1
|
Luque-Badillo AC, Monjaras-Avila CU, Adomat H, So A, Chavez-Muñoz C. Evaluating different methods for kidney recellularization. Sci Rep 2024; 14:23520. [PMID: 39384961 PMCID: PMC11464767 DOI: 10.1038/s41598-024-74543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
This study explores a potential solution to the shortage of kidneys for transplantation in end-stage renal disease (ESRD). Currently, kidney transplantation stands as the optimal option, yet the scarcity of organs persists. Employing tissue engineering, researchers sought to assess the feasibility of generating kidneys for transplantation. Pig kidneys were utilized since they possess higher similarities to human kidneys. Cells were removed via decellularization, which maintains the organ's microarchitecture. Subsequently, pig kidney cells and human red blood cells were perfused into the vacant kidney structure to reconstitute it. The methodologies employed showed promising results, suggesting a viable approach to increase the recellularization rate in whole pig kidneys. This proof-of-concept establishes a groundwork for potentially extending this technology to human kidneys, tackling the organ shortage, thus positively enhancing outcomes for ESRD patients by increasing the availability of transplantable organs.
Collapse
Affiliation(s)
- Ana C Luque-Badillo
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cesar U Monjaras-Avila
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hans Adomat
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alan So
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Claudia Chavez-Muñoz
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- , 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada.
| |
Collapse
|
2
|
Langner E, Cheng T, Kefaloyianni E, Gluck C, Wang B, Mahjoub MR. Cep120 is essential for kidney stromal progenitor cell growth and differentiation. EMBO Rep 2024; 25:428-454. [PMID: 38177914 PMCID: PMC10897188 DOI: 10.1038/s44319-023-00019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Mutations in genes that disrupt centrosome structure or function can cause congenital kidney developmental defects and lead to fibrocystic pathologies. Yet, it is unclear how defective centrosome biogenesis impacts renal progenitor cell physiology. Here, we examined the consequences of impaired centrosome duplication on kidney stromal progenitor cell growth, differentiation, and fate. Conditional deletion of the ciliopathy gene Cep120, which is essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of interstitial lineages including pericytes, fibroblasts and mesangial cells. These phenotypes were caused by a combination of delayed mitosis, activation of the mitotic surveillance pathway leading to apoptosis, and changes in both Wnt and Hedgehog signaling that are key for differentiation of stromal cells. Cep120 ablation resulted in small hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, Cep120 and centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis after renal injury via enhanced TGF-β/Smad3-Gli2 signaling. Our study defines the cellular and developmental defects caused by loss of Cep120 and aberrant centrosome biogenesis in the embryonic kidney stroma.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Tao Cheng
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Eirini Kefaloyianni
- Department of Medicine (Rheumatology Division), Washington University, St Louis, MO, USA
| | - Charles Gluck
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA.
