Nag D, Dastidar DG, Chakrabarti G. Natural flavonoid morin showed anti-bacterial activity against Vibrio cholera after binding with cell division protein FtsA near ATP binding site.
Biochim Biophys Acta Gen Subj 2021;
1865:129931. [PMID:
34023444 DOI:
10.1016/j.bbagen.2021.129931]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND
Increasing antibiotic-resistance in bacterial strains has boosted the need to find new targets for drug delivery. FtsA, a major bacterial divisome protein can be a potent novel drug-target.
METHODS AND RESULTS
This study finds, morin (3,5,7,2',4'-pentahydroxyflavone), a bio-available flavonoid, had anti-bacterial activities against Vibrio cholerae, IC50 (50 μM) and MIC (150 μM). Morin (2 mM) kills ~20% of human lung fibroblast (WI38) and human intestinal epithelial (HIEC-6) cells in 24 h in-vitro. Fluorescence studies showed morin binds to VcFtsA (FtsA of V. cholerae) with a Kd of 4.68 ± 0.4 μM, inhibiting the protein's polymerization by 72 ± 7% at 25 μM concentration. Morin also affected VcFtsA's ATPase activity, recording ~80% reduction at 20 μM concentration. The in-silico binding study indicated binding sites of morin and ATP on VcFtsA had overlapping amino acids. Mant-ATP, a fluorescent ATP-derivative, showed increased fluorescence on binding to VcFtsA in absence of morin, but in its presence, Mant-ATP fluorescence decreased. VcFtsA-S40A mutant protein did not bind to morin.
CONCLUSIONS
VcFtsA-morin interaction inhibits the polymerization of the protein by affecting its ATPase activity. The destabilized VcFtsA assembly in-turn affected the cell division in V. cholerae, yielding an elongated morphology.
GENERAL SIGNIFICANCE
Collectively, these findings explore the anti-bacterial effect of morin on V. cholerae cells targeting VcFtsA, encouraging it to become a potent anti-bacterial agent. Low cytotoxicity of morin against human cells (host) is therapeutically advantageous. This study will also help in synthesizing novel derivatives that can target VcFtsA more efficiently.
Collapse