1
|
Tyubaeva PM, Varyan IA, Nikolskaya ED, Yabbarov NG, Chirkina MV, Sokol MB, Mollaeva MR, Yurina LV, Vasilyeva AD, Rosenfeld MA, Obydennyi SI, Chabin IA, Popov AA. Electrospinning of biomimetic materials with fibrinogen for effective early-stage wound healing. Int J Biol Macromol 2024; 260:129514. [PMID: 38237825 DOI: 10.1016/j.ijbiomac.2024.129514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/01/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Electrospun biomimetic materials based on polyester of natural origin poly-3-hudroxybutyrate (PHB) modified with hemin (Hmi) and fibrinogen (Fbg) represent a great interest and are potentially applicable in various fields. Here, we describe formulation of the new fibrous PHB-Fbg and PHB-Hmi-Fbg materials with complex structure for biomedical application. The average diameter of the fibers was 3.5 μm and 1.8 μm respectively. Hmi presence increased porosity from 80 % to 94 %, significantly reduced the number of defects, ensured the formation of a larger number of open pores, and improved mechanical properties. Hmi presence significantly improved the molding properties of the material. Hmi facilitated effective Fbg adsorption on the of the PHB wound-healing material, ensuring uniform localization of the protein on the surface of the fibers. Next, we evaluated cytocompatibility, cell behavior, and open wound healing in mice. The results demonstrated that PHB-Fbg and PHB-Hmi-Fbg electrospun materials had pronounced properties and may be promising for early-stage wound healing - the PHB-Hmi-Fbg sample accelerated wound closure by 35 % on the 3rd day, and PHB-Hmi showed 45 % more effective wound closure on the 15th day.
Collapse
Affiliation(s)
- Polina M Tyubaeva
- Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation.
| | - Ivetta A Varyan
- Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Margarita V Chirkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Maria B Sokol
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Lyubov V Yurina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Alexandra D Vasilyeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Mark A Rosenfeld
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Sergei I Obydennyi
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation; Centre for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russian Federation
| | - Ivan A Chabin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Anatoly A Popov
- Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| |
Collapse
|
2
|
Chen R, Huang M, Xu P. Polyphosphate as an antithrombotic target and hemostatic agent. J Mater Chem B 2023; 11:7855-7872. [PMID: 37534776 DOI: 10.1039/d3tb01152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Polyphosphate (PolyP) is a polymer comprised of linear phosphate units connected by phosphate anhydride bonds. PolyP exists in a diverse range of eukaryotes and prokaryotes with varied chain lengths ranging from six to thousands of phosphate units. Upon activation, human platelets and neutrophils release short-chain PolyP, along with other components, to initiate the coagulation pathway. Long-chain PolyP derived from cellular or bacterial organelles exhibits higher proinflammatory and procoagulant effects compared to short-chain PolyP. Notably, PolyP has been identified as a low-hemorrhagic antithrombotic target since neutralizing plasma PolyP suppresses the thrombotic process without impairing the hemostatic functions. As an inorganic polymer without uniform steric configuration, PolyP is typically targeted by cationic polymers or recombinant polyphosphatases rather than conventional antibodies, small-molecule compounds, or peptides. Additionally, because of its procoagulant property, PolyP has been incorporated in wound-dressing materials to facilitate blood hemostasis. This review summarizes current studies on PolyP as a low-hemorrhagic antithrombotic target and the development of hemostatic materials based on PolyP.