| |
Collapse
|
3
|
Torban E, Goodyer P. Wilms' tumor gene 1: lessons from the interface between kidney development and cancer. Am J Physiol Renal Physiol 2024; 326:F3-F19. [PMID: 37916284 DOI: 10.1152/ajprenal.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
In 1990, mutations of the Wilms' tumor-1 gene (WT1), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline WT1 mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of WT1 leads to malignant transformation. Here, we discuss how alternative splicing of WT1 generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the WT1 mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University and Research Institute of McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- Department of Human Genetics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
D'Cruz R, Kim YK, Mulder J, Ibeh N, Jiang N, Tian Y, Rosenblum ND. Hedgehog signalling in Foxd1+ embryonic kidney stromal progenitors controls nephron formation via Cxcl12 and Wnt5a. J Pathol 2023; 261:385-400. [PMID: 37772431 DOI: 10.1002/path.6195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 09/30/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are characterised by a spectrum of structural and histologic abnormalities and are the major cause of childhood kidney failure. During kidney morphogenesis, the formation of a critical number of nephrons is an embryonic process supported, in part, by signalling between nephrogenic precursors and Foxd1-positive stromal progenitor cells. Low nephron number and abnormal patterning of the stroma are signature pathological features among CAKUT phenotypes with decreased kidney function. Despite their critical contribution to CAKUT pathogenesis, the mechanisms that underlie a low nephron number and the functional contribution of a disorganised renal stroma to nephron number are both poorly defined. Here, we identify a primary pathogenic role for increased Hedgehog signalling in embryonic renal stroma in the genesis of congenital low nephron number. Pharmacologic activation of Hedgehog (Hh) signalling in human kidney organoid tissue decreased the number of nephrons and generated excess stroma. The mechanisms underlying these pathogenic effects were delineated in genetic mouse models in which Hh signalling was constitutively activated in a cell lineage-specific manner. Cre-mediated excision of Ptch1 in Foxd1+ stromal progenitor cells, but not in Six2+ nephrogenic precursor cells, generated kidney malformation, identifying the stroma as a driver of low nephron number. Single-cell RNA sequencing analysis identified Cxcl12 and Wnt5a as downstream targets of increased stromal Hh signalling, findings supported by analysis in human kidney organoids. In vivo deficiency of Cxcl12 or Wnt5a in mice with increased stromal Hh signalling improved nephron endowment. These results demonstrate that dysregulated Hh signalling in embryonic renal stromal cells inhibits nephron formation in a manner dependent on Cxcl12 and Wnt5a. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Robert D'Cruz
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Jaap Mulder
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, Canada
| | - Neke Ibeh
- Princess Margaret Cancer Centre, Unity Health Network, Toronto, Canada
| | - Nan Jiang
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Yilin Tian
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Greenberg D, D’Cruz R, Lacanlale JL, Rowan CJ, Rosenblum ND. Hedgehog-GLI mediated control of renal formation and malformation. FRONTIERS IN NEPHROLOGY 2023; 3:1176347. [PMID: 37675356 PMCID: PMC10479618 DOI: 10.3389/fneph.2023.1176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 09/08/2023]
Abstract
CAKUT is the leading cause of end-stage kidney disease in children and comprises a broad spectrum of phenotypic abnormalities in kidney and ureter development. Molecular mechanisms underlying the pathogenesis of CAKUT have been elucidated in genetic models, predominantly in the mouse, a paradigm for human renal development. Hedgehog (Hh) signaling is critical to normal embryogenesis, including kidney development. Hh signaling mediates the physiological development of the ureter and stroma and has adverse pathophysiological effects on the metanephric mesenchyme, ureteric, and nephrogenic lineages. Further, disruption of Hh signaling is causative of numerous human developmental disorders associated with renal malformation; Pallister-Hall Syndrome (PHS) is characterized by a diverse spectrum of malformations including CAKUT and caused by truncating variants in the middle-third of the Hh signaling effector GLI3. Here, we outline the roles of Hh signaling in regulating murine kidney development, and review human variants in Hh signaling genes in patients with renal malformation.
Collapse
Affiliation(s)
- Dina Greenberg
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Robert D’Cruz
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jon L. Lacanlale
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christopher J. Rowan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Norman D. Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Langner E, Cheng T, Kefaloyianni E, Gluck C, Wang B, Mahjoub MR. Impaired centrosome biogenesis in kidney stromal progenitors reduces abundance of interstitial lineages and accelerates injury-induced fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535583. [PMID: 37066241 PMCID: PMC10104024 DOI: 10.1101/2023.04.04.535583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Defective centrosome function can disrupt embryonic kidney development, by causing changes to the renal interstitium that leads to fibrocystic disease pathologies. Yet, it remains unknown how mutations in centrosome genes impact kidney interstitial cells. Here, we examined the consequences of defective centrosome biogenesis on stromal progenitor cell growth, differentiation and fate. Conditional deletion of Cep120 , a ciliopathy gene essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of pericytes, interstitial fibroblasts and mesangial cells. This was due to delayed mitosis, increased apoptosis, and changes in Wnt and Hedgehog signaling essential for differentiation of stromal lineages. Cep120 ablation resulted in hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis via enhanced TGF-β/Smad3-Gli2 signaling after renal injury. Our study defines the cellular and developmental defects caused by centrosome dysfunction in embryonic kidney stroma. Highlights Defective centrosome biogenesis in kidney stroma causes:Reduced abundance of stromal progenitors, interstitial and mesangial cell populationsDefects in cell-autonomous and paracrine signalingAbnormal/delayed nephrogenesis and tubular dilationsAccelerates injury-induced fibrosis via defective TGF-β/Smad3-Gli2 signaling axis.
