1
|
Spadetto L, Gómez-Ramírez P, León-Ortega M, Zamora-López A, Díaz-García S, Zamora-Marín JM, Tecles-Vicente F, Pardo-Marín L, Fenoll J, Calvo JF, García-Fernández AJ. Exploring anticoagulant rodenticide exposure and effects in eagle owl (Bubo bubo) nestlings from a Mediterranean semiarid region. ENVIRONMENTAL RESEARCH 2025; 264:120382. [PMID: 39551374 DOI: 10.1016/j.envres.2024.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Anticoagulant rodenticides (ARs) are widely used for pest control, resulting in their pervasive presence in the environment and posing significant toxicological risks to a range of predatory and scavenging species. Our study mainly aimed to evaluate AR exposure and effects in nestlings of eagle owl (Bubo bubo) from the Region of Murcia (southeastern Spain). We analysed ARs in blood samples (n = 106) using high-performance liquid chromatography-triple quadrupole (HPLC-TQ), assessed the influence of potential anthropogenic (presence of livestock farms, landfills and human population density) and environmental (land uses and proximity to watercourses) variables, and measured prothrombin time (PT) and plasma biochemical parameters as biomarkers of effects. Our results showed the presence of AR residues in 91.5% of the nestlings, with 70.8% exhibiting multiple ARs (up to six compounds in a single individual). Second-generation ARs (SGARs) were the most prevalent compounds. The analysis of biochemical parameters indicated that the sampled individuals were in good physiological condition. Although PT was positively correlated with total AR concentration (ΣARs), the relationship was not significant (Rho = 0.04; p = 0.49). Regarding environmental factors, higher ΣARs were associated with the most urbanised study site and the presence of landfills, likely due to the increased availability of rodent prey. The prevalence of two SGARs (brodifacoum and difenacoum) was linked to closer proximity to riverbeds, suggesting a contamination pathway associated with inland aquatic ecosystems, where these AR compounds may concentrate due to water scarcity. This study underscores the widespread exposure of eagle owls to ARs and highlights the importance of effective monitoring and management of these pollutants to protect conservation-concern wildlife in Mediterranean semiarid regions.
Collapse
Affiliation(s)
- Livia Spadetto
- Area of Toxicology, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain
| | - Pilar Gómez-Ramírez
- Area of Toxicology, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain.
| | - Mario León-Ortega
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | - Antonio Zamora-López
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Sarah Díaz-García
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | - José Manuel Zamora-Marín
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain
| | - Fernando Tecles-Vicente
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Luis Pardo-Marín
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - José Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - José Francisco Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | |
Collapse
|
2
|
Buckley JY, Murray MH, de la Sancha NU, Fidino M, Byers KA, Fyffe R, Magle S. Widespread exposure to anticoagulant rodenticides among common urban mesopredators in Chicago. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175883. [PMID: 39222805 DOI: 10.1016/j.scitotenv.2024.175883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Anticoagulant rodenticides (ARs) are currently the most common method to control rats in cities, but these compounds also cause morbidity and mortality in non-target wildlife. Little attention has been focused on AR exposure among mesopredators despite their ecological role as scavengers and prey for larger carnivores, thus serving as an important bridge in the biomagnification of rodenticides in food webs. In this study, we sampled liver tissue from raccoons (Procyon lotor; n = 37), skunks (Mephitis mephitis; n = 15), and Virginia opossums (Didelphis virginiana; n = 45) euthanized by pest professionals and brown rats (Rattus norvegicus; n = 101) trapped in alleys in Chicago, USA to evaluate how often these species are exposed to ARs. We tested whether mesopredators had a higher prevalence of ARs and to more AR compounds compared to rats and calculated biomagnification factors (mean concentration in mesopredators/rats) as indicators of biomagnification. Of 93 sampled mesopredators, 100 % were exposed to at least one AR compound, mainly brodifacoum (≥80 %), and 79 % were exposed to multiple AR compounds. We also documented teal stomach contents consistent with the consumption of rat bait and altricial young tested positive to the same AR as their mother, suggesting mammary transfer. Of the 101 rats, 74 % tested positive to at least one AR compound and 32 % were exposed to multiple AR compounds. All mesopredator species had biomagnification factors exceeding 1.00 for brodifacoum (6.57-29.07) and bromadiolone (1.08-4.31). Our results suggest widespread exposure to ARs among urban mesopredators and biomagnification of ARs in mesopredators compared to rats. Policies that limit AR availability to non-target species, such as restricting the sale and use of ARs to licensed professionals in indoor settings, education on alternatives, and more emphasis on waste management may reduce health risks for urban wildlife and people in cities around the world.
Collapse
Affiliation(s)
- Jacqueline Y Buckley
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA
| | - Maureen H Murray
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA.
| | - Noé U de la Sancha
- Department of Environmental Science and Studies, DePaul University, Chicago, IL, USA; Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, IL, USA
| | - Mason Fidino
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA
| | - Kaylee A Byers
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; Pacific Institute on Pathogens, Pandemics, and Society, Simon Fraser University, Burnaby, British Columbia, Canada; Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | | | - Seth Magle
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA
| |
Collapse
|
3
|
Ji Y, Wang Y, Liu Y, Liu Y, Qin J, Yuan D, Liu Q. Responses in organs, sperm, steroid hormones and CYP450 enzyme in male mice treated by quinestrol only or in conjunction with clarithromycin. Sci Rep 2024; 14:27366. [PMID: 39521831 PMCID: PMC11550466 DOI: 10.1038/s41598-024-78752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Pest rodents persistently undermine crop yields and food security. Fertility control could be a viable alternative for managing rodent populations. This study investigates the antifertility effects of various concentrations of clarithromycin combined with 1.0 mg/kg quinestrol on male rodents to determine an effective contraceptive dose that minimizes quinestrol usage, addressing key concerns such as potential environmental residue, which may impact ecological balance, and poor palatability, which could reduce ingestion and limit the sterilant's effectiveness. Male mice were divided into five groups and administered different doses of clarithromycin or clarithromycin and quinestrol for three consecutive days, while the control group received sunflower seed oil only. After seven days, organ weights, reproductive organ weights, sperm density, serum hormone levels, and CYP3A4 content in small intestinal and liver tissues were measured to assess persistent effects. Compared with the control group, all treatment groups had significant reductions in epididymal weight, seminal vesicle weight, and serum T and LH levels. Higher concentrations of clarithromycin (2 mg/kg and 10 mg/kg) significantly impacted reproductive metrics, including sperm density, organ weights, and serum LH and testosterone levels, though complete sterilization was not achieved, with more than 60 million cauda epididymal spermatozoa remaining. However, the combination demonstrated potential as an effective strategy for male fertility control. The combination of 2.0 mg/kg clarithromycin and quinestrol can mitigate organ enlargement seen with quinestrol alone. This combination also decreased total enzyme content, thereby diminishing quinestrol's induction of CYP3A4, which may increase the sterilization effectiveness of the treatment.
