1
|
Garban Z, Ilia G. Structure-Activity of Plant Growth Bioregulators and Their Effects on Mammals. Molecules 2024; 29:5671. [PMID: 39683830 DOI: 10.3390/molecules29235671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In this review, we emphasize structure-activity and the effects on mammals of plant growth bioregulators. plant growth bioregulators can be referred to as "biochemical effectors" since they are substances having biological activity. It is possible to distinguish between "bioregulators" and "regulators" due to the significance of the compounds mentioned above in biochemistry and agrobiology. Thus, "plant growth bioregulators" (PGBRs) are the names given to naturally occurring chemical substances produced by biosynthetic processes. PGBRs affect both plant reign and animal reign. A plethora of plant growth bioregulators were described in the literature, so the structure, activity in plants, and their effects on mammals are presented.
Collapse
Affiliation(s)
- Zeno Garban
- Biochemistry and Molecular Biology, University of Life Sciences "King Michael I", 119 Aradului Ave., 300645 Timisoara, Romania
- Working Group for Xenobiochemistry, Romanian Academy-Timisoara Branch, 24 M. Viteazu Ave., 300223 Timisoara, Romania
| | - Gheorghe Ilia
- Department of Biology-Chemistry, West University Timisoara, 16 Pestalozzi Str., 300223 Timisoara, Romania
| |
Collapse
|
2
|
Identification and Quantification of Key Phytochemicals, Phytohormones, and Antioxidant Properties in Coccinia grandis during Fruit Ripening. Antioxidants (Basel) 2022; 11:antiox11112218. [DOI: 10.3390/antiox11112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Coccinia grandis contains secondary metabolites, such as flavonoids, phenolic acids, terpenoids, alkaloids, sterols, and glycosides, which are known to have in vitro antioxidant, antidiabetic, anti-inflammatory, and antidyslipidemic activities. C. grandis fruits change dramatically during ripening, and the differences in the phytochemicals contribute to various uses. This study reports the phytochemical compounds and antioxidant activities during ripening of C. grandis for the first time. Characterizations were conducted on the physiologically active substances in C. grandis fruits at three ripening stages, and a total of 25 peaks were identified. Key phytochemicals in the ripening stages of C. grandis were identified, and the major substances that contributed to antioxidant properties were selected and quantitatively analyzed. Although the concentration of tiliroside increased during aging, hydroxycinnamic acid (chlorogenic and p-coumaric acids), flavonols (rutin), and triterpenes (cucurbitacins B and D) with antioxidant effects decreased. Therefore, phenolic compounds and cucurbitacins dominate immature C. grandis quantitatively. Regarding phytohormones, the gibberellin A4 content decreased as the fruits matured, but indoleacetic acid and salicylic acid increased with fruit maturity. The antioxidant capacities determined by DPPH and ABTS consistently decreased with increasing maturity. Accordingly, the extracts of immature C. grandis fruits have high levels of bioactive compounds and can be used to develop food additives and health supplements.
Collapse
|
3
|
Mukherjee A, Gaurav AK, Singh S, Yadav S, Bhowmick S, Abeysinghe S, Verma JP. The bioactive potential of phytohormones: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00748. [PMID: 35719852 PMCID: PMC9204661 DOI: 10.1016/j.btre.2022.e00748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Phytohormones act as bioactive compound for plant, humans and microbes. Cytokinin, GA and auxin reduce reactive oxygen to prevent cancer & tumour disease. Phytohormones used in pharmaceuticals products and cosmetics for human. Microbes can be a potential source for plant hormones production. Phytohormones play a key role in signalling for plant-animal–microbe interactions.
Plant hormones play an important role in growth, defence and plants productivity and there are several studies on their effects on plants. However, their role in humans and animals is limitedly studied. Recent studies suggest that plant hormone also works in mammalian systems, and have the potential to reduce human diseases such as cancer, diabetes, and also improve cell growth. Plant hormones such as indole-3-acetic acid (IAA) works as an antitumor, anti-cancer agent, gibberellins help in apoptosis, abscisic acid (ABA) as antidepressant compounds and regulation of glucose homeostasis whereas cytokinin works as an anti-ageing compound. The main aim of this review is to explore and correlate the relation of plant hormones and their important roles in animals, microbes and plants, and their interrelationships, emphasizing mainly human health. The most important and well-known plant hormones e.g., IAA, gibberellins, ABA, cytokinin and ethylene have been selected in this review to explore their effects on humans and animals.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anand Kumar Gaurav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shweta Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shiuly Bhowmick
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Saman Abeysinghe
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
4
|
Anti-Proliferative and Cytoprotective Activity of Aryl Carbamate and Aryl Urea Derivatives with Alkyl Groups and Chlorine as Substituents. Molecules 2022; 27:molecules27113616. [PMID: 35684552 PMCID: PMC9182529 DOI: 10.3390/molecules27113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Natural cytokinines are a promising group of cytoprotective and anti-tumor agents. In this research, we synthesized a set of aryl carbamate, pyridyl urea, and aryl urea cytokinine analogs with alkyl and chlorine substitutions and tested their antiproliferative activity in MDA-MB-231, A-375, and U-87 MG cell lines, and cytoprotective properties in H2O2 and CoCl2 models. Aryl carbamates with the oxamate moiety were selectively anti-proliferative for the cancer cell lines tested, while the aryl ureas were inactive. In the cytoprotection studies, the same aryl carbamates were able to counteract the CoCl2 cytotoxicity by 3–8%. The possible molecular targets of the aryl carbamates during the anti-proliferative action were the adenosine A2 receptor and CDK2. The obtained results are promising for the development of novel anti-cancer therapeutics.