Collapse
|
7
|
Kumar S, Fan X, Rasouly HM, Sharma R, Salant DJ, Lu W. ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis. JCI Insight 2023; 8:e158418. [PMID: 36445780 PMCID: PMC9870089 DOI: 10.1172/jci.insight.158418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
FOXD1+ cell-derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific conditional knockout of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2-cKO mouse kidneys. Zeb2-deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers, including PDGFRβ, CSPG4, desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development, whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.
Collapse
|
8
|
Minuth WW. The interstitium at the developing nephron in the fetal kidney during advanced pregnancy - a microanatomical inventory. Mol Cell Pediatr 2022; 9:17. [PMID: 36008693 PMCID: PMC9411487 DOI: 10.1186/s40348-022-00149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background A series of noxae can evoke the termination of nephron formation in preterm and low birth weight babies. This results in oligonephropathy with severe consequences for health in the later life. Although the clinical parameters have been extensively investigated, little is known about the initial damage. Previous pathological findings indicate the reduction in width of the nephrogenic zone and the lack of S-shaped bodies. Current morphological investigations suggest that due to the mutual patterning beside the forming nephron, also its structural neighbors, particularly the interjacent interstitium, must be affected. However, beside the findings on integrative and mastering functions, systematic microanatomical data explaining the configuration of the interstitium at the developing nephron in the fetal kidney during advanced pregnancy is not available. Therefore, this work explains the typical features. Results The generated data depicts that the progenitor cells, nephrogenic niche, pretubular aggregate, and mesenchymal-to-epithelial transition are restricted to the subcapsular interstitium. During the proceeding development, only the distal pole of the renal vesicles and comma- and S-shaped bodies stays in further contact with it. The respective proximal pole is positioned opposite the peritubular interstitium at the connecting tubule of an underlying but previously formed nephron. The related medial aspect faces the narrow peritubular interstitium of a collecting duct (CD) ampulla first only at its tip, then at its head, conus, and neck, and finally at the differentiating CD tubule. The lateral aspect starts at the subcapsular interstitium, but then it is positioned along the wide perivascular interstitium of the neighboring ascending perforating radiate artery. When the nephron matures, the interstitial configuration changes again. Conclusions The present investigation illustrates that the interstitium at the forming nephron in the fetal kidney consists of existing, transient, stage-specific, and differently far matured compartments. According to the developmental needs, it changes its shape by formation, degradation, fusion, and rebuilding.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
10
|
Nishikawa M, Yanagawa N. Knockdown of Nuclear lncRNAs by Locked Nucleic Acid (LNA) Gapmers in Nephron Progenitor Cells. Methods Mol Biol 2021; 2161:29-36. [PMID: 32681503 DOI: 10.1007/978-1-0716-0680-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite recent advance in our understanding on the role of long noncoding RNAs (lncRNAs), the function of the vast majority of lncRNAs remains poorly understood. To characterize the function of lncRNAs, knockdown studies are essential. However, the conventional silencing methods for mRNA, such as RNA interference (RNAi), may not be as efficient against lncRNAs, partly due to the mismatch of the localization of lncRNAs and RNAi machinery. To circumvent such limitation, a new technique has recently been developed, i.e., locked nucleic acid (LNA) gapmers. This system utilizes RNase H that distributes evenly in both nucleus and cytoplasm and is expected to knock down lncRNAs of interest more consistently regardless of their localization in the cell. In this chapter, we describe the procedure with tips to silence lncRNAs by LNA gapmers, by using mouse nephron progenitor cells as an example.
