1
|
Grubb LE, Scandola S, Mehta D, Khodabocus I, Uhrig RG. Quantitative Proteomic Analysis of Brassica Napus Reveals Intersections Between Nutrient Deficiency Responses. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39449274 DOI: 10.1111/pce.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Macronutrients such as nitrogen (N), phosphorus (P), potassium (K) and sulphur (S) are critical for plant growth and development. Field-grown canola (Brassica napus L.) is supplemented with fertilizers to maximize plant productivity, while deficiency in these nutrients can cause significant yield loss. A holistic understanding of the interplay between these nutrient deficiency responses in a single study and canola cultivar is thus far lacking, hindering efforts to increase the nutrient use efficiency of this important oil seed crop. To address this, we performed a comparative quantitative proteomic analysis of both shoot and root tissue harvested from soil-grown canola plants experiencing either nitrogen, phosphorus, potassium or sulphur deficiency. Our data provide critically needed insights into the shared and distinct molecular responses to macronutrient deficiencies in canola. Importantly, we find more conserved responses to the four different nutrient deficiencies in canola roots, with more distinct proteome changes in aboveground tissue. Our results establish a foundation for a more comprehensive understanding of the shared and distinct nutrient deficiency response mechanisms of canola plants and pave the way for future breeding efforts.
Collapse
Affiliation(s)
- L E Grubb
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - S Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - D Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biosystems, KU Leuven, Leuven, Belgium
- Leuven Plant Institute, KU Leuven, Leuven, Belgium
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - I Khodabocus
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Starosta E, Jamruszka T, Szwarc J, Bocianowski J, Jędryczka M, Grynia M, Niemann J. DArTseq-Based, High-Throughput Identification of Novel Molecular Markers for the Detection of Blackleg ( Leptosphaeria Spp.) Resistance in Rapeseed. Int J Mol Sci 2024; 25:8415. [PMID: 39125985 PMCID: PMC11313370 DOI: 10.3390/ijms25158415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Blackleg disease, caused by Leptosphaeria spp. fungi, is one of the most important diseases of Brassica napus, responsible for severe yield losses worldwide. Blackleg resistance is controlled by major R genes and minor quantitative trait loci (QTL). Due to the high adaptation ability of the pathogen, R-mediated resistance can be easily broken, while the resistance mediated via QTL is believed to be more durable. Thus, the identification of novel molecular markers linked to blackleg resistance for B. napus breeding programs is essential. In this study, 183 doubled haploid (DH) rapeseed lines were assessed in field conditions for resistance to Leptosphaeria spp. Subsequently, DArTseq-based Genome-Wide Association Study (GWAS) was performed to identify molecular markers linked to blackleg resistance. A total of 133,764 markers (96,121 SilicoDArT and 37,643 SNP) were obtained. Finally, nine SilicoDArT and six SNP molecular markers were associated with plant resistance to Leptosphaeria spp. at the highest significance level, p < 0.001. Importantly, eleven of these fifteen markers were found within ten genes located on chromosomes A06, A07, A08, C02, C03, C06 and C08. Given the immune-related functions of the orthologues of these genes in Arabidopsis thaliana, the identified markers hold great promise for application in rapeseed breeding programs.
Collapse
Affiliation(s)
- Ewa Starosta
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Tomasz Jamruszka
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Justyna Szwarc
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-627 Poznań, Poland;
| | - Małgorzata Jędryczka
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Magdalena Grynia
- IHAR Group, Borowo Department, Strzelce Plant Breeding Ltd., Borowo 35, 64-020 Czempiń, Poland;
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| |
Collapse
|
3
|
Hu M, Fang S, Wei B, Hu Q, Cai M, Zeng T, Gu L, Wang H, Du X, Zhu B, Ou J. Characteristics and Cytological Analysis of Several Novel Allopolyploids and Aneuploids between Brassica oleracea and Raphanus sativus. Int J Mol Sci 2024; 25:8368. [PMID: 39125948 PMCID: PMC11313488 DOI: 10.3390/ijms25158368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Polyploids are essential in plant evolution and species formation, providing a rich genetic reservoir and increasing species diversity. Complex polyploids with higher ploidy levels often have a dosage effect on the phenotype, which can be highly detrimental to gametes, making them rare. In this study, offspring plants resulting from an autoallotetraploid (RRRC) derived from the interspecific hybridization between allotetraploid Raphanobrassica (RRCC, 2n = 36) and diploid radish (RR, 2n = 18) were obtained. Fluorescence in situ hybridization (FISH) using C-genome-specific repeats as probes revealed two main genome configurations in these offspring plants: RRRCC (2n = 43, 44, 45) and RRRRCC (2n = 54, 55), showing more complex genome configurations and higher ploidy levels compared to the parental plants. These offspring plants exhibited extensive variation in phenotypic characteristics, including leaf type and flower type and color, as well as seed and pollen fertility. Analysis of chromosome behavior showed that homoeologous chromosome pairing events are widely observed at the diakinesis stage in the pollen mother cells (PMCs) of these allopolyploids, with a range of 58.73% to 78.33%. Moreover, the unreduced C subgenome at meiosis anaphase II in PMCs was observed, which provides compelling evidence for the formation of complex allopolyploid offspring. These complex allopolyploids serve as valuable genetic resources for further analysis and contribute to our understanding of the mechanisms underlying the formation of complex allopolyploids.
