2
|
Di Nezio F, Beney C, Roman S, Danza F, Buetti-Dinh A, Tonolla M, Storelli N. Anoxygenic photo- and chemo-synthesis of phototrophic sulfur bacteria from an alpine meromictic lake. FEMS Microbiol Ecol 2021; 97:6123714. [PMID: 33512460 PMCID: PMC7947596 DOI: 10.1093/femsec/fiab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community and exibiting different phenotypes: (1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, (2) the small-celled PSB Thiodictyon syntrophicum and (3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Clarisse Beney
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Francesco Danza
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| |
Collapse
|
3
|
Savvichev AS, Kadnikov VV, Rusanov II, Beletsky AV, Krasnova ED, Voronov DA, Kallistova AY, Veslopolova EF, Zakharova EE, Kokryatskaya NM, Losyuk GN, Demidenko NA, Belyaev NA, Sigalevich PA, Mardanov AV, Ravin NV, Pimenov NV. Microbial Processes and Microbial Communities in the Water Column of the Polar Meromictic Lake Bol'shie Khruslomeny at the White Sea Coast. Front Microbiol 2020; 11:1945. [PMID: 32849486 PMCID: PMC7432294 DOI: 10.3389/fmicb.2020.01945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
Microbiological, molecular ecological, biogeochemical, and isotope geochemical research was carried out at the polar Lake Bol'shie Khruslomeny at the coast of the Kandalaksha Bay, White Sea in March and September 2017. The uppermost mixolimnion was oxic, with low salinity (3-5%). The lower chemocline layer was brown-green colored, with very high content of particulate organic matter (up to 11.8 mg C L-1). The lowermost monimolimnion had marine salinity (22-24%) and very high concentrations of sulfide (up to 18 mmol L-1) and CH4 (up to 1.8 mmol L-1). In the chemocline, total microbial abundance and the rate of anoxygenic photosynthesis were 8.8 × 106 cells mL-1 and 34.4 μmol C L-1 day-1, respectively. Both in March and September, sulfate reduction rate increased with depth, peaking (up to 0.6-1.1 μmol S L-1 day-1) in the lower chemocline. Methane oxidation rates in the chemocline were up to 85 and 180 nmol CH4 L-1 day-1 in March and September, respectively; stimulation of this process by light was observed in September. The percentages of cyanobacteria and methanotrophs in the layer where light-induced methane oxidation occurred were similar, ∼2.5% of the microbial community. Light did not stimulate methane oxidation in deeper layers. The carbon isotope composition of particulate organic matter (δ13C-Corg), dissolved carbonates (δ13C-DIC), and methane (δ13C- CH4) indicated high microbial activity in the chemocline. Analysis of the 16S rRNA gene sequences revealed predominance of Cyanobium cyanobacteria (order Synechococcales) in the mixolimnion. Green sulfur bacteria Chlorobium phaeovibrioides capable of anoxygenic photosynthesis constituted ∼20% of the chemocline community both in March and in September. Methyloprofundus gammaptoteobacteria (family Methylomonaceae) were present in the upper chemocline, where active methane oxidation occurred. During winter, cyanobacteria were less abundant in the chemocline, while methanotrophs occurred in higher horizons, including the under-ice layer. Chemolithotrophic gammaproteobacteria of the genus Thiomicrorhabdus, oxidizing reduced sulfur compounds at low oxygen concentrations, were revealed in the chemocline in March. Both in March and September archaea constituted up to 50% of all microorganisms in the hypolimnion. The percentage of putative methanogens in the archaeal community was low, and they occurred mainly in near-bottom horizons.