Collapse
Affiliation(s)
- Masaki Nishikawa
- School of Engineering, Chemical System Engineering, University of Tokyo, Tokyo, Japan.
| | - Norimoto Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA.
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Weiss AC, Rivera-Reyes R, Englert C, Kispert A. Expansion of the renal capsular stroma, ureteric bud branching defects and cryptorchidism in mice with Wilms tumor 1 gene deletion in the stromal compartment of the developing kidney. J Pathol 2020; 252:290-303. [PMID: 32715478 DOI: 10.1002/path.5518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Development of the mammalian kidney is orchestrated by reciprocal interactions of stromal and nephrogenic mesenchymal cells with the ureteric bud epithelium. Previous work showed that the transcription factor Wilms tumor 1 (WT1) acts in the nephrogenic lineage to maintain precursor cells, to drive the epithelial transition of aggregating precursors into a renal vesicle and to specify and maintain the podocyte fate. However, WT1 is expressed not only in the nephrogenic lineage but also transiently in stromal progenitors in the renal cortex. Here we report that specific deletion of Wt1 in the stromal lineage using the Foxd1cre driver line results at birth in cryptorchidism and hypoplastic kidneys that harbour fewer and enlarged ureteric bud tips and display an expansion of capsular stroma into the cortical region. In vivo and ex vivo analysis at earlier stages revealed that stromal loss of Wt1 reduces stromal proliferation, and delays and alters branching morphogenesis, resulting in a variant architecture of the collecting duct tree with an increase of single at the expense of bifurcated ureteric bud tips. Molecular analysis identified a transient reduction of Aldh1a2 expression and of retinoic acid signalling activity in stromal progenitors, and of Ret in ureteric bud tips. Administration of retinoic acid partly rescued the branching defects of mutant kidneys in culture. We propose that WT1 maintains retinoic acid signalling in the cortical stroma, which, in turn, assures proper levels and dynamics of Ret expression in the ureteric bud tips, and thus normal ramification of the ureteric tree. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Christoph Englert
- Molecular Genetics, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
12
|
Yousef Yengej FA, Jansen J, Rookmaaker MB, Verhaar MC, Clevers H. Kidney Organoids and Tubuloids. Cells 2020; 9:E1326. [PMID: 32466429 PMCID: PMC7349753 DOI: 10.3390/cells9061326] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
In the past five years, pluripotent stem cell (PSC)-derived kidney organoids and adult stem or progenitor cell (ASC)-based kidney tubuloids have emerged as advanced in vitro models of kidney development, physiology, and disease. PSC-derived organoids mimic nephrogenesis. After differentiation towards the kidney precursor tissues ureteric bud and metanephric mesenchyme, their reciprocal interaction causes self-organization and patterning in vitro to generate nephron structures that resemble the fetal kidney. ASC tubuloids on the other hand recapitulate renewal and repair in the adult kidney tubule and give rise to long-term expandable and genetically stable cultures that consist of adult proximal tubule, loop of Henle, distal tubule, and collecting duct epithelium. Both organoid types hold great potential for: (1) studies of kidney physiology, (2) disease modeling, (3) high-throughput screening for drug efficacy and toxicity, and (4) regenerative medicine. Currently, organoids and tubuloids are successfully used to model hereditary, infectious, toxic, metabolic, and malignant kidney diseases and to screen for effective therapies. Furthermore, a tumor tubuloid biobank was established, which allows studies of pathogenic mutations and novel drug targets in a large group of patients. In this review, we discuss the nature of kidney organoids and tubuloids and their current and future applications in science and medicine.