Collapse
Affiliation(s)
- Mingyang Hu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Shiting Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Bo Wei
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Qi Hu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Mengxian Cai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Jing Ou
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Li H, Wan L, Li C, Wang L, Zhu S, Chen X, Wang P. Hyperspectal imaging technology for phenotyping iron and boron deficiency in Brassica napus under greenhouse conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1351301. [PMID: 38855462 PMCID: PMC11157068 DOI: 10.3389/fpls.2024.1351301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
Introduction The micronutrient deficiency of iron and boron is a common issue affecting the growth of rapeseed (Brassica napus). In this study, a non-destructive diagnosis method for iron and boron deficiency in Brassica napus (genotype: Zhongshuang 11) using hyperspectral imaging technology was established. Methods The recognition accuracy was compared using the Fisher Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) recognition models. Recognition results showed that Multiple Scattering Correction (MSC) could be applied for the full band hyperspectral data processing, while the LDA models presented better performance on establishing the leaf iron and boron deficiency symptom recognition than the SVM models. Results The recognition accuracy of the training set reached 96.67%, and the recognition rate of the prediction set could be 91.67%. To improve the model accuracy, the Competitive Adaptive Reweighted Sampling algorithm (CARS) was added to construct the MSC-CARS-LDA model. 33 featured wavelengths were selected via CARS. The recognition accuracy of the MSC-CARS-LDA training set was 100%, while the recognition accuracy of the MSC-CARS-LDA prediction set was 95.00%. Discussion This study indicates that, it is capable to identify the iron and boron deficiency in rapeseed using hyperspectral imaging technology.
Collapse
Affiliation(s)
- Hui Li
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Long Wan
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
| | - Chengsong Li
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Chinese Academy of Agricultural Sciences & Southwest University, Chongqing, China
| | - Lihong Wang
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
| | - Shiping Zhu
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Pei Wang
- College of Engineering and Technology, Key Laboratory of Agricultural Equipment for Hilly and Mountain Areas, Southwest University, Chongqing, China
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
5
|
Mestinšek Mubi Š, Kunej U, Vogrinčič V, Jakše J, Murovec J. The effect of phytosulfokine alpha on haploid embryogenesis and gene expression of Brassica napus microspore cultures. FRONTIERS IN PLANT SCIENCE 2024; 15:1336519. [PMID: 38425801 PMCID: PMC10902448 DOI: 10.3389/fpls.2024.1336519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Microspore embryogenesis (ME) is the most powerful tool for creating homozygous lines in plant breeding and molecular biology research. It is still based mainly on the reprogramming of microspores by temperature, osmotic and/or nutrient stress. New compounds are being sought that could increase the efficiency of microspore embryogenesis or even induce the formation of haploid embryos from recalcitrant genotypes. Among these, the mitogenic factor phytosulfokine alpha (PSK-α) is promising due to its broad spectrum of activity in vivo and in vitro. The aim of our study was to investigate the effect of PSK-α on haploid embryogenesis from microspores of oilseed rape (Brassica napus L., DH4079), one of the most important oil crops and a model plant for studying the molecular mechanisms controlling embryo formation. We tested different concentrations (0, 0.01, 0.1 and 1 µM) of the peptide and evaluated its effect on microspore viability and embryo regeneration after four weeks of culture. Our results showed a positive correlation between addition of PSK-α and cultured microspore viability and a positive effect also on the number of developed embryos. The analysis of transcriptomes across three time points (day 0, 2 and 4) with or without PSK-α supplementation (15 RNA libraries in total) unveiled differentially expressed genes pivotal in cell division, microspore embryogenesis, and subsequent regeneration. PCA grouped transcriptomes by RNA sampling time, with the first two principal components explaining 56.8% variability. On day 2 with PSK, 45 genes (15 up- and 30 down-regulated) were differentially expressed when PSK-α was added and their number increased to 304 by day 4 (30 up- and 274 down-regulated). PSK, PSKR, and PSI gene expression analysis revealed dynamic patterns, with PSK2 displaying the highest increase and overall expression during microspore culture at days 2 and 4. Despite some variations, only PSK1 showed significant differential expression upon PSK-α addition. Of 16 ME-related molecular markers, 3 and 15 exhibited significant differential expression in PSK-supplemented cultures at days 2 and 4, respectively. Embryo-specific markers predominantly expressed after 4 days of culture, with higher expression in medium without PSK, while on day 0, numerous sporophyte-specific markers were highly expressed.