Collapse
|
5
|
Brizzolari A, Foti MC, Saso L, Ciuffreda P, Lazarević J, Santaniello E. Evaluation of the radical scavenging activity of some representative isoprenoid and aromatic cytokinin ribosides (N 6-substituted adenosines) by in vitro chemical assays. Nat Prod Res 2022; 36:6443-6447. [PMID: 35130809 DOI: 10.1080/14786419.2022.2037590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cytokinins are naturally occurring adenine derivatives whose physiological role is that of growth regulators in plants and that show also many other activities either in plants and in mammalian cells. In plants, they can be found mainly as free bases ((N6-substituted adenines, CKs), but also as the corresponding N9- ribosides (N6-substituted adenosines, CKRs). In mammalian cells, CKRs are, in general, more active than CKs. In order to evaluate the intrinsic in vitro antioxidant capacity of some significant CKRs, their scavenging activity against synthetic radicals that are at the basis of well-established antioxidant assays (ORAC, TEAC, DPPH) has been evaluated. The results of the in vitro scavenging activity of biologically relevant radicals such as hydroxyl (HO•), superoxide (O2.-) and lipid peroxides (R-OO.) are reported and discussed.
Collapse
Affiliation(s)
- Andrea Brizzolari
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Divers Alert Network (DAN) Europe Research Division, Roseto degli Abruzzi, Italy
| | - Mario C Foti
- Istituto di Chimica Biomolecolare del CNR, Catania, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Pierangela Ciuffreda
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milano, Italy
| | - Jelena Lazarević
- Department of Chemistry, Faculty of Medicine, University of Niš, Niš, Serbia
| | | |
Collapse
|
6
|
Gonzalez G, Grúz J, D’Acunto CW, Kaňovský P, Strnad M. Cytokinin Plant Hormones Have Neuroprotective Activity in In Vitro Models of Parkinson's Disease. Molecules 2021; 26:E361. [PMID: 33445611 PMCID: PMC7827283 DOI: 10.3390/molecules26020361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 01/03/2023] Open
Abstract
Cytokinins are adenine-based phytohormones that regulate key processes in plants, such as cell division and differentiation, root and shoot growth, apical dominance, branching, and seed germination. In preliminary studies, they have also shown protective activities against human neurodegenerative diseases. To extend knowledge of the protection (protective activity) they offer, we investigated activities of natural cytokinins against salsolinol (SAL)-induced toxicity (a Parkinson's disease model) and glutamate (Glu)-induced death of neuron-like dopaminergic SH-SY5Y cells. We found that kinetin-3-glucoside, cis-zeatin riboside, and N6-isopentenyladenosine were active in the SAL-induced PD model. In addition, trans-, cis-zeatin, and kinetin along with the iron chelator deferoxamine (DFO) and the necroptosis inhibitor necrostatin 1 (NEC-1) significantly reduced cell death rates in the Glu-induced model. Lactate dehydrogenase assays revealed that the cytokinins provided lower neuroprotective activity than DFO and NEC-1. Moreover, they reduced apoptotic caspase-3/7 activities less strongly than DFO. However, the cytokinins had very similar effects to DFO and NEC-1 on superoxide radical production. Overall, they showed protective activity in the SAL-induced model of parkinsonian neuronal cell death and Glu-induced model of oxidative damage mainly by reduction of oxidative stress.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (G.G.); (J.G.); (C.W.D.)
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20 Olomouc, Czech Republic;
| | - Jiří Grúz
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (G.G.); (J.G.); (C.W.D.)
| | - Cosimo Walter D’Acunto
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (G.G.); (J.G.); (C.W.D.)
| | - Petr Kaňovský
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20 Olomouc, Czech Republic;
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (G.G.); (J.G.); (C.W.D.)
