1
|
Martins B, Bister A, Dohmen RGJ, Gouveia MA, Hueber R, Melzener L, Messmer T, Papadopoulos J, Pimenta J, Raina D, Schaeken L, Shirley S, Bouchet BP, Flack JE. Advances and Challenges in Cell Biology for Cultured Meat. Annu Rev Anim Biosci 2024; 12:345-368. [PMID: 37963400 DOI: 10.1146/annurev-animal-021022-055132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs. Nevertheless, these technologies remain at a nascent stage, and myriad challenges remain, spanning the entire bioprocess. From a cell biological perspective, these include the identification of suitable starting cell types, tuning of proliferation and differentiation conditions, and optimization of cell-biomaterial interactions to create nutritious, enticing foods. Here, we discuss the key advances and outstanding challenges in cultured meat, with a particular focus on cell biology, and argue that solving the remaining bottlenecks in a cost-effective, scalable fashion will require coordinated, concerted scientific efforts. Success will also require solutions to nonscientific challenges, including regulatory approval, consumer acceptance, and market feasibility. However, if these can be overcome, cultured meat technologies can revolutionize our approach to food.
Collapse
Affiliation(s)
- Beatriz Martins
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Arthur Bister
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Maria Ana Gouveia
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lea Melzener
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joanna Papadopoulos
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Joana Pimenta
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Dhruv Raina
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lieke Schaeken
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Sara Shirley
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Benjamin P Bouchet
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands;
| | - Joshua E Flack
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| |
Collapse
|
2
|
Hernández-Melchor D, López-Bayghen E, Padilla-Viveros A. The patent landscape in the field of stem cell therapy: closing the gap between research and clinic. F1000Res 2023; 11:997. [PMID: 38481536 PMCID: PMC10933573 DOI: 10.12688/f1000research.123799.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 03/28/2024] Open
Abstract
Stem cell technology is a powerful tool ready to respond to the needs of modern medicine that is experiencing rapid technological development. Given its potential in therapeutic applications, intellectual property rights (IPR) as a protection resource of knowledge are a relevant topic. Patent eligibility of stem cells has been controversial as restrictions to access the fundamental technologies open a gap between research and clinic. Therefore, we depicted the current patent landscape in the field to discuss if this approach moves forward in closing this breach by examining patent activity over the last decade from a transdisciplinary perspective. Stem cell therapeutic applications is an area of continuous growth where patent filing through the PCT is the preferred strategy. Patenting activity is concentrated in the USA, European Union, and Australia; this accumulation in a few key players leads to governance, regulation, and inequality concerns. To boost wealthiness and welfare in society - stem cell therapies' ultimate goal - while at post-pandemic recovery, critical elements in the field of IPR rise to overcome current limitations: to promote bridge builders able to connect the research and business worlds, regulatory updates, novel financing models, new vehicles (startups, spinouts, and spin-offs), and alternative figures of intellectual property.
Collapse
Affiliation(s)
- Dinorah Hernández-Melchor
- Science, Technology and Society Program, . Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City, 07360, Mexico
- Departamento de Toxicología, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City, 07360, Mexico
| | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City, 07360, Mexico
| | - América Padilla-Viveros
- Science, Technology and Society Program, . Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City, 07360, Mexico
| |
Collapse
|
3
|
Daily MI, Whale TF, Kilbride P, Lamb S, John Morris G, Picton HM, Murray BJ. A highly active mineral-based ice nucleating agent supports in situ cell cryopreservation in a high throughput format. J R Soc Interface 2023; 20:20220682. [PMID: 36751925 PMCID: PMC9905984 DOI: 10.1098/rsif.2022.0682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Cryopreservation of biological matter in microlitre scale volumes of liquid would be useful for a range of applications. At present, it is challenging because small volumes of water tend to supercool, and deep supercooling is known to lead to poor post-thaw cell viability. Here, we show that a mineral ice nucleator can almost eliminate supercooling in 100 µl liquid volumes during cryopreservation. This strategy of eliminating supercooling greatly enhances cell viability relative to cryopreservation protocols with uncontrolled ice nucleation. Using infrared thermography, we demonstrate a direct relationship between the extent of supercooling and post-thaw cell viability. Using a mineral nucleator delivery system, we open the door to the routine cryopreservation of mammalian cells in multiwell plates for applications such as high throughput toxicology testing of pharmaceutical products and regenerative medicine.