Collapse
Affiliation(s)
- Yu Ji
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yujie Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuhang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yutong Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiao Qin
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Daohuan Yuan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
4
|
Jacoblinnert K, Goedecker C, Halle S, Schenke D, Imholt C, Jacob J. Comparison of baiting strategies in common vole management. PEST MANAGEMENT SCIENCE 2024; 80:5537-5542. [PMID: 38348935 DOI: 10.1002/ps.7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Worldwide, pest rodents can cause extensive damage to agriculture, forestry, food storage, and infrastructure and pose a risk to public health and livestock due to the spread of zoonotic pathogens. In Europe, the most common pest rodent species is the common vole (Microtus arvalis). Management during periodic outbreaks largely relies on rodenticidal bait with zinc phosphide. Efficient baiting with rodenticides or possibly anti-fertility products in the future require baiting methods that allow a sufficient proportion of the population to consume an effective dose of bait. We used a bait with the quantitative marker ethyl-iophenoxic acid (Et-IPA) to evaluate baiting strategies in enclosure experiments. This wheat-based bait with Et-IPA was placed in bait boxes or directly into the tunnel system entrances in different seasons and common vole abundances. Voles were live-trapped, individually marked and blood samples were collected to relate Et-IPA blood residues to bait uptake. RESULTS The percentage of animals consuming bait was not heavily affected by the baiting strategy but voles had higher Et-IPA blood residues if tunnel baiting was used in autumn and if bait boxes were used in winter. Non-reproductive as well as lighter animals tended to have higher Et-IPA blood residues than reproductive individuals, whereas sex had no effect. Population density had a negative effect on the probability of residues present as well as on Et-IPA blood concentration. CONCLUSION The results of this study might help to improve baiting techniques to manage overabundant rodent pest species regardless of the compounds to be delivered. © 2024 Julius Kühn-Institut. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Kyra Jacoblinnert
- Julius Kuehn-Institute, Federal Research Institute for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics - Rodent Research, Muenster, Germany
- Department of Behavioural Biology, University of Osnabrueck, Osnabrueck, Germany
| | - Caspar Goedecker
- Friedrich Schiller University Jena, Institute of Ecology and Evolution, Jena, Germany
| | - Stefan Halle
- Friedrich Schiller University Jena, Institute of Ecology and Evolution, Jena, Germany
| | - Detlef Schenke
- Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Christian Imholt
- Julius Kuehn-Institute, Federal Research Institute for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics - Rodent Research, Muenster, Germany
| | - Jens Jacob
- Julius Kuehn-Institute, Federal Research Institute for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics - Rodent Research, Muenster, Germany
| |
Collapse
|
5
|
Walther B, Bohot A, Ennen H, Beilmann P, Schäper O, Hantschke P, Werdin S, Jacob J. Technical assessment of mechanical and electronic traps to facilitate future improvements in trap efficacy and humaneness. PEST MANAGEMENT SCIENCE 2024; 80:5543-5554. [PMID: 38319070 DOI: 10.1002/ps.8011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Snap traps and electronic traps are the main devices for nonchemical management of rodent pests. Traps should be efficient and should not cause unnecessary suffering of animals. Harmonized, systematic test methods are required to make sure that mechanical forces or electrical parameters are optimal to achieve swift unconsciousness and death. This study aimed to describe technical trap properties that can be used to facilitate future improvements in trap efficacy and humaneness. METHODS We constructed a device to assess spring energy, triggering force, impulse and clamping force, and developed an arrangement to assess effective voltage, current, effective current and effective energy taking effect on rodent bodies in electronic traps - all without the use of animals. Descriptive data of trap characteristics were collated. RESULTS All factors showed variability among snap trap models and trigger types, and there was considerable overlap between mouse and rat traps. For most trap models, there was no difference among new snap traps and traps that had been trigged 20 times. Effective current and effective energy decreased with lower voltage input, but the traps indicated weak battery by LED lights, and one model switched off automatically when voltage was insufficient. CONCLUSION With the device and the electronic arrangement, the majority of snap trap models and electronic traps available on the market can be assessed in a standardized and repeatable way. Matching the data generated in this study with data on time for trapped target animals to reach irreversible unconsciousness, and experiences from pest control practitioners, should allow relating properties of traps to efficacy and animal welfare issues. This can support further development and optimization of traps for nonchemical rodent pest control. © 2024 Julius Kuehn-Institut and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Bernd Walther
- Julius Kuehn-Institute, Institute for Epidemiology and Pathogen Diagnostics, Münster, Germany
| | - André Bohot
- TU Dresden, Institute of Solid Mechanics, Dresden, Germany
| | - Hendrik Ennen
- Julius Kuehn-Institute, Institute for Epidemiology and Pathogen Diagnostics, Münster, Germany
| | - Paul Beilmann
- Julius Kuehn-Institute, Institute for Epidemiology and Pathogen Diagnostics, Münster, Germany
| | - Oliver Schäper
- Julius Kuehn-Institute, Institute for Epidemiology and Pathogen Diagnostics, Münster, Germany
| | | | - Sven Werdin
- TU Dresden, Institute of Solid Mechanics, Dresden, Germany
| | - Jens Jacob
- Julius Kuehn-Institute, Institute for Epidemiology and Pathogen Diagnostics, Münster, Germany
| |
Collapse
|
6
|
Ozaki S, Movalli P, Cincinelli A, Alygizakis N, Badry A, Carter H, Chaplow JS, Claßen D, Dekker RWRJ, Dodd B, Duke G, Koschorreck J, Pereira MG, Potter E, Sleep D, Slobodnik J, Thomaidis NS, Treu G, Walker L. Significant Turning Point: Common Buzzard ( Buteo buteo) Exposure to Second-Generation Anticoagulant Rodenticides in the United Kingdom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6093-6104. [PMID: 38545700 PMCID: PMC11008253 DOI: 10.1021/acs.est.3c09052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
Second-generation anticoagulant rodenticides (SGARs) are widely used to control rodent populations, resulting in the serious secondary exposure of predators to these contaminants. In the United Kingdom (UK), professional use and purchase of SGARs were revised in the 2010s. Certain highly toxic SGARs have been authorized since then to be used outdoors around buildings as resistance-breaking chemicals under risk mitigation procedures. However, it is still uncertain whether and how these regulatory changes have influenced the secondary exposure of birds of prey to SGARs. Based on biomonitoring of the UK Common Buzzard (Buteo buteo) collected from 2001 to 2019, we assessed the temporal trend of exposure to SGARs and statistically determined potential turning points. The magnitude of difenacoum decreased over time with a seasonal fluctuation, while the magnitude and prevalence of more toxic brodifacoum, authorized to be used outdoors around buildings after the regulatory changes, increased. The summer of 2016 was statistically identified as a turning point for exposure to brodifacoum and summed SGARs that increased after this point. This time point coincided with the aforementioned regulatory changes. Our findings suggest a possible shift in SGAR use to brodifacoum from difenacoum over the decades, which may pose higher risks of impacts on wildlife.