Collapse
Affiliation(s)
- Alexander S. Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Igor I. Rusanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena D. Krasnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A. Voronov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Yu. Kallistova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena F. Veslopolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena E. Zakharova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya M. Kokryatskaya
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Moscow, Russia
| | - Galina N. Losyuk
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Moscow, Russia
| | | | - Nikolai A. Belyaev
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Sigalevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Baricz A, Chiriac CM, Andrei AȘ, Bulzu PA, Levei EA, Cadar O, Battes KP, Cîmpean M, Șenilă M, Cristea A, Muntean V, Alexe M, Coman C, Szekeres EK, Sicora CI, Ionescu A, Blain D, O'Neill WK, Edwards J, Hallsworth JE, Banciu HL. Spatio-temporal insights into microbiology of the freshwater-to-hypersaline, oxic-hypoxic-euxinic waters of Ursu Lake. Environ Microbiol 2020; 23:3523-3540. [PMID: 31894632 DOI: 10.1111/1462-2920.14909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 12/30/2022]
Abstract
Ursu Lake is located in the Middle Miocene salt deposit of Central Romania. It is stratified, and the water column has three distinct water masses: an upper freshwater-to-moderately saline stratum (0-3 m), an intermediate stratum exhibiting a steep halocline (3-3.5 m), and a lower hypersaline stratum (4 m and below) that is euxinic (i.e. anoxic and sulphidic). Recent studies have characterized the lake's microbial taxonomy and given rise to intriguing ecological questions. Here, we explore whether the communities are dynamic or stable in relation to taxonomic composition, geochemistry, biophysics, and ecophysiological functions during the annual cycle. We found: (i) seasonally fluctuating, light-dependent communities in the upper layer (≥0.987-0.990 water-activity), a stable but phylogenetically diverse population of heterotrophs in the hypersaline stratum (water activities down to 0.762) and a persistent plate of green sulphur bacteria that connects these two (0.958-0.956 water activity) at 3-3.5 to 4 m; (ii) communities that might be involved in carbon- and sulphur-cycling between and within the lake's three main water masses; (iii) uncultured lineages including Acetothermia (OP1), Cloacimonetes (WWE1), Marinimicrobia (SAR406), Omnitrophicaeota (OP3), Parcubacteria (OD1) and other Candidate Phyla Radiation bacteria, and SR1 in the hypersaline stratum (likely involved in the anaerobic steps of carbon- and sulphur-cycling); and (iv) that species richness and habitat stability are associated with high redox-potentials. Ursu Lake has a unique and complex ecology, at the same time exhibiting dynamic fluctuations and stability, and can be used as a modern analogue for ancient euxinic water bodies and comparator system for other stratified hypersaline systems.
Collapse
Affiliation(s)
- Andreea Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Cecilia Maria Chiriac
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Adrian-Ștefan Andrei
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České, Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Karina Paula Battes
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Mirela Cîmpean
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Marin Șenilă
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Adorján Cristea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Vasile Muntean
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Mircea Alexe
- Department of Physical and Technical Geography, Faculty of Geography, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Cristian Coman
- National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Edina Kriszta Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Cosmin Ionel Sicora
- Biological Research Center Jibou, 16 Wesselenyi Miklos Str., 455200, Jibou, Romania
| | - Artur Ionescu
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, 30 Fantanele Str., 400294, Cluj-Napoca, Romania
| | - David Blain
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - William Kenneth O'Neill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Jessica Edwards
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - John Edward Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DWR. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environ Microbiol 2019; 21:3927-3952. [PMID: 31314947 DOI: 10.1111/1462-2920.14743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 11/30/2022]
Abstract
We present the first geomicrobiological characterization of the meromictic water column of Powell Lake (British Columbia, Canada), a former fjord, which has been stably stratified since the last glacial period. Its deepest layers (300-350 m) retain isolated, relict seawater from that period. Fine-scale vertical profiling of the water chemistry and microbial communities allowed subdivision of the water column into distinct geomicrobiological zones. These zones were further characterized by phylogenetic and functional marker genes from amplicon and shotgun metagenome sequencing. Binning of metagenomic reads allowed the linkage of function to specific taxonomic groups. Statistical analyses (analysis of similarities, Bray-Curtis similarity) confirmed that the microbial community structure followed closely the geochemical zonation. Yet, our characterization of the genetic potential relevant to carbon, nitrogen and sulphur cycling of each zone revealed unexpected features, including potential for facultative anaerobic methylotrophy, nitrogen fixation despite high ammonium concentrations and potential micro-aerobic nitrifiers within the chemocline. At the oxic-suboxic interface, facultative anaerobic potential was found in the widespread freshwater lineage acI (Actinobacteria), suggesting intriguing ecophysiological similarities to the marine SAR11. Evolutionary divergent lineages among diverse phyla were identified in the ancient seawater zone and may indicate novel adaptations to this unusual environment.
Collapse
Affiliation(s)
- Sebastian Haas
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| | - Dhwani K Desai
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| | - Rich Pawlowicz
- Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, Canada
| | - Douglas W R Wallace
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| |
Collapse
|