Collapse
Affiliation(s)
- Martin I. Daily
- Institute of Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas F. Whale
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | | | | | | | - Helen M. Picton
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Benjamin J. Murray
- Institute of Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Ding SL, Liu X, Zhao XY, Wang KT, Xiong W, Gao ZL, Sun CY, Jia MX, Li C, Gu Q, Zhang MZ. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater 2022; 17:81-108. [PMID: 35386447 PMCID: PMC8958326 DOI: 10.1016/j.bioactmat.2022.01.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Successful regeneration of cartilage tissue at a clinical scale has been a tremendous challenge in the past decades. Microcarriers (MCs), usually used for cell and drug delivery, have been studied broadly across a wide range of medical fields, especially the cartilage tissue engineering (TE). Notably, microcarrier systems provide an attractive method for regulating cell phenotype and microtissue maturations, they also serve as powerful injectable carriers and are combined with new technologies for cartilage regeneration. In this review, we introduced the typical methods to fabricate various types of microcarriers and discussed the appropriate materials for microcarriers. Furthermore, we highlighted recent progress of applications and general design principle for microcarriers. Finally, we summarized the current challenges and promising prospects of microcarrier-based systems for medical applications. Overall, this review provides comprehensive and systematic guidelines for the rational design and applications of microcarriers in cartilage TE.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Tao Wang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei Xiong
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Li Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Yi Sun
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Min-Xuan Jia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming-Zhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
5
|
Fan BS, Liu Y, Zhang JY, Chen YR, Yang M, Yu JK. Principles for establishment of the stem cell bank and its applications on management of sports injuries. Stem Cell Res Ther 2021; 12:307. [PMID: 34051865 PMCID: PMC8164236 DOI: 10.1186/s13287-021-02360-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The stem cells of the stem cell banks have prominent problems for insufficient sources, easy contamination, unstable biological characteristics after serial subcultivations, and high cost. METHODS After collecting the construction processes of the existing stem cell banks and suggestions from authoritative experts in the past 10 years, 230 reference principles were obtained, and finally, the principles of "5C" for the establishment of modern standardized stem cell banks were summarized, and their related applications on the management of sports injuries were reviewed as well. RESULTS The basic principles of "5C" for the establishment of modern standardized stem cell banks include (1) principle of informed consent, (2) confidentiality principle, (3) conformity principle, (4) contamination-free principle, and (5) commonweal principle. The applications of stem cells on repairs, reconstructions, and regenerations of sports injuries were also reviewed, especially in tissue-engineered cartilage, tissue-engineered meniscus, and tissue-engineered ligament. CONCLUSIONS The proposal of the basic principles of "5C" is conducive to relevant stem cell researchers and clinical medical experts to build modern stem cell banks in a more standardized and efficient manner while avoiding some major mistakes or problems that may occur in the future. On this basis, stem cells from stem cell banks would be increasingly used in the management of sports injuries. More importantly, these days, getting stem cell samples are difficult in a short time, and such banks with proper legal consent may help the scientific community.
Collapse
Affiliation(s)
- Bao-Shi Fan
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.,School of Clinical Medicine, Weifang Medical University, No.7166 West, Baotong Road, Weifang, 261053, Shandong, China
| | - Yang Liu
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - Ji-Ying Zhang
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - You-Rong Chen
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China
| | - Meng Yang
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China.,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.,School of Clinical Medicine, Weifang Medical University, No.7166 West, Baotong Road, Weifang, 261053, Shandong, China
| | - Jia-Kuo Yu
- Sports Medicine Department of the Institution of Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, No. 49 North Garden Road, Beijing, 100191, China. .,Institute of Sports Medicine of Peking University, No. 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
6
|
Stem Cells: A Historical Review about Biological, Religious, and Ethical Issues. Stem Cells Int 2021; 2021:9978837. [PMID: 34012469 PMCID: PMC8105090 DOI: 10.1155/2021/9978837] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Stem cells can be used to replace damaged cells or regenerate organs and have broadened our knowledge of the development and progression of certain diseases. Despite significant advances in understanding stem cell biology, several problems limit their use. These problems are related not only to the growth of tumors in animal models and their rejection in transplant cases but also to ethical and social issues about the use of embryonic cells. The ethical-scientific debate on this type of cells has taken on great interest both for their application in regenerative medicine and for the potential possibilities in the field of cell and gene therapy. Different points of view often have the expression of a perception that depends on scientific goals or opportunities or on religious traditions and beliefs. Therefore, as the questions and doubts about when life begins, so do the answers for the use of these cells as therapy or otherwise. So, in addition to the origin of stem cells, there are currently some social bioethical (such as political and legislative issues) and religious dilemmas. The purpose of the study is aimed at being a narrative on the history of stem cells and the evolution of their use to date, as well as to clarify the bioethical position of the various religions today in comparison with the social ones regarding the research and use of embryonic and adult ones. Hence, their biological hypostasis regarding the concepts of “conception” and “fertilization” and their development and therapeutic use compared to those of the main theological doctrines.
