1
|
da Silva VCH, Martins MCM, Calderan-Rodrigues MJ, Artins A, Monte Bello CC, Gupta S, Sobreira TJP, Riaño-Pachón DM, Mafra V, Caldana C. Shedding Light on the Dynamic Role of the "Target of Rapamycin" Kinase in the Fast-Growing C 4 Species Setaria viridis, a Suitable Model for Biomass Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:637508. [PMID: 33927734 PMCID: PMC8078139 DOI: 10.3389/fpls.2021.637508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C4 grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition to previously described responses to TORC inhibition (i.e., general growth arrest, translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana (C3), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient use efficiency and C allocation and partitioning that promote biosynthetic growth. Besides photosynthetic differences, S. viridis and A. thaliana present several specificities that classify them into distinct lineages, which also contribute to the observed alterations mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated according to each cell wall type, as synthesis of non-pectic polysaccharides were affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate that the metabolic network needed to achieve faster growth seems to be less stringently controlled by TORC in S. viridis.
Collapse
Affiliation(s)
| | | | | | - Anthony Artins
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Saurabh Gupta
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | | | | | - Valéria Mafra
- National Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Camila Caldana
- National Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
2
|
Ma Y, Gao Y, Zhao K, Zhang H, Li Z, Du F, Hu J. Simple, Effective, and Ecofriendly Strategy to Inhibit Droplet Bouncing on Hydrophobic Weed Leaves. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50126-50134. [PMID: 33090773 DOI: 10.1021/acsami.0c13066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite small-molecule surfactants and polymers being widely used as pesticide adjuvants to inhibit droplet bouncing and splashing, they still have intrinsic drawbacks either in the easy wind drift and evaporation, the unfavorable wettability, or the usage of nonrenewable resources. In this paper, we found that upon droplet impacting, 1D nanofibers assembled from natural glycyrrhizic acid (GL) could pin on the rough hydrophobic surface and delay the retraction rate of droplets effectively. Using GL as a tank-mixed adjuvant, the efficiency of glyphosate to control the weed growth was improved significantly in the field experiment, which addressed the dilemmas of current adjuvants elegantly. Our work not only provides a constructive way to overcome droplet bouncing but also prompted us to verify in future if all 1D nanofibers assembled from different small molecules can display similar control efficiencies.
Collapse
Affiliation(s)
- Yue Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, China
| | - Yuxia Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, China
| | - Kefei Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Zilu Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, China
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| |
Collapse
|
3
|
Hu H, Mauro-Herrera M, Doust AN. Domestication and Improvement in the Model C4 Grass, Setaria. FRONTIERS IN PLANT SCIENCE 2018; 9:719. [PMID: 29896214 PMCID: PMC5986938 DOI: 10.3389/fpls.2018.00719] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/14/2018] [Indexed: 05/17/2023]
Abstract
Setaria viridis (green foxtail) and its domesticated relative S. italica (foxtail millet) are diploid C4 panicoid grasses that are being developed as model systems for studying grass genomics, genetics, development, and evolution. According to archeological evidence, foxtail millet was domesticated from green foxtail approximately 9,000 to 6,000 YBP in China. Under long-term human selection, domesticated foxtail millet developed many traits adapted to human cultivation and agricultural production. In comparison with its wild ancestor, foxtail millet has fewer vegetative branches, reduced grain shattering, delayed flowering time and less photoperiod sensitivity. Foxtail millet is the only present-day crop in the genus Setaria, although archeological records suggest that other species were domesticated and later abandoned in the last 10,000 years. We present an overview of domestication in foxtail millet, by reviewing recent studies on the genetic regulation of several domesticated traits in foxtail millet and discuss how the foxtail millet and green foxtail system could be further developed to both better understand its domestication history, and to provide more tools for future breeding efforts.