Collapse
|
6
|
Gul-Lalay, Ullah S, Shah S, Jamal A, Saeed MF, Mihoub A, Zia A, Ahmed I, Seleiman MF, Mancinelli R, Radicetti E. Combined Effect of Biochar and Plant Growth-Promoting Rhizbacteria on Physiological Responses of Canola (Brassica napus L.) Subjected to Drought Stress. JOURNAL OF PLANT GROWTH REGULATION 2024. [DOI: 10.1007/s00344-023-11219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 02/07/2024]
Abstract
AbstractBiochar (BC) and plant growth-promoting microbes (PGPR) could represent a suitable agronomical strategy to mitigate the impacts of drought in arid agro-environmental conditions. However, there is currently little understanding of the synergistic benefit of combining BC and PGPR to increase drought tolerance in oilseeds. In this study, the physiological response of two water-stressed canola (Brassica napus L.) plants subjected to the application of BC obtained from waste wood of Morus alba applied solely or in combination with PGPR strains (Pseudomonas sp.) was evaluated. The experiment consists of two genotypes and nine treatments [(C-Control, T1-15 days drought (15DD), T2-30 days drought (30DD), T3-15 days of drought + PG (15DD + PG), T4-30 days of drought + PG (30DD + PG), T5-15 days drought + biochar (15DD + BC), T6-30 days drought + biochar (30DD + BC), T7-15 days drought + biochar + PG (15DD + BC + PG), T8-30 days drought + biochar + PG (30DD + BC + PG)]. Drought stress decreased emergence energy (EE), leaf area index (LAI), leaf area ratio (LAR), root shoot ratio (RSR), moisture content of leaves (MCL), percent moisture content (%MC), moisture content of shoot (MCS) and moisture content of root (MCR), and relative water content (RWC) in both varieties of Brassica napus L., which in contrast, it is increased by the collective application of both biochar and PGPR. In both varieties, N, P, K, Mg, and Ca concentrations were highest in all the biochar and PGPRs separate and combined treatments, while lowest in 15 and 30 days drought treatments. Osmolyte contents like Glycine betaine (GB) and sugar remarkably increased in the stress condition and then reduced due to the synergistic application of biochar and PGPR. Drought stress has a repressive effect on the antioxidant enzymatic system like Peroxidase (POD), Superoxide dismutase (SOD), and glutathione reductase (GR) as well as total flavonoids, phenolics, and protein content. The antioxidant enzymes and phenolic compounds were dramatically increased by the combined action of biochar and PGPRs. A significant increase in EE, LAR, RSR, and RWC under 15 and 30 days drought conditions, evidently highlighting the synergistic effect of BC and PGPR. The results conclude a substantial and positive effect of the combined use of BC and PGPR strains on canola's response to induced drought stress, by regulating the physiological, biochemical, and agronomic traits of the plants.
Graphical Abstract
Collapse
|
7
|
Ali F, Ali F, Bibi A, S. Dessoky E, Almowallad S, AlShaqhaa MA, AL-Balawi SM, Darwish DBE, Allohibi A, Omara MY, Althobaiti F. Morphological, Biochemical, and Molecular Characterization of Exotic Brassica Germplasm. ACS OMEGA 2023; 8:44773-44783. [PMID: 38046330 PMCID: PMC10688158 DOI: 10.1021/acsomega.3c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Oilseed rape (Brassica napus L.) is an important oilseed crop. We examined the diversity of germplasm expressed at three distinct levels (i.e., morphological, biochemical, and DNA levels). In this study, 150 B. napus L. accessions with three check varieties were provided by Bioresources Conservation Institute. The germplasm was grown in field conditions for data collection of 15 quantitative and nine qualitative agro-morphological traits. The result indicated that for 15 quantitative agro-morphological traits, the highest coefficient of variation was recorded for plant height and days to flowering initiation. For nine qualitative traits, most of the accessions have a spatulate leaf, brown color seeds, yellow flowers, and erect silique attitude. The best adoptable genetically diverse exotic Brassica germplasms were selected, i.e., accessions 24178, 24881, 24199, 24214, 24242, and 24192. Based on biochemical analysis for high oil content and high oleic acid content, chakwal sarsoon and accession 24192 were selected. For high oleic and linoleic acids, accession 24181 performed best, for low erucic acid accessions 24177 and 24195. Based on molecular (SSR) markers, the top 50 selected genotypes were evaluated with 30 SSR markers. The 47 genotypes with three check varieties were clustered in six major groups; the coefficient of similarity ranged between 0.18 and 1.00. Based on SSR data, the germplasms accession 24178 and Abasin were the most diverse genotypes. These genotypes have the capacity and could be used in future breeding programs. High genetic variations were investigated through the SSR among the studied genotypes of Brassica napus L. The present study also concluded that SSR is a better technique for intraspecific genetic diversity. Other modern techniques should be applied such as SNIP for the investigation of a high level of genetic diversity among crop plants in the future.
Collapse
Affiliation(s)
- Fawad Ali
- Institute
of Biotechnology and Microbiology, Bacha
Khan University, Charsadda, KPK 24420, Pakistan
| | - Farhad Ali
- Institute
of Biotechnology and Microbiology, Bacha
Khan University, Charsadda, KPK 24420, Pakistan
| | - Ayesha Bibi
- Department
of Human Nutrition and Dietetics, Women
University Mardan, Mardan 24420, KP, Pakistan
| | - Eldessoky S. Dessoky
- Department
of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sanaa Almowallad
- Department
of Biochemistry, Faculty of Sciences, University
of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Siham M. AL-Balawi
- Department
of Biology, Faculty of Science, University
of Tabuk P.O.Box:741, Tabuk 71491, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Department
of Biology, Faculty of Science, University
of Tabuk P.O.Box:741, Tabuk 71491, Saudi Arabia
- Botany
Department, Faculty of Science, Mansoura
University, Mansoura 35511, Egypt
| | - Aminah Allohibi
- Biological
Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohamed Y. Omara
- Department
of Clinical Pharmacy, Tanta University, Tanta 31511, Egypt
| | - Fayez Althobaiti
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
8
|
Nazari H, Mohammadkhani N, Servati M. Performance of soil quality indicators in estimation and distribution of rapeseed yield. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1529. [PMID: 38001243 DOI: 10.1007/s10661-023-12164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
This research aimed to evaluate the quality of soils for rapeseed crop production by Boolean and fuzzy-analytical hierarchy process (FAHP) approach in northwest of Iran. To this purpose, the physical, chemical, and topography quality indicators of land were selected based on agricultural considerations that were obtained from 83 fields. The spatial distribution of soil quality indicators was prepared using inverse distance weighting (IDW) technique. Also, validation of the developed model was performed using composite operator. The results showed that physical and chemical properties were key deciding parameters for the evaluation of soil quality. In the developed models, clay, sand, silt, soil organic matter, pH, calcium carbonate equivalent, electrical conductivity, and elevation were selected as modeling parameters. AHP technique showed that soil texture and elevation had the strongest and weakest influences on rapeseed yield, respectively. By dividing lands into four suitability categories, FAHP could more easily classify lands into soil quality classes where 36.3% of the study area was permanently unsuitable, 39.7% was marginally suitable, 22.6% was moderately suitable, and 1.4% was suitable. The comparison results of soil quality and rapeseed yield map by composite operator showed that FAHP with 77% agreement provided better results than Boolean approach with 39% agreement. Finally, this research will provide a reasonable record in ensuring crop yield security, agronomic use and management of rapeseed as well as increasing crop income. Hence, FAHP was introduced as an efficient approach.