Collapse
|
7
|
Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, Bauer R, de Magalhães JP. Winter is coming: the future of cryopreservation. BMC Biol 2021; 19:56. [PMID: 33761937 PMCID: PMC7989039 DOI: 10.1186/s12915-021-00976-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
The preservative effects of low temperature on biological materials have been long recognised, and cryopreservation is now widely used in biomedicine, including in organ transplantation, regenerative medicine and drug discovery. The lack of organs for transplantation constitutes a major medical challenge, stemming largely from the inability to preserve donated organs until a suitable recipient is found. Here, we review the latest cryopreservation methods and applications. We describe the main challenges-scaling up to large volumes and complex tissues, preventing ice formation and mitigating cryoprotectant toxicity-discuss advantages and disadvantages of current methods and outline prospects for the future of the field.
Collapse
Affiliation(s)
- Sanja Bojic
- School of Computing, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Alex Murray
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Barry L Bentley
- Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, UK.,Magdalene College, University of Cambridge, Cambridge, UK
| | | | - Piotr Pawlik
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | | | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, UK.
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Pacheco-Herrero M, Soto-Rojas LO, Reyes-Sabater H, Garcés-Ramirez L, de la Cruz López F, Villanueva-Fierro I, Luna-Muñoz J. Current Status and Challenges of Stem Cell Treatment for Alzheimer's Disease. J Alzheimers Dis 2021; 84:917-935. [PMID: 34633316 PMCID: PMC8673502 DOI: 10.3233/jad-200863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases called tauopathies, such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, and Parkinson's disease, among others, are characterized by the pathological processing and accumulation of tau protein. AD is the most prevalent neurodegenerative disease and is characterized by two lesions: neurofibrillary tangles (NFTs) and neuritic plaques. The presence of NFTs in the hippocampus and neocortex in early and advanced stages, respectively, correlates with the patient's cognitive deterioration. So far, no drugs can prevent, decrease, or limit neuronal death due to abnormal pathological tau accumulation. Among potential non-pharmacological treatments, physical exercise has been shown to stimulate the development of stem cells (SCs) and may be useful in early stages. However, this does not prevent neuronal death from the massive accumulation of NFTs. In recent years, SCs therapies have emerged as a promising tool to repopulate areas involved in cognition in neurodegenerative diseases. Unfortunately, protocols for SCs therapy are still being developed and the mechanism of action of such therapy remains unclear. In this review, we show the advances and limitations of SCs therapy. Finally, we provide a critical analysis of its clinical use for AD.
Collapse
Affiliation(s)
- Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Luis O. Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, State of Mexico, Mexico
| | - Heidy Reyes-Sabater
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Dominican Republic
| | - Linda Garcés-Ramirez
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fidel de la Cruz López
- Escuela Nacional de Ciencias Biológicas, Depto de Fisiología, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, UNAM, State of Mexico, Mexico
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Dominican Republic
| |
Collapse
|
9
|
Cryopreservation of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review. Front Med (Lausanne) 2020; 7:592242. [PMID: 33324662 PMCID: PMC7727450 DOI: 10.3389/fmed.2020.592242] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation is a key enabling technology in regenerative medicine that provides stable and secure extended cell storage for primary tissue isolates and constructs and prepared cell preparations. The essential detail of the process as it can be applied to cell-based therapies is set out in this review, covering tissue and cell isolation, cryoprotection, cooling and freezing, frozen storage and transport, thawing, and recovery. The aim is to provide clinical scientists with an overview of the benefits and difficulties associated with cryopreservation to assist them with problem resolution in their routine work, or to enable them to consider future involvement in cryopreservative procedures. It is also intended to facilitate networking between clinicians and cryo-researchers to review difficulties and problems to advance protocol optimization and innovative design.