Collapse
Affiliation(s)
- Ruoyu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| |
Collapse
|
3
|
Zamora-Ledezma C, Hernández AB, López-González I, Elango J, Paindépice J, Alexis F, González-Sánchez M, Morales-Flórez V, Mowbray DJ, Meseguer-Olmo L. Fabrication, Physical-Chemical and Biological Characterization of Retinol-Loaded Poly(vinyl Alcohol) Electrospun Fiber Mats for Wound Healing Applications. Polymers (Basel) 2023; 15:2705. [PMID: 37376351 PMCID: PMC10302737 DOI: 10.3390/polym15122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, there exists a huge interest in producing innovative, high-performance, biofunctional, and cost-efficient electrospun biomaterials based on the association of biocompatible polymers with bioactive molecules. Such materials are well-known to be promising candidates for three-dimensional biomimetic systems for wound healing applications because they can mimic the native skin microenvironment; however, many open questions such as the interaction mechanism between the skin and the wound dressing material remain unclear. Recently, several biomolecules were intended for use in combination with poly(vinyl alcohol) (PVA) fiber mats to improve their biological response; nevertheless, retinol, an important biomolecule, has not been combined yet with PVA to produce tailored and biofunctional fiber mats. Based on the abovementioned concept, the present work reported the fabrication of retinol-loaded PVA electrospun fiber mats (RPFM) with a variable content of retinol (0 ≤ Ret ≤ 25 wt.%), and their physical-chemical and biological characterization. SEM results showed that fiber mats exhibited diameters distribution ranging from 150 to 225 nm and their mechanical properties were affected with the increasing of retinol concentrations. In addition, fiber mats were able to release up to 87% of the retinol depending on both the time and the initial content of retinol. The cell culture results using primary mesenchymal stem cell cultures proved the biocompatibility of RPFM as confirmed by their effects on cytotoxicity (low level) and proliferation (high rate) in a dose-dependent manner. Moreover, the wound healing assay suggested that the optimal RPFM with retinol content of 6.25 wt.% (RPFM-1) enhanced the cell migratory activity without altering its morphology. Accordingly, it is demonstrated that the fabricated RPFM with retinol content below the threshold 0 ≤ Ret ≤ 6.25 wt.% would be an appropriate system for skin regenerative application.
Collapse
Affiliation(s)
- Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM—Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Ana Belén Hernández
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| | - Ivan López-González
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| | - Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain;
| | - Janèle Paindépice
- École Polytechnique Universitaire D’ingénieurs de Montpellier (POLYTECH), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France;
| | - Frank Alexis
- Departmento de Ingenería Química, Colegio de Ciencias y Ingenierias, Universidad San Francisco de Quito (Ecuador), Campus Cumbayá, Diego de Robles s/n, Quito 170901, Ecuador;
| | - Manuela González-Sánchez
- Department of Physics of Condensed Matter, University of Seville (Spain), Av. Reina Mercedes, s/n, 41012 Seville, Spain; (M.G.-S.); (V.M.-F.)
| | - Víctor Morales-Flórez
- Department of Physics of Condensed Matter, University of Seville (Spain), Av. Reina Mercedes, s/n, 41012 Seville, Spain; (M.G.-S.); (V.M.-F.)
| | - Duncan John Mowbray
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador;
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| |
Collapse
|
4
|
Sakpal D, Gharat S, Momin M. Recent advancements in polymeric nanofibers for ophthalmic drug delivery and ophthalmic tissue engineering. BIOMATERIALS ADVANCES 2022; 141:213124. [PMID: 36148709 DOI: 10.1016/j.bioadv.2022.213124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nanofibers due to their unique properties such as high surface-to-volume ratio, porous structure, mechanical strength, flexibility and their resemblance to the extracellular matrix, have been researched extensively in the field of ocular drug delivery and tissue engineering. Further, different modifications considering the formulation and process parameters have been carried out to alter the drug release profile and its interaction with the surrounding biological environment. Electrospinning is the most commonly used technique for preparing nanofibers with industrial scalability. Advanced techniques such as co-axial electrospinning and combined system such as embedding nanoparticles in nanofiber provide an alternative approach to enhance the performance of the scaffold. Electrospun nanofibers offers a matrix like structure for cell regeneration. Nanofibers have been used for ocular delivery of various drugs like antibiotics, anti-inflammatory and various proteins. In addition, lens-coated medical devices provide new insights into the clinical use of nanofibers. Through fabricating the nanofibers researchers have overcome the issues of low bioavailability and compatibility with ocular tissue. Therefore, nanofibers have great potential in ocular drug delivery and tissue engineering and have the capacity to revolutionize these therapeutic areas in the field of ophthalmology. This review is mainly focused on the recent advances in the preparation of nanofibers and their applications in ocular drug delivery and tissue engineering. The authors have attempted to emphasize the processing challenges and future perspectives along with an overview of the safety and toxicity aspects of nanofibers.