Collapse
Affiliation(s)
- Shinji Ozaki
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Paola Movalli
- Naturalis
Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Alessandra Cincinelli
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Nikiforos Alygizakis
- Environmental
Institute, Okružná
784/42, 97241 Koš, Slovak Republic
- Department
of Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Alexander Badry
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - Heather Carter
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Jacqueline S. Chaplow
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Daniela Claßen
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | | | - Beverley Dodd
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Guy Duke
- UK
Centre for Ecology and Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom
| | - Jan Koschorreck
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - M. Glória Pereira
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Elaine Potter
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Darren Sleep
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | | | - Nikolaos S. Thomaidis
- Department
of Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Gabriele Treu
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - Lee Walker
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| |
Collapse
|
7
|
Cerkvenik-Flajs V, Schenke D, Žele-Vengušt D, Korenjak-Černe S, Perpar A, Vengušt G. Exposure assessment of anticoagulant rodenticides in the liver of red foxes (Vulpes vulpes) in Slovenia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170400. [PMID: 38307261 DOI: 10.1016/j.scitotenv.2024.170400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
The study deals with the environmental residues of anticoagulant rodenticides (ARs) in Slovenia to evaluate the toxicological risk of secondary poisoning of red foxes (Vulpes vulpes) as representatives of non-target wildlife, and in relation to the investigated use patterns of ARs and specific local parameters in Slovenia. From 2019 to 2022, 148 liver tissue samples of adult red foxes were collected from almost all state geographical regions. The samples were extracted with methanol/water (2:1, v/v), cleaned-up using a solid supported liquid-liquid extraction, and measured by liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) with reporting limits of 0.5 to 5.0 ng/g. Residues of at least one rodenticide were detected in 77.7 % of the samples. The second generation ARs of bromadiolone, brodifacoum and difenacoum were the most frequently found, appearing in 75.0, 51.4, and 18.9 % of the samples, respectively. Concentrations of pooled ARs ranged from 1.5 to 2866.5 ng/g with mean and median values of 601.4 and 350.2 ng/g, respectively. We determined bromadiolone and brodifacoum at concentrations of ≥800 ng/g in 10.8 and 10.1 % of the samples, and 1.4 and 0.7 % of the samples contained residues >2000 ng/g, respectively. These concentrations are much higher than those found in comparable studies in Europe and elsewhere in the world. Residues of ARs were detected in all monitored statistical regions of Slovenia, with higher concentrations in the eastern parts of the country. First generation ARs were found in only 9.5 % of samples, and residues were below 10 ng/g with one exception (coumatetralyl with 55 ng/g). The results of the study indicate a serious toxicological risk for red foxes in Slovenia as part of the Western Balkans, and will contribute to the growing body of knowledge about the protection of European ecosystems, as wildlife is not limited by national borders.
Collapse
Affiliation(s)
- Vesna Cerkvenik-Flajs
- University of Ljubljana, Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, Gerbičeva 60, SI-1000 Ljubljana, Slovenia.
| | - Detlef Schenke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise Str. 19, D-14195 Berlin, Germany
| | - Diana Žele-Vengušt
- University of Ljubljana, Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Simona Korenjak-Černe
- University of Ljubljana, School of Economics and Business, Kardeljeva ploščad 17, SI-1000 Ljubljana, Slovenia; Institute of Mathematics, Physics and Mechanics, Jadranska ulica 21, SI-1000 Ljubljana, Slovenia
| | - Anton Perpar
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Gorazd Vengušt
- University of Ljubljana, Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Elliott JE, Silverthorn V, English SG, Mineau P, Hindmarch S, Thomas PJ, Lee S, Bowes V, Redford T, Maisonneuve F, Okoniewski J. Anticoagulant Rodenticide Toxicity in Terrestrial Raptors: Tools to Estimate the Impact on Populations in North America and Globally. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38415966 DOI: 10.1002/etc.5829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Anticoagulant rodenticides (ARs) have caused widespread contamination and poisoning of predators and scavengers. The diagnosis of toxicity proceeds from evidence of hemorrhage, and subsequent detection of residues in liver. Many factors confound the assessment of AR poisoning, particularly exposure dose, timing and frequency of exposure, and individual and taxon-specific variables. There is a need, therefore, for better AR toxicity criteria. To respond, we compiled a database of second-generation anticoagulant rodenticide (SGAR) residues in liver and postmortem evaluations of 951 terrestrial raptor carcasses from Canada and the United States, 1989 to 2021. We developed mixed-effects logistic regression models to produce specific probability curves of the toxicity of ∑SGARs at the taxonomic level of the family, and separately for three SGARs registered in North America, brodifacoum, bromadiolone, and difethialone. The ∑SGAR threshold concentrations for diagnosis of coagulopathy at 0.20 probability of risk were highest for strigid owls (15 ng g-1 ) lower and relatively similar for accipitrid hawks and eagles (8.2 ng g-1 ) and falcons (7.9 ng g-1 ), and much lower for tytonid barn owls (0.32 ng g-1 ). These values are lower than those we found previously, due to compilation and use of a larger database with a mix of species and source locations, and also to refinements in the statistical methods. Our presentation of results on the family taxonomic level should aid in the global applicability of the numbers. We also collated a subset of 440 single-compound exposure events and determined the probability of SGAR-poisoning symptoms as a function of SGAR concentration, which we then used to estimate relative SGAR toxicity and toxic equivalence factors: difethialone, 1, brodifacoum, 0.8, and bromadiolone, 0.5. Environ Toxicol Chem 2024;00:1-11. © 2024 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC Reproduced with the permission of the Minister of Environment and Climate Change Canada.
Collapse
Affiliation(s)
- John E Elliott
- Ecotoxicology and Wildlife Health Directorate, Environment and Climate Change Canada, Delta, British Columbia, Canada
- Applied Animal Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Veronica Silverthorn
- Ecotoxicology and Wildlife Health Directorate, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Simon G English
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pierre Mineau
- Pierre Mineau Consulting, Salt Spring Island, Canada
- Biology Department, Carleton University, Ottawa, Ontario, Canada
| | - Sofi Hindmarch
- Ecotoxicology and Wildlife Health Directorate, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Philippe J Thomas
- Ecotoxicology and Wildlife Health Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Sandi Lee
- Ecotoxicology and Wildlife Health Directorate, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Victoria Bowes
- Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Tony Redford
- Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - France Maisonneuve
- Ecotoxicology and Wildlife Health Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Joseph Okoniewski
- Wildlife Health Unit, New York State Department of Environmental Conservation, Delmar, New York, USA
| |
Collapse
|
9
|
Massei G, Jacob J, Hinds LA. Developing fertility control for rodents: a framework for researchers and practitioners. Integr Zool 2024; 19:87-107. [PMID: 37277987 DOI: 10.1111/1749-4877.12727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fertility control is often heralded as a humane and effective technique for management of overabundant wildlife, including rodents. The intention is to reduce the use of lethal and inhumane methods, increase farm productivity and food security as well as reduce disease transmission, particularly of zoonoses. We developed a framework to guide researchers and stakeholders planning to assess the effectiveness of a potential contraceptive agent for a particular species. Our guidelines describe the overarching research questions which must be sequentially addressed to ensure adequate data are collected so that a contraceptive can be registered for use in broad-scale rodent management. The framework indicates that studies should be undertaken iteratively and, at times, in parallel, with initial research being conducted on (1) laboratory-based captive assessments of contraceptive effects in individuals; (2) simulation of contraceptive delivery using bait markers and/or surgical sterilization of different proportions of a field-based or enclosure population to determine how population dynamics are affected; (3) development of mathematical models which predict the outcomes of different fertility control scenarios; and (4) implementation of large-scale, replicated trials to validate contraceptive efficacy under various management-scale field situations. In some circumstances, fertility control may be most effective when integrated with other methods (e.g. some culling). Assessment of non-target effects, direct and indirect, and the environmental fate of the contraceptive must also be determined. Developing fertility control for a species is a resource-intensive commitment but will likely be less costly than the ongoing environmental and economic impacts by rodents and rodenticides in many contexts.