Collapse
Affiliation(s)
- Hosnie Nazari
- Department of Mining Engineering, Urmia University, Urmia, Iran
| | - Nayer Mohammadkhani
- Shahid Bakeri High Education Center of Miandoab, Urmia University, Urmia, Iran
| | - Moslem Servati
- Shahid Bakeri High Education Center of Miandoab, Urmia University, Urmia, Iran.
| |
Collapse
|
9
|
Kim YH, Mao S, Sahu N, Somaddar U, Kim HT, Watanabe M, Park JI. Molecular Marker Development for the Rapid Differentiation of Black Rot Causing Xanthomonas campestris pv. campestris Race 7. THE PLANT PATHOLOGY JOURNAL 2023; 39:494-503. [PMID: 37817495 PMCID: PMC10580059 DOI: 10.5423/ppj.oa.07.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a plant pathogen of Brassica crops that causes black rot disease throughout the world. At present, 11 physiological races of Xcc (races 1-11) have been reported. The conventional method of using differential cultivars for Xcc race detection is not accurate and it is laborious and time-consuming. Therefore, the development of specific molecular markers has been used as a substitute tool because it offers an accurate and reliable result, particularly a quick diagnosis of Xcc races. Previously, our laboratory has successfully developed race-specific molecular markers for Xcc races 1-6. In this study, specific molecular markers to identify Xcc race 7 have been developed. In the course of study, whole genome sequences of several Xcc races, X. campestris pv. incanae, X. campestris pv. raphani, and X. campestris pv. vesicatoria were aligned to identify variable regions like sequence-characterized amplified regions and insertions and deletions specific to race 7. Primer pairs were designed targeting these regions and validated against 22 samples. The polymerase chain reaction analysis revealed that three primer pairs specifically amplified the DNA fragment corresponding to race 7. The obtained finding clearly demonstrates the efficiency of the newly developed markers in accurately detecting Xcc race 7 among the other races. These results indicated that the newly developed marker can successfully and rapidly detect Xcc race 7 from other races. This study represents the first report on the successful development of specific molecular markers for Xcc race 7.
Collapse
Affiliation(s)
- Yeo-Hyeon Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
| | - Sopheap Mao
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
| | - Nihar Sahu
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
| | - Uzzal Somaddar
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
| | - Masao Watanabe
- Graduate School of Life Science, Tohoku University, Sendai 980-8577, Japan
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Korea
- Graduate School of Life Science, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
10
|
Borges CE, Von Dos Santos Veloso R, da Conceição CA, Mendes DS, Ramirez-Cabral NY, Shabani F, Shafapourtehrany M, Nery MC, da Silva RS. Forecasting Brassica napus production under climate change with a mechanistic species distribution model. Sci Rep 2023; 13:12656. [PMID: 37542082 PMCID: PMC10403512 DOI: 10.1038/s41598-023-38910-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
Brassica napus, a versatile crop with significant socioeconomic importance, serves as a valuable source of nutrition for humans and animals while also being utilized in biodiesel production. The expansion potential of B. napus is profoundly influenced by climatic variations, yet there remains a scarcity of studies investigating the correlation between climatic factors and its distribution. This research employs CLIMEX to identify the current and future ecological niches of B. napus under the RCP 8.5 emission scenario, utilizing the Access 1.0 and CNRM-CM5 models for the time frame of 2040-2059. Additionally, a sensitivity analysis of parameters was conducted to determine the primary climatic factors affecting B. napus distribution and model responsiveness. The simulated outcomes demonstrate a satisfactory alignment with the known current distribution of B. napus, with 98% of occurrence records classified as having medium to high climatic suitability. However, the species displays high sensitivity to thermal parameters, thereby suggesting that temperature increases could trigger shifts in suitable and unsuitable areas for B. napus, impacting regions such as Canada, China, Brazil, and the United States.