Collapse
Affiliation(s)
- Darshana Sakpal
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India; SVKM's Shri C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, Maharashtra, India.
| |
Collapse
|
5
|
Wang X, Schepler H, Neufurth M, Wang S, Schröder HC, Müller WEG. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:51-82. [PMID: 35697937 DOI: 10.1007/978-3-031-01237-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many pathological conditions are characterized by a deficiency of metabolic energy. A prominent example is nonhealing or difficult-to-heal chronic wounds. Because of their unique ability to serve as a source of metabolic energy, inorganic polyphosphates (polyP) offer the opportunity to develop novel strategies to treat such wounds. The basis is the generation of ATP from the polymer through the joint action of two extracellular or plasma membrane-bound enzymes alkaline phosphatase and adenylate kinase, which enable the transfer of energy-rich phosphate from polyP to AMP with the formation of ADP and finally ATP. Building on these findings, it was possible to develop novel regeneratively active materials for wound therapy, which have already been successfully evaluated in first studies on patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
6
|
Yan D, Zhang S, Yu F, Gong D, Lin J, Yao Q, Fu Y. Insight into levofloxacin loaded biocompatible electrospun scaffolds for their potential as conjunctival substitutes. Carbohydr Polym 2021; 269:118341. [PMID: 34294349 DOI: 10.1016/j.carbpol.2021.118341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022]
Abstract
The rehabilitation of visual acuity with severe conjunctival fibrosis depends on ocular reconstruction with suitable conjunctival substitutes. In this study, we have developed poly(lactic acid) (PLA) electrospun nanofibrous membranes (EFMs) surface coated by cellulose nanofibrils (CNF) and/or silk peptide (SP). The CNF coating improved the hydrophilicity and the SP coating proliferated conjunctival epithelial cells (CjECs). To prevent post-operative infections, the composite scaffolds were loaded with levofloxacin (LF), constantly exerting efficient bactericidal effects. In in vivo evaluations, the PLA EFMs presented excellent therapeutic effects by promoting structural and functional restoration of conjunctiva after transplant. Even with reduced topical administration of antibiotics, the coloboma treated with LF loaded scaffolds presented no infections. It could be deduced that the potent bacterial inhibition feature could save troubles for patients by minimizing the application of antibiotics post-surgery. Hence, the developed PLA EFMs loaded with LF could be promising conjunctival substitutes.
Collapse
Affiliation(s)
- Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Danni Gong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jinyou Lin
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
7
|
La CC, Takeuchi LE, Abbina S, Vappala S, Abbasi U, Kizhakkedathu JN. Targeting Biological Polyanions in Blood: Strategies toward the Design of Therapeutics. Biomacromolecules 2020; 21:2595-2621. [DOI: 10.1021/acs.biomac.0c00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Diversity of Electrospinning Approach for Vascular Implants: Multilayered Tubular Scaffolds. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00157-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Eldurini S, Abd El-Hady BM, Shafaa MW, Gad AAM, Tolba E. A multicompartment vascular implant of electrospun wintergreen oil/ polycaprolactone fibers coated with poly(ethylene oxide). Biomed J 2020; 44:589-597. [PMID: 32389823 PMCID: PMC8640569 DOI: 10.1016/j.bj.2020.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
Background The aim of the present study was to fabricate double layered scaffolds of electrospun polycaprolactone (PCL) and poly(ethylene oxide) (PEO). The electrospun PCL fibers were functionalized with wintergreen oil (WO) as a novel approach to prevent vascular grafts failure due to thrombosis by adjusting biomaterial–blood interactions. Methods PCL tubular scaffolds were prepared by electrospinning approach and coated with PEO as a hydrophilic polymer. The single and double layered scaffolds were characterized in terms of their morphological, chemical properties -as well as-hemocompatibility assays (i.e. prothrombin time, hemolysis percentage and platelets adhesion). Moreover, the antioxidant potential of WO-PCL samples were measured by 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) free radical assay. Results The results demonstrated that incorporation of WO during the electrospinning process decreased the PCL fiber diameter. In addition, the prothrombine time assay shows that WO could be used to lower the electrospun PCL fiber tendency to induce blood clotting. Moreover, SEM observations of platelets adhesion of both single and double layered PCL/PEO scaffolds fiber shows an increase of platelets number, compared with the scaffolds containing WO. Conclusions The antioxidant potential and blood compatibility measurements of WO-PCL/PEO samples highlight the approach made so far as an ideal synthetic small size vascular grafts to overcome autogenous grafts shortages and drawbacks.