Collapse
Affiliation(s)
- Giovanna Massei
- Botstiber Institute for Wildlife Fertility Control, Department of Environment and Geography, University of York, Heslington, York, UK
| | - Jens Jacob
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI) Federal Research Institute for Cultivated Plants, Münster, Germany
| | - Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
10
|
Cooke R, Whiteley P, Death C, Weston MA, Carter N, Scammell K, Yokochi K, Nguyen H, White JG. Silent killers? The widespread exposure of predatory nocturnal birds to anticoagulant rodenticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166293. [PMID: 37586529 DOI: 10.1016/j.scitotenv.2023.166293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Anticoagulant rodenticides (ARs) influence predator populations and threaten the stability of ecosystems. Understanding the prevalence and impact of rodenticides in predators is crucial to inform conservation planning and policy. We collected dead birds of four nocturnal predatory species across differing landscapes: forests, agricultural, urban. Liver samples were analysed for eight ARs: three First Generation ARs (FGARs) and five SGARs (Second Generation ARs). We investigated interspecific differences in liver concentrations and whether landscape composition influenced this. FGARs were rarely detected, except pindone at low concentrations in powerful owls Ninox strenua. SGARs, however, were detected in every species and 92 % of birds analysed. Concentrations of SGARs were at levels where potential toxicological or lethal impacts would have occurred in 33 % of powerful owls, 68 % of tawny frogmouths Podargus strigoides, 42 % of southern boobooks N. bookbook and 80 % of barn owls Tyto javanica. When multiple SGARs were detected, the likelihood of potentially lethal concentrations of rodenticides increased. There was no association between landscape composition and SGAR exposure, or the presence of multiple SGARs, suggesting rodenticide poisoning is ubiquitous across all landscapes sampled. This widespread human-driven contamination in wildlife is a major threat to wildlife health. Given the high prevalence and concentrations of SGARs in these birds across all landscape types, we support the formal consideration of SGARs as a threatening process. Furthermore, given species that do not primarily eat rodents (tawny frogmouths, powerful owls) have comparable liver rodenticide concentrations to rodent predators (southern boobook, eastern barn owl), it appears there is broader contamination of the food-web than anticipated. We provide evidence that SGARs have the potential to pose a threat to the survival of avian predator populations. Given the functional importance of predators in ecosystems, combined with the animal welfare impacts of these chemicals, we propose governments should regulate the use of SGARs.
Collapse
Affiliation(s)
- Raylene Cooke
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia.
| | - Pam Whiteley
- Wildlife Health Victoria: Surveillance, Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee 3030, Vic., Australia
| | - Clare Death
- Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee, Vic., Australia
| | - Michael A Weston
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Nicholas Carter
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Kieran Scammell
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Kaori Yokochi
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Hao Nguyen
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne 3207, Vic., Australia
| | - John G White
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| |
Collapse
|
11
|
Krijger IM, Strating M, van Gent‐Pelzer M, van der Lee TA, Burt SA, Schroeten FH, de Vries R, de Cock M, Maas M, Meerburg BG. Large-scale identification of rodenticide resistance in Rattus norvegicus and Mus musculus in the Netherlands based on Vkorc1 codon 139 mutations. PEST MANAGEMENT SCIENCE 2023; 79:989-995. [PMID: 36309944 PMCID: PMC10107327 DOI: 10.1002/ps.7261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Resistance to rodenticides has been reported globally and poses a considerable problem for efficacy in pest control. The most-documented resistance to rodenticides in commensal rodents is associated with mutations in the Vkorc1 gene, in particular in codon 139. Resistance to anticoagulant rodenticides has been reported in the Netherlands since 1989. A study from 2013 showed that 25% of 169 Norway rats (Rattus norvegicus) had a mutation at codon 139 of the Vkorc1 gene. To gain insight in the current status of rodenticide resistance amongst R. norvegicus and house mice Mus musculus in the Netherlands, we tested these rodents for mutations in codon 139 of the Vkorc1 gene. In addition, we collected data from pest controllers on their use of rodenticides and experience with rodenticide resistance. RESULTS A total of 1801 rodent samples were collected throughout the country consisting of 1404 R. norvegicus and 397 M. musculus. In total, 15% of R. norvegicus [95% confidence interval (CI): 13-17%] and 38% of M. musculus (95% CI: 33-43%) carried a genetic mutation at codon 139 of the Vkorc1 gene. CONCLUSION This study demonstrates genetic mutations at codon 139 of the Vkorc1 gene in M. musculus in the Netherlands. Resistance to anticoagulant rodenticides is present in R. norvegicus and M. musculus in multiple regions in the Netherlands. The results of this comprehensive study provide a baseline and facilitate trend analyses of Vkorc1 codon 139 mutations and evaluation of integrated pest management (IPM) strategies as these are enrolled in the Netherlands. © 2022 The Dutch Pest and Wildlife. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Inge M. Krijger
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
| | - Max Strating
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
| | | | | | - Sara A. Burt
- Institute for Risk Assessment Sciences, Faculty of Veterinary MedicineUniversity of UtrechtUtrechtthe Netherlands
| | - Fleur H. Schroeten
- Institute for Risk Assessment Sciences, Faculty of Veterinary MedicineUniversity of UtrechtUtrechtthe Netherlands
| | - Robin de Vries
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
| | - Marieke de Cock
- Centre for Infectious Disease ControlNational institute for Public Health and the Environment (RIVM)Bilthoventhe Netherlands
| | - Miriam Maas
- Centre for Infectious Disease ControlNational institute for Public Health and the Environment (RIVM)Bilthoventhe Netherlands
| | - Bastiaan G. Meerburg
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
- Wageningen University & ResearchLivestock ResearchWageningenthe Netherlands
| |
Collapse
|
12
|
Hinds LA, Henry S, VAN DE Weyer N, Robinson F, Ruscoe WA, Brown PR. Acute oral toxicity of zinc phosphide: an assessment for wild house mice (Mus musculus). Integr Zool 2023; 18:63-75. [PMID: 35651323 PMCID: PMC10084325 DOI: 10.1111/1749-4877.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Irregular plagues of house mice, Mus musculus, incur major economic impacts on agricultural production in Australia. The efficacy of zinc phosphide (ZnP), the only registered broadacre control agent for mice, is reported as increasingly variable. Have mice become less sensitive over time or are they taking a sub-lethal dose and developing aversion? In this laboratory study, the sensitivity of mice (wild caught; outbred laboratory strain) was assessed using oral gavage of a range of ZnP concentrations. The estimated LD50 values (72-79 mg ZnP/kg body weight) were similar for each mouse group but are significantly higher than previously reported. The willingness of mice to consume ZnP-coated grains was determined. ZnP-coated grains (50 g ZnP/kg grain) presented in the absence of alternative food were consumed and 94% of wild mice died. Mice provided with alternative food and ZnP-coated wheat grains (either 25 or 50 g ZnP/kg grain) consumed toxic and non-toxic grains, and mortality was lower (33-55%). If a sublethal amount of ZnP-coated grain was consumed, aversion occurred, mostly when alternative food was present. The sensitivity of wild house mice to ZnP in Australia is significantly lower than previously assumed. Under laboratory conditions, ZnP-coated grains coated with a new higher dose (50 g ZnP/kg grain) were readily consumed. Consumption of toxic grain occurred when alternative food was available but was decreased. Our unambiguous findings for house mice indicate a re-assessment of the ZnP loading for baits used for control of many rodents around the world may be warranted.