Collapse
Affiliation(s)
- Cláudia Eduarda Borges
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Ronnie Von Dos Santos Veloso
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Crislaine Alves da Conceição
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Débora Sampaio Mendes
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Nadiezhda Yz Ramirez-Cabral
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
- INIFAP, Campo Experimental Zacatecas, Km, 24.5 Carretera Zacatecas-Fresnillo, 98500, Calera de V.R., ZAC, Mexico
| | - Farzin Shabani
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Mahyat Shafapourtehrany
- Kandilli Observatory and Earthquake Research Institute, Department of Geodesy, Bogazici University, 34680, Cengelkoy, Istanbul, Turkey
| | - Marcela Carlota Nery
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Ricardo Siqueira da Silva
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| |
Collapse
|
11
|
Yue F, Zheng F, Li Q, Mei J, Shu C, Qian W. Comparative Transcriptome Analysis Points to the Biological Processes of Hybrid Incompatibility between Brassica napus and B. oleracea. PLANTS (BASEL, SWITZERLAND) 2023; 12:2622. [PMID: 37514237 PMCID: PMC10384443 DOI: 10.3390/plants12142622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Improving Brassica napus via introgression of the genome components from its parental species, B. oleracea and B. rapa, is an important breeding strategy. Interspecific hybridization between B. napus and B. rapa is compatible with high rate of survival ovules, while the hybridization between B. napus and B. oleracea is incompatible with the high occurrence of embryo abortion. To understand the diverse embryo fate in the two interspecific hybridizations, here, the siliques of B. napus pollinated with B. oleracea (AE) and B. rapa (NE) were employed for transcriptome sequencing at 8 and 16 days after pollination. Compared to NE and the parental line of B. napus, more specific differentially expressed genes (DEGs) (1274 and 1698) were obtained in AE and the parental line of B. napus at 8 and 16 days after pollination (DAP). These numbers were 51 and 5.8 times higher than the number of specific DEGs in NE and parental line of B. napus at 8 and 16 DAP, respectively, suggesting more complex transcriptional changes in AE. Most of DEGs in the terms of cell growth and cell wall formation exhibited down-regulated expression patterns (96(down)/131(all) in AE8, 174(down)/235(all) in AE16), while most of DEGs in the processes of photosynthesis, photorespiration, peroxisome, oxidative stress, and systemic acquired resistance exhibited up-regulated expression patterns (222(up)/304(all) in AE8, 214(up)/287(all) in AE16). This is in accordance with a high level of reactive oxygen species (ROS) in the siliques of B. napus pollinated with B. oleracea. Our data suggest that the disorder of plant hormone metabolism, retardation of cell morphogenesis, and the accumulation of ROS may be associated with hybrid incompatibility between B. napus and B. oleracea.
Collapse
Affiliation(s)
- Fang Yue
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fajing Zheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qinfei Li
- College of Horticulture and Landscape, Southwest University, Chongqing 400715, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chunlei Shu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Gritsenko D, Daurova A, Pozharskiy A, Nizamdinova G, Khusnitdinova M, Sapakhova Z, Daurov D, Zhapar K, Shamekova M, Kalendar R, Zhambakin K. Investigation of mutation load and rate in androgenic mutant lines of rapeseed in early generations evaluated by high-density SNP genotyping. Heliyon 2023; 9:e14065. [PMID: 36923873 PMCID: PMC10008989 DOI: 10.1016/j.heliyon.2023.e14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Oilseed rape (Brassica napus) is an important oil crop distributed worldwide with a broad adaptation to different climate zones. The cultivation of rapeseed is one of the most commercially viable areas in crop production. Altogether 269,093 ha of rapeseed are cultivated in Kazakhstan. However, all rapeseed cultivars and lines cultivated in Kazakhstan on an industrial scale predominantly belong to the foreign breeding system. Therefore, the formation of a diverse genetic pool for breeding new, highly productive cultivars adopted to the environmental conditions of Kazakhstan is the most important goal in country selection programs. In this work, we have developed ethyl methanesulfonate (EMS) doubled haploid mutant lines from plant material of cultivars 'Galant' and 'Kris' to broad diversity of rapeseed in Kazakhstan. The development of mutant lines was performed via embryo callusogenesis or embryo secondary callusogenesis. Mutants were investigated by Brassica90k SNP array, and we were able to locate 24,657 SNPs from 26,256 SNPs filtered by quality control on the genome assembly (Bra_napus_v2.0). Only 18,831 SNPs were assigned to the available annotated genomic features. The most frequent combination of mutations according to reference controls was adenine with guanine (70%), followed by adenine with cytosine (28.8%), and only minor fractions were cytosine with guanine (0.54%) and adenine with thymine (0.59%). We revealed 5606.27 markers for 'Kris' and 4893.01 markers for 'Galant' by mutation occurrence. Most mutation occurrences were occupied by double mutations where progenitors and offspring were homozygous by different alleles, enabling the selection of appropriate genotypes in a short period of time. Regarding the biological impact of mutations, 861 variants were reported as having a low predicted impact, with 1042 as moderate and 121 as high; all others were reported as belonging to non-coding sequences, intergenic regions, and other features with the effect of modifiers. Protein encoding genes, such as wall-associated receptor kinase-like protein 5, TAO1-like disease resistance protein, receptor-like protein 12, and At5g42460-like F-box protein, contained more than two variable positions, with an impact on their biological activities. Nevertheless, the obtained mutant lines were able to survive and reproduce. Mutant lines, which include moderate and high impact mutations in encoding genes, are a perfect pool not only for MAS but also for the investigation of the fundamental basis of protein functions. For the first time, a collection of mutant lines was developed in our country to improve the selection of local rapeseed cultivars.