Collapse
Affiliation(s)
- Shima Eldurini
- Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Medhat W Shafaa
- Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Abdul Aziz M Gad
- Molecular Biology Department, National Research Centre, Giza, Egypt
| | - Emad Tolba
- Polymers and Pigments Department, National Research Center, Cairo, Egypt.
| |
Collapse
|
10
|
Chen X, Feng B, Zhu DQ, Chen YW, Ji W, Ji TJ, Li F. Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo. Int J Nanomedicine 2019; 14:3669-3678. [PMID: 31190818 PMCID: PMC6535102 DOI: 10.2147/ijn.s204971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Electrospun gelatin/polycaprolactone (Gt/PCL) nanofibrous scaffolds loaded with graphene are novel nanomaterials with the uniquely strong property of electrical conductivity, which have been widely investigated for their potential applications in cardiovascular tissue engineering, including in bypass tracts for atrioventricular block. Purpose: Electrospun Gt/PCL/graphene nanofibrous mats were successfully produced. Scanning electron micrography showed that the fibers with graphene were smooth and homogeneous. In vitro, to determine the biocompatibility of the scaffolds, hybrid scaffolds with different fractions of graphene were seeded with neonatal rat ventricular myocytes. In vivo, Gt/PCL scaffolds with different concentrations of graphene were implanted into rats for 4, 8 and 12 weeks. Results: CCK-8 assays and histopathological staining (including DAPI, cTNT, and CX43) indicated that cells grew and survived well on the hybrid scaffolds if the mass fraction of graphene was lower than 0.5%. After implanting into rats for 4, 8 or 12 weeks, there was no gathering of inflammatory cells around the nanomaterials according to the HE staining results. Conclusion: The results indicate that Gt/PCL nanofibrous scaffolds loaded with graphene have favorable electrical conductivity and biological properties and may be suitable scaffolds for use in the treatment of atrioventricular block. These findings alleviate safety concerns and provide novel insights into the potential applications of Gt/PCL loaded with graphene, offering a solid foundation for comprehensive in vivo studies.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Bei Feng
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Di-Qi Zhu
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yi-Wei Chen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wei Ji
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Tian-Ji Ji
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Baker CJ, Smith SA, Morrissey JH. Polyphosphate in thrombosis, hemostasis, and inflammation. Res Pract Thromb Haemost 2019; 3:18-25. [PMID: 30656272 PMCID: PMC6332810 DOI: 10.1002/rth2.12162] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/06/2018] [Indexed: 01/19/2023] Open
Abstract
This illustrated review focuses on polyphosphate as a potent modulator of the plasma clotting cascade, with possible roles in hemostasis, thrombosis, and inflammation. Polyphosphates are highly anionic, linear polymers of inorganic phosphates that are widespread throughout biology. Infectious microorganisms accumulate polyphosphates with widely varying polymer lengths (from a few phosphates to over a thousand phosphates long), while activated human platelets secrete polyphosphate with a very narrow size distribution (about 60-100 phosphates long). Work from our lab and others has shown that long-chain polyphosphate is a potent trigger of clotting via the contact pathway, while polyphosphate of the size secreted by platelets accelerates factor V activation, blocks the anticoagulant activity of tissue factor pathway inhibitor, promotes factor XI activation by thrombin, and makes fibrin fibrils thicker and more resistant to fibrinolysis. Polyphosphate also modulates inflammation by triggering bradykinin release, inhibiting the complement system, and modulating endothelial function. Polyphosphate and nucleic acids have similar physical properties and both will trigger the contact pathway-although polyphosphate is orders of magnitude more procoagulant than either DNA or RNA. Important caveats in these studies include observations that nucleic acids and polyphosphate may co-purify, and that these preparations can be contaminated with highly procoagulant microparticles if silica-based purification methods are employed. Polyphosphate has received attention as a possible therapeutic, with some recent studies exploring the use of polyphosphate in a variety of formulations to control bleeding. Other studies are investigating treatments that block polyphosphate function as novel antithrombotics with the possibility of reduced bleeding side effects.
Collapse
Affiliation(s)
- Catherine J. Baker
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Stephanie A. Smith
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - James H. Morrissey
- Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborMichigan
| |
Collapse
|
12
|
Gilotra S, Chouhan D, Bhardwaj N, Nandi SK, Mandal BB. Potential of silk sericin based nanofibrous mats for wound dressing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:420-432. [DOI: 10.1016/j.msec.2018.04.077] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/06/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022]
|