Collapse
Affiliation(s)
- Lyn A Hinds
- CSIRO Health & Biosecurity, Clunies Ross Street, Canberra, ACT, Australia
| | - Steve Henry
- CSIRO Health & Biosecurity, Clunies Ross Street, Canberra, ACT, Australia
| | - Nikki VAN DE Weyer
- CSIRO Health & Biosecurity, Clunies Ross Street, Canberra, ACT, Australia
| | - Freya Robinson
- CSIRO Health & Biosecurity, Clunies Ross Street, Canberra, ACT, Australia
| | - Wendy A Ruscoe
- CSIRO Health & Biosecurity, Clunies Ross Street, Canberra, ACT, Australia
| | - Peter R Brown
- CSIRO Health & Biosecurity, Clunies Ross Street, Canberra, ACT, Australia
| |
Collapse
|
13
|
Rached A, Abi Rizk G, Mahamat AB, Khoury GE, El Hage J, Harran E, Lattard V. Investigation of anticoagulant rodenticide resistance induced by Vkorc1 mutations in rodents in Lebanon. Sci Rep 2022; 12:22502. [PMID: 36577759 PMCID: PMC9797475 DOI: 10.1038/s41598-022-26638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Anticoagulant rodenticides (AR) remain the most effective chemical substances used to control rodents in order to limit their agricultural and public health damage in both rural and urban environments. The emergence of genetically based resistance to AR worldwide has threatened effective rodent control. This study gives a first overview of the distribution and frequency of single nucleotide polymorphism in the vitamin K epoxide reductase subcomponent 1 (Vkorc1) gene in rodents in Lebanon. In the Mus genus, we detected two missense mutations Leu128Ser and Tyr139Cys, that confer resistance to anticoagulant rodenticides in house mice and a new missense mutation Ala72Val in the Mus macedonicus species, not previously described. In the Rattus genus, we found one missense mutation Leu90Ile in the roof rat and one missense mutation Ser149Ile in the Norway rat. This is the first study to demonstrate potential resistance to AR in Lebanese rodents and therefore it provides data to pest control practitioners to choose the most suitable AR to control rodents in order to keep their efficacy.
Collapse
Affiliation(s)
- Antoine Rached
- USC 1233 RS2GP, VetAgro Sup, INRAe, Univ Lyon, 69280 Marcy l’Étoile, France
| | - Georges Abi Rizk
- grid.411324.10000 0001 2324 3572Animal Production department, Faculty of Agricultural Engineering and Veterinary Medicine, Lebanese University, Beirut, Lebanon
| | - Ali Barka Mahamat
- USC 1233 RS2GP, VetAgro Sup, INRAe, Univ Lyon, 69280 Marcy l’Étoile, France ,Department of Biomedical and Pharmaceutical Sciences, National Higher Institute of Science and Technology, Abeche, Chad
| | | | - Jeanne El Hage
- grid.435574.4Animal Health Laboratory, Lebanese Agricultural Research Institute, Beirut, Lebanon
| | - Elena Harran
- USC 1233 RS2GP, VetAgro Sup, INRAe, Univ Lyon, 69280 Marcy l’Étoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, VetAgro Sup, INRAe, Univ Lyon, 69280 Marcy l’Étoile, France
| |
Collapse
|
14
|
Hinds LA, Belmain SR. Fertility control of rodent pests: recent developments from lab to field. Integr Zool 2022; 17:960-963. [PMID: 34936731 DOI: 10.1111/1749-4877.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
| | | |
Collapse
|
15
|
Sluydts V, Sarathchandra SR, Piscitelli AP, Van Houtte N, Gryseels S, Mayer-Scholl A, Bier NS, Htwe NM, Jacob J. Ecology and distribution of Leptospira spp., reservoir hosts and environmental interaction in Sri Lanka, with identification of a new strain. PLoS Negl Trop Dis 2022; 16:e0010757. [PMID: 36112668 PMCID: PMC9518908 DOI: 10.1371/journal.pntd.0010757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/28/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Leptospirosis is a neglected zoonotic disease and one of the leading causes of zoonotic morbidity and mortality, particularly in resource-poor settings. Sri Lanka has one of the highest disease burdens worldwide, with occasional endemic leptospirosis outbreaks (2008, 2011). Rodents are considered the main wildlife reservoir, but due to a scarcity of studies it is unclear which particular species contributes to bacterial transmission and reservoir maintenance in this multi-host multi-parasite system. Several rodent species act as agricultural pests both in rice fields and in food storage facilities. To unravel the interactions among the small mammal communities, pathogenic Leptospira spp. and human transmission pathways, we collected animals from smallholder food storage facilities, where contact between humans and small mammals is most likely, and screened kidney tissue samples for Leptospira spp. using PCR. Samples were collected in three climatic zones along a rainfall gradient. Pathogenic Leptospira spp. were detected in small mammal communities in 37 (74%) out of 50 sampled farms and 61 (12%) out of 500 collected individuals were infected. The small mammal community was comprised of Rattus rattus (87.6%), Suncus shrews (8.8%), Bandicota spp. (2.8%) and Mus booduga (0.8%). Three pathogenic Leptospira spp. were identified, L. borgpetersenii (n = 34), L. interrogans (n = 15), and L. kirschneri (n = 1). Suncus shrews were commonly infected (32%), followed by B. indica (23%) and R. rattus (10%). L. borgpetersenii strains similar to strains previously extracted from human clinal samples in Sri Lanka were detected in R. rattus and Suncus shrews. L. interrogans was observed in R. rattus only. A single L. kirschneri infection was found in M. booduga. The presence of human pathogenic Leptospira species in an agricultural pest rodent (R. rattus) and in commensal shrews (Suncus) calls for management of these species in commensal settings. Further investigation of the interplay between pathogen and reservoir population dynamics, overlap in geographic range and the extent of spill-over to humans in and around rural settlements is required to identify optimal management approaches.