Collapse
Affiliation(s)
- Dilyara Gritsenko
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Ainash Daurova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Alexandr Pozharskiy
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Gulnaz Nizamdinova
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Marina Khusnitdinova
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Zagipa Sapakhova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Dias Daurov
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Kuanysh Zhapar
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Malika Shamekova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Ruslan Kalendar
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Kabyl Zhambakin
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| |
Collapse
|
13
|
Yang T, Cai B, Jia Z, Wang Y, Wang J, King GJ, Ge X, Li Z. Sinapis genomes provide insights into whole-genome triplication and divergence patterns within tribe Brassiceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:246-261. [PMID: 36424891 DOI: 10.1111/tpj.16043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Sinapis alba and Sinapis arvensis are mustard crops within the Brassiceae tribe of the Brassicaceae family, and represent an important genetic resource for crop improvement. We performed the de novo assembly of Brassica nigra, S. alba, and S. arvensis, and conducted comparative genomics to investigate the pattern of genomic evolution since an ancient whole-genome triplication event. Both Sinapis species retained evidence of the Brassiceae whole-genome triplication approximately 20.5 million years ago (Mya), with subgenome dominance observed in gene density, gene expression, and selective constraint. While S. alba diverged from the ancestor of Brassica and Raphanus at approximately 12.5 Mya, the divergence time of S. arvensis and B. nigra was approximately 6.5 Mya. S. arvensis and B. nigra had greater collinearity compared with their relationship to either Brassica rapa or Brassica oleracea. Two chromosomes of S. alba (Sal03 and Sal08) were completely collinear with two ancestral chromosomes proposed in the Ancestral Crucifer Karyotype (ACK) genomic block model, the first time this has been observed in the Brassiceae. These results are consistent with S. alba representing a relatively ancient lineage of the species evolved from the common ancestor of tribe Brassiceae, and suggest that the phylogeny of the Brassica and Sinapis genera requires some revision. Our study provides new insights into the genome evolution and phylogenetic relationships of Brassiceae and provides genomic information for genetic improvement of these plants.
Collapse
Affiliation(s)
- Taihua Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bowei Cai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
Qasemi SH, Mostafavi K, Khosroshahli M, Bihamta MR, Ramshini H. Genotype and environment interaction and stability of grain yield and oil content of rapeseed cultivars. Food Sci Nutr 2022; 10:4308-4318. [PMID: 36514761 PMCID: PMC9731558 DOI: 10.1002/fsn3.3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022] Open
Abstract
Investigating the interaction of genotype and environment in multi-environment experiments (MET) is one of the reliable techniques to demonstrate the most stable and compatible cultivars. The main contribution of this study is to evaluate the stability and compatibility of rapeseed cultivars using additive main effects and multiplicative interaction (AMMI) and genotype plus genotype environment interaction (GGE) bi-plot methods for grain yield and oil content. For this purpose, an experiment in a randomized complete block design (RCBD) with three replications was conducted for 10 rapeseed cultivars across 10 environments (five regions in 2 years). Hence, the proposed technique can be used to identify the superior cultivars corresponding to the multivariant properties including yield and oil content. To do so, a case-study analysis was conducted over rapeseed, while more than 96% of the data variance for grain yield and more than 94% of the data variance for oil content were explained based on the AMMI model. According to the AMMI model, it was observed that the "Zarfam" and "Licord" genotypes were introduced as favorable genotypes for grain yield and oil content, respectively. "Karaj1" and "Sanandaj1" were selected as the superior environments for yield trait, "Kashmar2" for oil content, and "Licord" and "Kashmar2" were identified as the superior genotypes and environment for oil content, respectively. Graphical GGE bi-plot illustrated that "Hyola401," "Okapi," and "Sarigol" for grain yield and "Option500" and "Sunday" for oil content were identified as stable and high-yield genotypes. "Sanandaj1" for grain yield and "Karaj2" for oil content were identified as environments with high differentiation and screening power.
Collapse
Affiliation(s)
- Seyed Hamed Qasemi
- Department of Biotechnology and Plant Breeding, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Khodadad Mostafavi
- Department of Agronomy and Plant Breeding, Karaj BranchIslamic Azad UniversityKarajIran
| | - Mahmoud Khosroshahli
- Department of Biotechnology and Plant Breeding, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Hossein Ramshini
- College of Agriculture & Natural ResourcesUniversity of TehranPakdashtIran
| |
Collapse
|
15
|
Haj Sghaier A, Tarnawa Á, Khaeim H, Kovács GP, Gyuricza C, Kende Z. The Effects of Temperature and Water on the Seed Germination and Seedling Development of Rapeseed ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212819. [PMID: 36365272 PMCID: PMC9654111 DOI: 10.3390/plants11212819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 05/27/2023]
Abstract
The seed germination and seedling growth of rapeseed are crucial stages in plant life, especially when facing abiotic stresses. In the present work, the effects of water and temperature on seed germination and seedling growth were investigated in a rapeseed crop (Brassica napus L.). The plants were examined under different temperature levels (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C, and 35 °C) and water levels (twenty-nine levels based on either one-milliliter intervals or as a percentage of the thousand-kernel weight (TKW)). Moreover, planting densities and antifungal application techniques were investigated in the study. The findings demonstrated substantial variations between all the growth parameters investigated at all the tested temperatures, and 20 °C was considered the optimum within a broad range of 15-25 °C. Water availability plays a significant role in germination, which can be initiated at 0.65 mL, corresponding to 500% of the TKW. The method of TKW is a more accurate aspect of water application because of the consideration of the seed weight and size. The optimal water range for the accumulation of dry weight, 3.85-5.9 mL (2900-4400% of TKW), was greater than that required for seedling growth, 1.45-3.05 mL (1100-2300% of TKW). Twenty to twenty-five seeds per 9 cm Petri dish exhibited the most outstanding values compared to the others, which provides an advantage in breeding programs, especially when there are seed limitations. Seed priming is a more effective antifungal application strategy. These data can be incorporated into future rapeseed germination in vitro studies, breeding programs, and sowing date predictions.