Collapse
Affiliation(s)
- Julie Meneghel
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | - Peter Kilbride
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | | |
Collapse
|
11
|
Ullah M. Need for Specialized Therapeutic Stem Cells Banks Equipped with Tumor Regression Enzymes and Anti-Tumor Genes. ACTA ACUST UNITED AC 2020; 2. [PMID: 33554055 PMCID: PMC7861576 DOI: 10.37191/mapsci-2582-4937-2(1)-013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are currently being used in many clinical trials for regenerative purposes. These are promising results for stem cells in the treatment of several diseases, including cancer. Nevertheless, there are still many variables which should be addressed before the application of stem cells for cancer treatment. One approach should be to establish well-characterized therapeutic stem cell banks to minimize the variation in results from different clinical trials and facilitate their effective use in basic and translational research.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Lab, Department of Radiology, School of Medicine, Stanford University, California, USA
| |
Collapse
|
12
|
Wang D, Gilbert JR, Zhang X, Zhao B, Ker DFE, Cooper GM. Calvarial Versus Long Bone: Implications for Tailoring Skeletal Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:46-63. [PMID: 31588853 DOI: 10.1089/ten.teb.2018.0353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-engineered graft substitutes have shown great potential to treat large bone defects. While we usually assume that therapeutic approaches developed for appendicular bone healing could be similarly translated for application in craniofacial reconstruction and vice versa, this is not necessarily accurate. In addition to those more well-known healing-associated factors, such as age, lifestyle (e.g., nutrition and smoking), preexisting disease (e.g., diabetes), medication, and poor blood supply, the developmental origins and surrounding tissue of the wound sites can largely affect the fracture healing outcome as well as designed treatments. Therefore, the strategies developed for long bone fracture repair might not be suitable or directly applicable to skull bone repair. In this review, we discuss aspects of development, healing process, structure, and tissue engineering considerations between calvarial and long bones to assist in designing the tailored bone repair strategies. Impact Statement We summarized, in this review, the existing body of knowledge between long bone and calvarial bone with regard to their development and healing, tissue structure, and consideration of current tissue engineering strategies. By highlighting their similarities and differences, we propose that tailored tissue engineering strategies, such as scaffold features, growth factor usage, and the source of cells for tissue or region-specific bone repair, are necessary to ensure an optimized healing outcome.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Gilbert
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Zhao
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gregory M Cooper
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Ko DW, Yoon JK, Ahn JI, Lee M, Yang WS, Ahn JY, Lim JM. The importance of post-thaw subculture for standardizing cellular activity of fresh or cryopreserved mouse embryonic stem cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:335-343. [PMID: 28823125 PMCID: PMC5838338 DOI: 10.5713/ajas.17.0294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 08/07/2017] [Indexed: 12/25/2022]
Abstract
Objective Remarkable difference in cellular activity was found between early and late subpassaged embryonic stem cell (ESCs) lines, which can be created by subtle changes in cell manipulation protocol. This study subsequently examined whether post-thaw subculture of early subpassaged ESC lines could further affect the activity of the ESCs. Methods Fresh (as a control treatment) or cryopreserved F1 hybrid (B6CBAF1) early ESC lines (C57BL/6xCBA) of the 4 (P4) or the 19 passage (P19) were subcultured once, twice or six times under the same condition. The post-thaw survival of the ESCs was monitored after the post-treatment subculture and the ability of cell proliferation, reactive oxygen species (ROS) generation, apoptosis and mitochondrial ATP synthesis was subsequently examined. Results Regardless of the subculture number, P19 ESCs showed better (p<0.05) doubling time and less ATP production than P4 ESCs and such difference was not influenced by fresh or cryopreservation. The difference between P4 and P19 ESC lines became decreased as the post-treatment subculture was increased and the six times subculture eliminated such difference. Similarly, transient but prominent difference in ROS production and apoptotic cell number was detected between P4 and P19 ESCs only at the 1st subculture after treatment, but no statistical differences between two ESC lines was detected in other observations. Conclusion The results of this study suggest that post-thaw subculture of ESCs under the same environment is recommended for standardizing their cellular activity. The activity of cell proliferation ability and ATP synthesis can be used as parameters for quality control of ESCs.
Collapse
Affiliation(s)
- Dong Woo Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jung Ki Yoon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong Il Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Myungook Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Woo Sub Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Yeon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,GreenBio Research Institute, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|