Collapse
Affiliation(s)
- Vincent Sluydts
- Julius Kühn-Institute, Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
- University of Antwerp, Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | | | - Anna Pia Piscitelli
- University of Antwerp, Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Natalie Van Houtte
- University of Antwerp, Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Sophie Gryseels
- University of Antwerp, Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Anne Mayer-Scholl
- Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
| | - Nadja Seyhan Bier
- Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
| | - Nyo Me Htwe
- University of Antwerp, Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| |
Collapse
|
16
|
Hopf-Dennis C, Kaye S, Hollingshead N, Brooks M, Bunting E, Abou-Madi N. Prevalence of anticoagulant rodenticide exposure in red-tailed hawks (Buteo jamaicensis) and utility of clotting time assays to detect coagulopathy. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:919-932. [PMID: 35622198 DOI: 10.1007/s10646-022-02558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Anticoagulant rodenticides (ARs) continue to be used across the United States as a method for controlling pest rodent species. As a consequence, wild birds of prey are exposed to these toxicants by eating poisoned prey items. ARs prevent the hepatic recycling of vitamin K and thereby impede the post-translational processing of coagulation factors II, VII, IX, and X that are required for procoagulant complex assembly. Through this mechanism of action, ARs cause hemorrhage and death in their target species. Various studies have documented the persistence of these contaminants in birds of prey but few have attempted to use affordable and accessible diagnostic tests to diagnose coagulopathy in free-ranging birds of prey. In our study free-ranging red-tailed hawks were found to be exposed to difethialone and brodifacoum. Eleven of sixteen (68%) livers tested for AR exposure had detectable residues. Difethialone was found in 1/16 (6%), and brodifacoum was detected in 10/16 (62%) liver samples that were tested for rodenticide residues. Difethialone was found at a concentration of 0.18 ug/g wet weight and brodifacoum concentrations ranged from 0.003-0.234 ug/g wet weight. Two out of 34 (6%) RTHA assessed for blood rodenticide had brodifacoum in serum with measured concentrations of 0.003 and 0.006 ug/g. The range of clotting times in the prothrombin time (PT) and Russell's viper venom time assays for control RTHA were 16.7 to 39.7 s and 11.5 to 91.8 s, respectively. One study bird was diagnosed with clinical AR intoxication with a brodifacoum levels in blood of 0.006 and 0.234 ug/g wet weight in blood and liver respectively, a packed cell volume (PCV) of 19%, and PT and RVVT times of >180 s. No correlation was found between PT and RVVT in the control or free-range RTHA, and there was no relationship found between the presence of liver anticoagulant residues and clotting times in the PT and RVVT.
Collapse
Affiliation(s)
- Cynthia Hopf-Dennis
- Janet L. Swanson Wildlife Hospital and the Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Sarrah Kaye
- Staten Island Zoo, 614 Broadway, Staten Island, NY, 10310, USA
| | - Nicholas Hollingshead
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Marjory Brooks
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Elizabeth Bunting
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Noha Abou-Madi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
17
|
Elliott JE, Silverthorn V, Hindmarch S, Lee S, Bowes V, Redford T, Maisonneuve F. Anticoagulant Rodenticide Contamination of Terrestrial Birds of Prey from Western Canada: Patterns and Trends, 1988-2018. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1903-1917. [PMID: 35678209 PMCID: PMC9540899 DOI: 10.1002/etc.5361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
As the dominant means for control of pest rodent populations globally, anticoagulant rodenticides (ARs), particularly the second-generation compounds (SGARs), have widely contaminated nontarget organisms. We present data on hepatic residues of ARs in 741 raptorial birds found dead or brought into rehabilitation centers in British Columbia, Canada, over a 30-year period from 1988 to 2018. Exposure varied by species, by proximity to residential areas, and over time, with at least one SGAR residue detected in 74% of individuals and multiple residues in 50% of individuals. By comparison, we detected first-generation compounds in <5% of the raptors. Highest rates of exposure were in barred owls (Strix varia), 96%, and great horned owls (Bubo virginianus), 81%, species with diverse diets, including rats (Rattus norvegicus and Rattus rattus), and inhabiting suburban and intensive agricultural habitats. Barn owls (Tyto alba), mainly a vole (Microtus) eater, had a lower incidence of exposure of 65%. Putatively, bird-eating raptors also had a relatively high incidence of exposure, with 75% of Cooper's hawks (Accipiter cooperii) and 60% of sharp-shinned hawks (Accipiter striatus) exposed. Concentrations of SGARs varied greatly, for example, in barred owls, the geometric mean ∑SGAR = 0.13, ranging from <0.005 to 1.81 μg/g wet weight (n = 208). Barred owls had significantly higher ∑SGAR concentrations than all other species, driven by significantly higher bromadiolone concentrations, which was predicted by the proportion of residential land within their home ranges. Preliminary indications that risk mitigation measures implemented in 2013 are having an influence on exposure include a decrease in mean concentrations of brodifacoum and difethialone in barred and great horned owls and an increase in bromodialone around that inflection point. Environ Toxicol Chem 2022;41:1903-1917. © 2022 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.
Collapse
Affiliation(s)
- John E. Elliott
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Veronica Silverthorn
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Sofi Hindmarch
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Sandi Lee
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Victoria Bowes
- Animal Health CentreBC Ministry of AgricultureAbbotsfordBritish ColumbiaCanada
| | - Tony Redford
- Animal Health CentreBC Ministry of AgricultureAbbotsfordBritish ColumbiaCanada
| | - France Maisonneuve
- Science & Technology BranchEnvironment and Climate Change CanadaOttawaOntarioCanada
| |
Collapse
|
18
|
Pertile AC, Lustosa R, Carvalho-Pereira T, Pedra GG, Panti-May JA, Oliveira U, Zeppelini CG, Souza FN, Oliveira DS, Khalil H, Reis MG, Childs J, Ko AI, Begon M, Costa F. Evaluation of the impact of chemical control on the ecology of Rattus norvegicus of an urban community in Salvador, Brazil. PLoS One 2022; 17:e0270568. [PMID: 35857771 PMCID: PMC9299319 DOI: 10.1371/journal.pone.0270568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The presence of synanthropic rodents, such as Rattus norvegicus, in urban environments generates high costs of prophylaxis and control, in large part due to the environmental transmission of the pathogenic spirochete Leptospira interrogans, which causes leptospirosis. In Salvador, Brazil, The Center for Control of Zoonosis (CCZ) is responsible for planning and implementing Rodent Control Programs (RCP) which are based on chemical rodenticide. However, these strategies have not been standardized for use in developing countries. AIM This study aimed to identify the effect of a chemical control campaign on the demographic variables of urban R. norvegicus, analyzing relative abundance, sex structure, body mass, and age of the population, as well as the characterization of spatial distribution among households, rodent capture campaigns and interventions. METHODS This study was carried out during 2015 in three valleys of an urban poor community in Salvador. Individuals of R. norvegicus were systematically captured before (Pre-intervention) and three months (1st post-intervention) and six months (2nd post-intervention) after a chemical control intervention conducted by the CCZ in two valleys of the study area while the third valley was not included in the intervention campaign and was used as a non-intervention reference. We used analysis of variance to determine if intervention affected demographic variables and chi-square to compare proportions of infested households (Rodent infestation index-PII). RESULTS During the chemical intervention, 939 households were visited. In the pre-intervention campaign, an effort of 310 trap nights resulted in 43 rodents captured, and in the 1st and 2nd, post-intervention campaigns resulted in 47 rodents captured over 312 trap nights and 36 rodents captured over 324 traps-nights, respectively. The rodent infestation index (PII) points did not show a reduction between the period before the intervention and the two periods after the chemical intervention (70%, 72%, and 65%, respectively). Regarding relative abundances, there was no difference between valleys and period before and two periods after chemical intervention (trap success valley 1: 0,18; 0,19; 0,18 / Valley 3 0,15; 0,17; 0,13/ P>0,05). Other demographic results showed that there was no difference in demographic characteristics of the rodent population before and after the intervention, as well as there being no influence of the application of rodenticide on the areas of concentration of capture of rodents between the campaigns. CONCLUSION Our study indicates that the chemical control was not effective in controlling the population of R. norvegicus and provides evidence of the need for re-evaluation of rodent control practices in urban poor community settings.