Collapse
Affiliation(s)
- Fjodor A. Yousef Yengej
- Hubrecht Institute—Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 24, 6500 HB Nijmegen, The Netherlands;
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children’s Hospital, Geert Grooteplein 24, 6500 HB Nijmegen, The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Hans Clevers
- Hubrecht Institute—Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| |
Collapse
|
13
|
Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development. Pediatr Nephrol 2020; 35:725-731. [PMID: 30923969 DOI: 10.1007/s00467-019-04240-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 01/20/2023]
Abstract
Aberrant hedgehog (Hh) signaling during embryogenesis results in various severe congenital abnormalities, including renal malformations. The molecular mechanisms that underlie congenital renal malformations remain poorly understood. Here, we review the current understanding of the lineage-specific roles of Hh signaling during renal morphogenesis and how aberrant Hh signaling during embryonic kidney development contributes to renal malformation.
Collapse
|
14
|
Nishikawa M, Sakai Y, Yanagawa N. Design and strategy for manufacturing kidney organoids. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Nishikawa M, Yuri S, Kimura H, Yanagawa N, Hamon M, Hauser P, Zhao L, Jo OD, Yanagawa N. Comprehensive analysis of chromatin signature and transcriptome uncovers functional lncRNAs expressed in nephron progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:58-70. [PMID: 30416088 DOI: 10.1016/j.bbagrm.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/25/2018] [Accepted: 09/12/2018] [Indexed: 01/21/2023]
Abstract
Emerging evidence from recent studies has unraveled the roles of long noncoding RNAs (lncRNAs) in the function of various tissues. However, little is known about the roles of lncRNAs in kidney development. In our present study, we aimed to identify functional lncRNAs in one of the three lineages of kidney progenitor cells, i.e., metanephric mesenchymal (MM) cells. We conducted comprehensive analyses of the chromatin signature and transcriptome by RNA-seq and ChIP-seq. We found seventeen lncRNAs that were expressed specifically in MM cells with an active chromatin signature, while remaining silenced in a bivalent chromatin state in non-MM cells. Out of these MM specific lncRNAs, we identified a lncRNA, Gm29418, in a distal enhancer region of Six2, a key regulatory gene of MM cells. We further identified three transcript variants of Gm29418 by Rapid Amplification of cDNA Ends (RACE), and confirmed that the transcription-start-sites (TSSs) of these variants were consistent with the result of Cap Analysis Gene Expression (CAGE). In support of the enhancer-like function of Gm29418 on Six2 expression, we found that knock-down of Gm29418 by two independent anti-sense locked nucleic acid (LNA) phosphorothioate gapmers suppressed Six2 mRNA expression levels in MM cells. We also found that over-expression of Gm29418 led to an increase in Six2 mRNA expression levels in a mouse MM cell line. In conclusion, we identified a lncRNA, Gm29418, in nephron progenitor cells that has an enhancer-like function on a key regulatory gene, Six2.
Collapse
Affiliation(s)
- Masaki Nishikawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Shunsuke Yuri
- Nara Institute of Science & Technology, Nara 630-0192, Japan
| | | | - Naomi Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Morgan Hamon
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Peter Hauser
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lifu Zhao
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA
| | - Oak D Jo
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Norimoto Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA, USA; University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
16
|
An optimal serum-free defined condition for in vitro culture of kidney organoids. Biochem Biophys Res Commun 2018; 501:996-1002. [DOI: 10.1016/j.bbrc.2018.05.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
17
|
Development of the renal vasculature. Semin Cell Dev Biol 2018; 91:132-146. [PMID: 29879472 DOI: 10.1016/j.semcdb.2018.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
The kidney vasculature has a unique and complex architecture that is central for the kidney to exert its multiple and essential physiological functions with the ultimate goal of maintaining homeostasis. An appropriate development and coordinated assembly of the different vascular cell types and their association with the corresponding nephrons is crucial for the generation of a functioning kidney. In this review we provide an overview of the renal vascular anatomy, histology, and current knowledge of the embryological origin and molecular pathways involved in its development. Understanding the cellular and molecular mechanisms involved in renal vascular development is the first step to advance the field of regenerative medicine.
Collapse
|