Collapse
Affiliation(s)
| | | | - Andrew N. Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
4
|
Junqueira NEG, Ortiz-Silva B, Leal-Costa MV, Alves-Ferreira M, Dickinson HG, Langdale JA, Reinert F. Anatomy and ultrastructure of embryonic leaves of the C4 species Setaria viridis. ANNALS OF BOTANY 2018; 121:1163-1172. [PMID: 29415162 PMCID: PMC5946840 DOI: 10.1093/aob/mcx217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/09/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Setaria viridis is being promoted as a model C4 photosynthetic plant because it has a small genome (~515 Mb), a short life cycle (~60 d) and it can be transformed. Unlike other C4 grasses such as maize, however, there is very little information about how C4 leaf anatomy (Kranz anatomy) develops in S. viridis. As a foundation for future developmental genetic studies, we provide an anatomical and ultrastructural framework of early shoot development in S. viridis, focusing on the initiation of Kranz anatomy in seed leaves. METHODS Setaria viridis seeds were germinated and divided into five stages covering development from the dry seed (stage S0) to 36 h after germination (stage S4). Material at each of these stages was examined using conventional light, scanning and transmission electron microscopy. KEY RESULTS Dry seeds contained three embryonic leaf primordia at different developmental stages (plastochron 1-3 primordia). The oldest (P3) leaf primordium possessed several procambial centres whereas P2 displayed only ground meristem. At the tip of P3 primordia at stage S4, C4 leaf anatomy typical of the malate dehydrogenase-dependent nicotinamide dinucleotide phosphate (NADP-ME) subtype was evident in that vascular bundles lacked a mestome layer and were surrounded by a single layer of bundle sheath cells that contained large, centrifugally located chloroplasts. Two to three mesophyll cells separated adjacent vascular bundles and one mesophyll cell layer on each of the abaxial and adaxial sides delimited vascular bundles from the epidermis. CONCLUSIONS The morphological trajectory reported here provides a foundation for studies of gene regulation during early leaf development in S. viridis and a framework for comparative analyses with other C4 grasses.
Collapse
Affiliation(s)
- Nicia E G Junqueira
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brasil
- Pós-graduação em Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brasil
| | - Bianca Ortiz-Silva
- Núcleo Multidisciplinar de Pesquisa, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Márcio Alves-Ferreira
- Pós-graduação em Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brasil
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brasil
| | | | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Fernanda Reinert
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brasil
- Pós-graduação em Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brasil
| |
Collapse
|
5
|
Acharya BR, Roy Choudhury S, Estelle AB, Vijayakumar A, Zhu C, Hovis L, Pandey S. Optimization of Phenotyping Assays for the Model Monocot Setaria viridis. FRONTIERS IN PLANT SCIENCE 2017; 8:2172. [PMID: 29312412 PMCID: PMC5743732 DOI: 10.3389/fpls.2017.02172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/11/2017] [Indexed: 05/02/2023]
Abstract
Setaria viridis (green foxtail) is an important model plant for the study of C4 photosynthesis in panicoid grasses, and is fast emerging as a system of choice for the study of plant development, domestication, abiotic stress responses and evolution. Basic research findings in Setaria are expected to advance research not only in this species and its close relative S. italica (foxtail millet), but also in other panicoid grasses, many of which are important food or bioenergy crops. Here we report on the standardization of multiple growth and development assays for S. viridis under controlled conditions, and in response to several phytohormones and abiotic stresses. We optimized these assays at three different stages of the plant's life: seed germination and post-germination growth using agar plate-based assays, early seedling growth and development using germination pouch-based assays, and adult plant growth and development under environmentally controlled growth chambers and greenhouses. These assays will be useful for the community to perform large scale phenotyping analyses, mutant screens, comparative physiological analysis, and functional characterization of novel genes of Setaria or other related agricultural crops. Precise description of various growth conditions, effective treatment conditions and description of the resultant phenotypes will help expand the use of S. viridis as an effective model system.
Collapse
|