22/2023]
Abstract
The use of noninvasive human substrates to interrogate pathophysiological conditions has become essential in the post- Human Genome Project era. Due to its high turnover rate, and its long term capability to incorporate exogenous and endogenous substances from the circulation, hair testing is emerging as a key player in monitoring long term drug compliance, chronic alcohol abuse, forensic toxicology, and biomarker discovery, among other things. Novel high-throughput 'omics based approaches like proteomics have been underutilized globally in comprehending human hair morphology and its evolving use as a diagnostic testing substrate in the era of precision medicine. There is paucity of scientific evidence that evaluates the difference in drug incorporation into hair based on lipid content, and very few studies have addressed hair growth rates, hair forms, and the biological consequences of hair grooming or bleaching. It is apparent that protein-based identification using the human hair proteome would play a major role in understanding these parameters akin to DNA single nucleotide polymorphism profiling, up to single amino acid polymorphism resolution. Hence, this work seeks to identify and discuss the progress made thus far in the field of molecular hair testing using proteomic approaches, and identify ways in which proteomics would improve the field of hair research, considering that the human hair is mostly composed of proteins. Gaps in hair proteomics research are identified and the potential of hair proteomics in establishing a historic medical repository of normal and disease-specific proteome is also discussed.
Collapse
Affiliation(s)
- Henry A Adeola
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Jennifer C Van Wyk
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Afolake Arowolo
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Reginald M Ngwanya
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Khwezikazi Mkentane
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|