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20 Olomouc, Czech Republic;
| |
Collapse
|
7
|
Maková B, Mik V, Lišková B, Gonzalez G, Vítek D, Medvedíková M, Monfort B, Ručilová V, Kadlecová A, Khirsariya P, Gándara Barreiro Z, Havlíček L, Zatloukal M, Soural M, Paruch K, D'Autréaux B, Hajdúch M, Strnad M, Voller J. Cytoprotective activities of kinetin purine isosteres. Bioorg Med Chem 2021; 33:115993. [PMID: 33497938 DOI: 10.1016/j.bmc.2021.115993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/31/2020] [Indexed: 01/23/2023]
Abstract
Kinetin (N6-furfuryladenine), a plant growth substance of the cytokinin family, has been shown to modulate aging and various age-related conditions in animal models. Here we report the synthesis of kinetin isosteres with the purine ring replaced by other bicyclic heterocycles, and the biological evaluation of their activity in several in vitro models related to neurodegenerative diseases. Our findings indicate that kinetin isosteres protect Friedreich́s ataxia patient-derived fibroblasts against glutathione depletion, protect neuron-like SH-SY5Y cells from glutamate-induced oxidative damage, and correct aberrant splicing of the ELP1 gene in fibroblasts derived from a familial dysautonomia patient. Although the mechanism of action of kinetin derivatives remains unclear, our data suggest that the cytoprotective activity of some purine isosteres is mediated by their ability to reduce oxidative stress. Further, the studies of permeation across artificial membrane and model gut and blood-brain barriers indicate that the compounds are orally available and can reach central nervous system. Overall, our data demonstrate that isosteric replacement of the kinetin purine scaffold is a fruitful strategy for improving known biological activities of kinetin and discovering novel therapeutic opportunities.
Collapse
Affiliation(s)
- Barbara Maková
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Václav Mik
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc CZ-77515, Czech Republic
| | - Gabriel Gonzalez
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic; Department of Neurology, Palacký University Olomouc, Faculty of Medicine and Dentistry and University Hospital, Olomouc, Czech Republic
| | - Dominik Vítek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc CZ-77515, Czech Republic
| | - Martina Medvedíková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc CZ-77515, Czech Republic
| | - Beata Monfort
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Veronika Ručilová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc CZ-783-71, Czech Republic
| | - Alena Kadlecová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Prashant Khirsariya
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zoila Gándara Barreiro
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Libor Havlíček
- Isotope Laboratory, The Czech Academy of Science, Institute of Experimental Botany, Vídeňská 1083, Praha 4 CZ-14220, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biolology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc CZ-783-71, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc CZ-77515, Czech Republic
| | - Miroslav Strnad
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Jiří Voller
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc CZ-77515, Czech Republic; Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic.
| |
Collapse
|
8
|
Kim SW, Goossens A, Libert C, Van Immerseel F, Staal J, Beyaert R. Phytohormones: Multifunctional nutraceuticals against metabolic syndrome and comorbid diseases. Biochem Pharmacol 2020; 175:113866. [PMID: 32088261 DOI: 10.1016/j.bcp.2020.113866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome is characterized by the co-occurrence of diverse symptoms initiating the development of type 2 diabetes, cardiovascular diseases, and a variety of comorbid diseases. The complex constellation of numerous comorbidities makes it difficult to develop common therapeutic approaches that ameliorate these pathological features simultaneously. The plant hormones abscisic acid, salicylic acid, auxin, and cytokinins, have shown promising anti-inflammatory and pro-metabolic effects that could mitigate several disorders relevant to metabolic syndrome. Intriguingly, besides plants, human cells and gut microbes also endogenously produce these molecules, indicating a role in the complex interplay between inflammatory responses associated with metabolic syndrome, the gut microbiome, and nutrition. Here, we introduce how bioactive phytohormones can be generated endogenously and through the gut microbiome. These molecules subsequently influence immune responses and metabolism. We also elaborate on how phytohormones can beneficially modulate metabolic syndrome comorbidities, and propose them as nutraceuticals.
Collapse
Affiliation(s)
- Seo Woo Kim
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Alain Goossens
- VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jens Staal
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Kadlecová A, Maková B, Artal-Sanz M, Strnad M, Voller J. The plant hormone kinetin in disease therapy and healthy aging. Ageing Res Rev 2019; 55:100958. [PMID: 31479763 DOI: 10.1016/j.arr.2019.100958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/02/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
It has been more than 60 years since the discovery of kinetin, the first known member of a group of plant hormones called cytokinins. In this review we summarize the health-promoting activity of kinetin in animal systems, ranging from cells cultured in vitro through invertebrates to mammals. Kinetin has been shown to modulate aging, to delay age-related physiological decline and to protect against some neurodegenerative diseases. We also review studies on its mechanism of action, as well as point out gaps in our current knowledge.
Collapse
Affiliation(s)
- Alena Kadlecová
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Barbara Maková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology, CISIC-JA-University Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jiří Voller
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
10
|
Natural plant hormones cytokinins increase stress resistance and longevity of Caenorhabditis elegans. Biogerontology 2017; 19:109-120. [DOI: 10.1007/s10522-017-9742-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022]
|