Collapse
|
16
|
Poveda J, Díaz-González S, Díaz-Urbano M, Velasco P, Sacristán S. Fungal endophytes of Brassicaceae: Molecular interactions and crop benefits. FRONTIERS IN PLANT SCIENCE 2022; 13:932288. [PMID: 35991403 PMCID: PMC9390090 DOI: 10.3389/fpls.2022.932288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Brassicaceae family includes an important group of plants of great scientific interest, e.g., the model plant Arabidopsis thaliana, and of economic interest, such as crops of the genus Brassica (Brassica oleracea, Brassica napus, Brassica rapa, etc.). This group of plants is characterized by the synthesis and accumulation in their tissues of secondary metabolites called glucosinolates (GSLs), sulfur-containing compounds mainly involved in plant defense against pathogens and pests. Brassicaceae plants are among the 30% of plant species that cannot establish optimal associations with mycorrhizal hosts (together with other plant families such as Proteaceae, Chenopodiaceae, and Caryophyllaceae), and GSLs could be involved in this evolutionary process of non-interaction. However, this group of plants can establish beneficial interactions with endophytic fungi, which requires a reduction of defensive responses by the host plant and/or an evasion, tolerance, or suppression of plant defenses by the fungus. Although much remains to be known about the mechanisms involved in the Brassicaceae-endophyte fungal interaction, several cases have been described, in which the fungi need to interfere with the GSL synthesis and hydrolysis in the host plant, or even directly degrade GSLs before they are hydrolyzed to antifungal isothiocyanates. Once the Brassicaceae-endophyte fungus symbiosis is formed, the host plant can obtain important benefits from an agricultural point of view, such as plant growth promotion and increase in yield and quality, increased tolerance to abiotic stresses, and direct and indirect control of plant pests and diseases. This review compiles the studies on the interaction between endophytic fungi and Brassicaceae plants, discussing the mechanisms involved in the success of the symbiosis, together with the benefits obtained by these plants. Due to their unique characteristics, the family Brassicaceae can be seen as a fruitful source of novel beneficial endophytes with applications to crops, as well as to generate new models of study that allow us to better understand the interactions of these amazing fungi with plants.
Collapse
Affiliation(s)
- Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Sandra Díaz-González
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - María Díaz-Urbano
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG), Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG), Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
17
|
Quezada-Martinez D, Addo Nyarko CP, Schiessl SV, Mason AS. Using wild relatives and related species to build climate resilience in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1711-1728. [PMID: 33730183 PMCID: PMC8205867 DOI: 10.1007/s00122-021-03793-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 05/18/2023]
Abstract
Climate change will have major impacts on crop production: not just increasing drought and heat stress, but also increasing insect and disease loads and the chance of extreme weather events and further adverse conditions. Often, wild relatives show increased tolerances to biotic and abiotic stresses, due to reduced stringency of selection for yield and yield-related traits under optimum conditions. One possible strategy to improve resilience in our modern-day crop cultivars is to utilize wild relative germplasm in breeding, and attempt to introgress genetic factors contributing to greater environmental tolerances from these wild relatives into elite crop types. However, this approach can be difficult, as it relies on factors such as ease of hybridization and genetic distance between the source and target, crossover frequencies and distributions in the hybrid, and ability to select for desirable introgressions while minimizing linkage drag. In this review, we outline the possible effects that climate change may have on crop production, introduce the Brassica crop species and their wild relatives, and provide an index of useful traits that are known to be present in each of these species that may be exploitable through interspecific hybridization-based approaches. Subsequently, we outline how introgression breeding works, what factors affect the success of this approach, and how this approach can be optimized so as to increase the chance of recovering the desired introgression lines. Our review provides a working guide to the use of wild relatives and related crop germplasm to improve biotic and abiotic resistances in Brassica crop species.
Collapse
Affiliation(s)
- Daniela Quezada-Martinez
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Charles P Addo Nyarko
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Sarah V Schiessl
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany.
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
18
|
Li H, Feng H, Guo C, Yang S, Huang W, Xiong X, Liu J, Chen G, Liu Q, Xiong L, Liu K, Yang W. High-throughput phenotyping accelerates the dissection of the dynamic genetic architecture of plant growth and yield improvement in rapeseed. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2345-2353. [PMID: 32367649 PMCID: PMC7589443 DOI: 10.1111/pbi.13396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 05/21/2023]
Abstract
Rapeseed is the second most important oil crop species and is widely cultivated worldwide. However, overcoming the 'phenotyping bottleneck' has remained a significant challenge. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In addition, it is important to explore the dynamic genetic architecture underlying rapeseed plant growth and its contribution to final yield. In this work, a high-throughput phenotyping facility was used to dynamically screen a rapeseed intervarietal substitution line population during two growing seasons. We developed an automatic image analysis pipeline to quantify 43 dynamic traits across multiple developmental stages, with 12 time points. The time-resolved i-traits could be extracted to reflect shoot growth and predict the final yield of rapeseed. Broad phenotypic variation and high heritability were observed for these i-traits across all developmental stages. A total of 337 and 599 QTLs were identified, with 33.5% and 36.1% consistent QTLs for each trait across all 12 time points in the two growing seasons, respectively. Moreover, the QTLs responsible for yield indicators colocalized with those of final yield, potentially providing a new mechanism of yield regulation. Our results indicate that high-throughput phenotyping can provide novel insights into the dynamic genetic architecture of rapeseed growth and final yield, which would be useful for future genetic improvements in rapeseed.
