1
|
Mekhael O, Naiel S, Vierhout M, Hayat AI, Revill SD, Abed S, Inman MD, Kolb MRJ, Ask K. Mouse Models of Lung Fibrosis. Methods Mol Biol 2021; 2299:291-321. [PMID: 34028751 DOI: 10.1007/978-1-0716-1382-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The drug discovery pipeline, from discovery of therapeutic targets through preclinical and clinical development phases, to an approved product by health authorities, is a time-consuming and costly process, where a lead candidates' success at reaching the final stage is rare. Although the time from discovery to final approval has been reduced over the last decade, there is still potential to further optimize and streamline the evaluation process of each candidate as it moves through the different development phases. In this book chapter, we describe our preclinical strategies and overall decision-making process designed to evaluate the tolerability and efficacy of therapeutic candidates suitable for patients diagnosed with fibrotic lung disease. We also describe the benefits of conducting preliminary discovery trials, to aid in the selection of suitable primary and secondary outcomes to be further evaluated and assessed in subsequent internal and external validation studies. We outline all relevant research methodologies and protocols routinely performed by our research group and hope that these strategies and protocols will be a useful guide for biomedical and translational researchers aiming to develop safe and beneficial therapies for patients with fibrotic lung disease.
Collapse
Affiliation(s)
- Olivia Mekhael
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Aaron I Hayat
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Spencer D Revill
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Soumeya Abed
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Mark D Inman
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Nguyen HHT, Yeoh LM, Chisholm SA, Duffy MF. Developments in drug design strategies for bromodomain protein inhibitors to target Plasmodium falciparum parasites. Expert Opin Drug Discov 2019; 15:415-425. [PMID: 31870185 DOI: 10.1080/17460441.2020.1704251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Bromodomains (BRDs) bind to acetylated lysine residues, often on histones. The BRD proteins can contribute to gene regulation either directly through enzymatic activity or indirectly through recruitment of chromatin-modifying complexes or transcription factors. There is no evidence of direct orthologues of the Plasmodium falciparum BRD proteins (PfBDPs) outside the apicomplexans. PfBDPs are expressed during the parasite's life cycle in both the human host's blood and in the mosquito. PfBDPs could also prove to be promising targets for novel antimalarials, which are urgently required to address increasing drug resistance.Areas covered: This review discusses recent studies of the biology of PfBDPs, current target-based strategies for PfBDP inhibitor discovery, and different approaches to the important step of validating the specificity of hit compounds for PfBDPs.Expert opinion: The novelty of Plasmodium BRDs suggests that they could be targeted by selective compounds. Chemical series that showed promise in screens against human BRDs could be leveraged to create targeted compound libraries, as could hits from P. falciparum phenotypic screens. These targeted libraries and hits could be screened in target-based strategies aimed at discovery and optimization of novel inhibitors of PfBDPs. A key task for the field is to generate parasite assays to validate the hit compounds' specificity for PfBDPs.
Collapse
Affiliation(s)
- Hanh H T Nguyen
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia.,The Dept of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Lee M Yeoh
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Scott A Chisholm
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Michael F Duffy
- The School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia.,The Dept of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|