Collapse
Affiliation(s)
- Arsinoê Cristina Pertile
- Programa de pós-graduação em Ecologia: Teoria, Aplicações e Valores, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - Ricardo Lustosa
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Ticiana Carvalho-Pereira
- Instituto de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Gabriel Ghizzi Pedra
- Instituto de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jesus Alonso Panti-May
- Instituto de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - Udimila Oliveira
- Instituto de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - Caio Graco Zeppelini
- Programa de pós-graduação em Ecologia: Teoria, Aplicações e Valores, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Fábio Neves Souza
- Programa de pós-graduação em Ecologia: Teoria, Aplicações e Valores, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Daiana S. Oliveira
- Instituto de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
| | - Hussein Khalil
- Swedish University of Agriculture Sciences, Umea, Sweden
| | - Mitermayer G. Reis
- Instituto de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States of America
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - James Childs
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Albert I. Ko
- Instituto de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mike Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Federico Costa
- Instituto de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
- Swedish University of Agriculture Sciences, Umea, Sweden
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
19
|
Villalobos A, Schlyter F, Birgersson G, Koteja P, Löf M. Fear effects on bank voles (Rodentia: Arvicolinae): testing for repellent candidates from predator volatiles. PEST MANAGEMENT SCIENCE 2022; 78:1677-1685. [PMID: 34994055 PMCID: PMC9306653 DOI: 10.1002/ps.6787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Arvicolinae rodents are known pests causing damage to both agricultural and forest crops. Today, rodenticides for rodent control are widely discouraged owing to their negative effects on the environment. Rodents are the main prey for several predators, and their complex olfactory system allows them to identify risks of predation. Therefore, the potential use of predators' scents as repellents has gained interest as an ecologically based rodent control method. In a two-choice experiment, we investigated the potential repellent effects of five synthetic predator compounds: 2-phenylethylamine (2-PEA), 2-propylthietane (2-PT), indole, heptanal and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), at 1% and 5% doses, using the bank vole (Myodes glareolus) as a rodent model. RESULTS The compound 2-PEA reduced both the food contacts and the time spent by voles in the treatment arm compared to the control arm. Likewise, 2-PT-treated arms reduced the food contacts, and the voles spent less time there, although this latter difference was not significant. Indole also showed a tendency to reduce the time spent at the treatment arm; however, this result was not significant. Unexpectedly, TMT had the reverse effect in showing attractive properties, possibly due to odor cues from differently sized predators and intraguild predation in nature. We found no dose-related effects for any compounds tested. CONCLUSION Our results suggest that the 2-PEA and 2-PT are both effective odor stimuli for triggering reduced food contacts and area avoidance, and they may be good repellent candidates. We suggest further testing of 2-PEA and 2-PT in field experiments to further determine their dose-efficiency as repellents against rodents in more natural environments. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Adrian Villalobos
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesLommaSweden
- Büsgen‐Institute, Department of Forest Zoology and Forest ConservationGeorg‐August‐Universität GöttingenGöttingenGermany
| | - Fredrik Schlyter
- Department of Plant Protection BiologySwedish University of Agricultural SciencesLommaSweden
- Excellent Team for Mitigation, Faculty of Forestry & Wood SciencesCzech University of Life Sciences PragueSuchdolCzech Republic
| | - Göran Birgersson
- Department of Plant Protection BiologySwedish University of Agricultural SciencesLommaSweden
| | - Paweł Koteja
- Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Magnus Löf
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesLommaSweden
| |
Collapse
|
20
|
Jacoblinnert K, Jacob J, Zhang Z, Hinds LA. The status of fertility control for rodents-recent achievements and future directions. Integr Zool 2021; 17:964-980. [PMID: 34549512 DOI: 10.1111/1749-4877.12588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Management of overabundant rodents at a landscape scale is complex but often required to sustainably reduce rodent abundance below damage thresholds. Current conventional techniques such as poisoning are not species specific, with some approaches becoming increasingly unacceptable to the general public. Fertility control, first proposed for vertebrate pest management over 5 decades ago, has gained public acceptance because it is perceived as a potentially more species-specific and humane approach compared with many lethal methods. An ideal fertility control agent needs to induce infertility across one or more breeding seasons, be easily delivered to an appropriate proportion of the population, be species specific with minimal side-effects (behavioral or social structure changes), and be environmentally benign and cost effective. To date, effective fertility control of rodents has not been demonstrated at landscape scales and very few products have achieved registration. Reproductive targets for fertility control include disrupting the hormonal feedback associated with the hypothalamic-pituitary-gonadal axis, gonad function, fertilization, and/or early implantation. We review progress on the oral delivery of various agents for which laboratory studies have demonstrated efficacy in females and/or males and synthesize progress with the development and/or use of synthetic steroids, plant extracts, ovarian specific peptides, and immunocontraceptive vaccines. There are promising results for field application of synthetic steroids (levonorgestrel, quinestrol), chemosterilants (4-vinylcyclohexene diepoxide), and some plant extracts (triptolide). For most fertility control agents, more research is essential to enable their efficient and cost-effective delivery such that rodent impacts at a population level are mitigated and food security is improved.