Collapse
Affiliation(s)
- Haitao Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and Hubei Collaborative Innovation Center for Green Transformation of Bio‐resourcesSchool of Life SciencesHubei UniversityWuhanChina
| | - Hui Feng
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Chaocheng Guo
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Shanjing Yang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Wan Huang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Xiong Xiong
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for Optoelectronics, and Key Laboratory of Ministry of Education for Biomedical PhotonicsDepartment of Biomedical EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Jianxiao Liu
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Guoxing Chen
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Qian Liu
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for Optoelectronics, and Key Laboratory of Ministry of Education for Biomedical PhotonicsDepartment of Biomedical EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Kede Liu
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research, and Hubei Key Laboratory of Agricultural BioinformaticsHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
19
|
Zhu Y, Ye J, Zhan J, Zheng X, Zhang J, Shi J, Wang X, Liu G, Wang H. Validation and Characterization of a Seed Number Per Silique Quantitative Trait Locus qSN.A7 in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2020; 11:68. [PMID: 32153604 PMCID: PMC7047150 DOI: 10.3389/fpls.2020.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Seed number is a key character/trait tightly related to the plant fitness/evolution and crop domestication/improvement. The seed number per silique (SNPS) shows a huge variation from several to more than 30, however the underlying regulatory mechanisms are poorly known, which has hindered its improvement. To answer this question, several representative lines with extreme SNPS were previously subjected to systematic genetic and cytological analyses. The results showed that the natural variation of seed number per silique is mainly controlled by maternal and embryonic genotype, which are co-determined by ovule number per ovary, fertile ovule ratio, ovule fertilization rate, and fertilized ovule development rate. More importantly, we also mapped two repeatable quantitative trait loci (QTLs) for SNPS using the F2:3 population derived from Zhongshuang11 and No. 73290, of which the major QTL qSN.A6 has been fine-mapped. In the current study, the near-isogenic lines (NILs) of qSN.A7 were successfully developed by the successive backcross of F1 with Zhongshuang11. First, the effect of qSN.A7 was validated by evaluating the SNPS of two types of homozygous NILs from BC3F2 population, which showed a significant difference of 2.23 on average. Then, qSN.A7 was successfully fine-mapped from the original 4.237 to 1.389 Mb, using a BC4F2 segregating population of 2,551 individuals. To further clarify the regulatory mechanism of qSN.A7, the two types of homologous NILs were subjected to genetic and cytological analyses. The results showed that the difference in SNPS between the two homologous NILs was determined by the embryonic genotypic effect. Highly accordant with this, no significant difference was observed in ovule number per ovary, ovule fertility, fertilization rate, and pollen fertility between the two homologous NILs. Therefore, the regulatory mechanism of qSN.A7 is completely different from the cloned qSS.C9 and qSN.A6. These results will advance the understanding of SNPS and facilitate gene cloning and molecular breeding in Brassica napus.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaqin Shi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministryof Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | | | | |
Collapse
|
20
|
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:496. [PMID: 32411167 PMCID: PMC7202327 DOI: 10.3389/fpls.2020.00496] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/01/2020] [Indexed: 05/19/2023]
Abstract
Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
- *Correspondence: Rod Snowdon,
| |
Collapse
|
21
|
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:496. [PMID: 32411167 DOI: 10.3389/fpls.2020.00496/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/01/2020] [Indexed: 05/21/2023]
Abstract
Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King GJ, Liu K. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. THE NEW PHYTOLOGIST 2019; 222:837-851. [PMID: 30536633 DOI: 10.1111/nph.15632] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/03/2018] [Indexed: 05/04/2023]
Abstract
Plant architecture is the key factor affecting overall yield in many crops. The genetic basis underlying plant architecture in rapeseed (Brassica napus), a key global oil crop, is elusive. We characterized an ethyl methanesulfonate (EMS)-mutagenized rapeseed mutant, sca, which had multiple phenotypic alterations, including crinkled leaves, semi-dwarf stature, narrow branch angles and upward-standing siliques. We identified the underlying gene, which encodes an Aux/IAA protein (BnaA3.IAA7). A G-to-A mutation changed the glycine at the 84th position to glutamic acid (G84E), disrupting the conserved degron motif GWPPV and reducing the affinity between BnaA3.IAA7 and TIR1 (TRANSPORT INHIBITOR RESPONSE 1) in an auxin dosage-dependent manner. This change repressed the degradation of BnaA3.IAA7 and therefore repressed auxin signaling at low levels of auxin that reduced the length of internodes. The G84E mutation reduced branch angles by enhancing the gravitropic response. The heterozygote +/sca closely resembled a proposed ideal plant architecture, displaying strong yield heterosis through single-locus overdominance by improving multiple component traits. Our findings demonstrate that a weak gain-of-function mutation in BnaA3.IAA7 contributes to yield heterosis by improving plant architecture and would be valuable for breeding superior rapeseed hybrid cultivars and such a mutation may increase the yield in other Brassica crops.
Collapse
Affiliation(s)
- Haitao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juanjuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jurong Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaocheng Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|