Collapse
Affiliation(s)
- Kyra Jacoblinnert
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany.,Department of Behavioral Biology, University Osnabrück, Osnabrück, Germany
| | - Jens Jacob
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
21
|
Baldwin RA, Becchetti TA, Meinerz R, Quinn N. Potential impact of diphacinone application strategies on secondary exposure risk in a common rodent pest: implications for management of California ground squirrels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45891-45902. [PMID: 33881695 PMCID: PMC8364526 DOI: 10.1007/s11356-021-13977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Anticoagulant rodenticides are a common tool used to manage rodents in agricultural systems, but they have received increased scrutiny given concerns about secondary exposure in non-target wildlife. Rodenticide application strategy is one factor that influences exposure risk. To understand the impact of application strategy, we tested residues of a first-generation anticoagulant (diphacinone) in liver tissue of radiotransmittered California ground squirrels (Otospermophilus beecheyi) following spot treatments, broadcast applications, and bait station applications in rangelands in central California during summer and autumn 2018-2019. We also documented the amount of bait applied, the mean time from bait application until death, and the proportion of ground squirrels that died belowground. We documented the greatest amount of bait applied via bait stations and the least by broadcast applications. We did not document a difference in diphacinone residues across any application strategy, although survivors had an order of magnitude lower concentration of diphacinone than mortalities, potentially lowering secondary exposure risk. We did not observe any difference among bait delivery methods in time from bait application to death, nor did we identify any impact of seasonality on any of the factors we tested. The vast majority of mortalities occurred belowground (82-91%), likely reducing secondary exposure. Secondary exposure could be further reduced by daily carcass searches. Results from this study better define risk associated with first-generation anticoagulant rodenticide applications, ultimately assisting in development of management programs that minimize non-target exposure.
Collapse
Affiliation(s)
- Roger A Baldwin
- Department of Wildlife, Fish, and Conservation Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| | - Theresa A Becchetti
- University of California Cooperative Extension, 3800 Cornucopia Way, Ste A, Modesto, CA, 95358, USA
| | - Ryan Meinerz
- Department of Wildlife, Fish, and Conservation Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Niamh Quinn
- University of California Cooperative Extension, South Coast Research and Extension Center, 7601 Irvine Blvd, Irvine, CA, 92618, USA
| |
Collapse
|
22
|
Murray MH, Sánchez CA. Urban rat exposure to anticoagulant rodenticides and zoonotic infection risk. Biol Lett 2021; 17:20210311. [PMID: 34376077 DOI: 10.1098/rsbl.2021.0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Anticoagulant rodenticides (ARs) deployed to control rodent pest populations can increase the risk of pathogen infection for some wildlife. However, it is unknown whether ARs also increase infection risk for target rodents, which are common hosts for zoonotic (animal-to-human transmitted) pathogens. In this study, we tested whether rats exposed to ARs were more likely to be infected with zoonotic pathogens, specifically Leptospira spp. or Escherichia coli, after controlling for known predictors of infection (i.e. sex, age, body condition). We collected biological samples from 99 rats trapped in Chicago alleys and tested these for Leptospira infection, E. coli shedding and AR exposure. We found that rats that had been exposed to ARs and survived until the time of trapping, as well as older rats, were significantly more likely to be infected with Leptospira spp. than other rats. We found no significant association between E. coli shedding and any predictors. Our results show that human actions to manage rats can affect rat disease ecology and public health risks in unintended ways, and more broadly, contribute to a growing awareness of bidirectional relationships between humans and natural systems in cities.
Collapse
Affiliation(s)
- Maureen H Murray
- Department of Conservation and Science, Lincoln Park Zoo, 2001 N Clark Street, Chicago, IL 60614, USA
| | - Cecilia A Sánchez
- EcoHealth Alliance, 520 Eighth Avenue, Suite 1200, New York, NY 10018, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
23
|
Valverde I, Espín S, Gómez-Ramírez P, Navas I, María-Mojica P, Sánchez-Virosta P, Jiménez P, Torres-Chaparro MY, García-Fernández AJ. Wildlife poisoning: a novel scoring system and review of analytical methods for anticoagulant rodenticide determination. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:767-782. [PMID: 33864551 DOI: 10.1007/s10646-021-02411-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 05/10/2023]
Abstract
Anticoagulant rodenticides (ARs) are commonly used to control rodent populations and frequently involved in wildlife and domestic animal poisoning. These poisoning cases (especially for ARs) are a challenge for forensic toxicologists, and adequate post-mortem examination and toxicological analyses become essential for a proper diagnosis. Publications describing different analytical methods for AR analysis in biological samples are growing, and a clear compilation of the overall picture is needed to standardize methodologies in future research. This review aims to compile and compare the analytical procedures applied for AR determination in the literature. Using this information, a scoring system was developed for those techniques using liver and blood as matrices, and the techniques were ranked considering different criteria (i.e. sample amount required, recoveries, limits of quantification (LOQs), number of ARs analysed, points of the calibration curve and multi-class methods). This review shows an overview of the main methods used for AR analysis in forensic toxicology and will help to elucidate future directions to improve multi-residue techniques to detect the ARs involved in wildlife lethal poisoning.
Collapse
Affiliation(s)
- Irene Valverde
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain
| | - Silvia Espín
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain.
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, Murcia, Spain.
| | - Pilar Gómez-Ramírez
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, Murcia, Spain
| | - Isabel Navas
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, Murcia, Spain
| | - Pedro María-Mojica
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain
- "Santa Faz" Wildlife Rehabilitation Center, Consellería de Agricultura, Medio Ambiente, Cambio Climático y Desarrollo Rural, Alicante, Generalitat Valenciana, Spain
| | - Pablo Sánchez-Virosta
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain
| | - Pedro Jiménez
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain
| | - María Y Torres-Chaparro
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain
| | - Antonio J García-Fernández
- Toxicology and Forensic Veterinary Service, Faculty of Veterinary, University of Murcia, Campus de Espinardo, Murcia, Spain.
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, Murcia, Spain.
| |
Collapse
|
24
|
Selemani M, Makundi RH, Massawe AW, Mhamphi G, Mulungu LS, Belmain SR. Impact of contraceptive hormones on the reproductive potential of male and female commensal black rats (Rattus rattus). Integr Zool 2021; 17:991-1001. [PMID: 34047451 DOI: 10.1111/1749-4877.12563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The black rat is considered one of the world's top pests. With increased restrictions on rodenticides, new alternatives to manage rats are urgently needed. Research on the use of contraceptive hormones, levonorgestrel (LE), and quinestrol (QU), have been evaluated against some rodent species, and this research is the first study to assess these on black rats. Hormones were incorporated into rodent bait at 10 and 50 ppm concentrations singly and in combination (EP-1). Groups of 10 animals of each sex were fed the baits over 7 days. Lower bait consumption was observed with slight body mass reductions. On dissection, it was observed that the uterus was in a state of edema and male reproductive organs weighed less with reduced sperm counts/motility. The 2 most promising baits, 50 ppm QU and EP-1, were used to assess impact on pregnancy and litter size. Pregnancy was reduced from 70% success when both males and females consumed untreated bait, down to 30% when males had consumed contraceptive bait but females had not, and down to 0% when females had consumed contraceptive bait, regardless of whether they had paired with a treated or untreated male. Litter size in the untreated pairs was 8 pups, but only 4 pups in those cases where the male only had consumed the contraceptive. Further studies should investigate how long the effect lasts and its reversibility. Field studies at the population level may also shed light on the practicality of using contraceptive baits for black rats in different habitats.
Collapse
Affiliation(s)
- Mwajabu Selemani
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rhodes H Makundi
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Apia W Massawe
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Ginethon Mhamphi
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Loth S Mulungu
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | | |
Collapse
|
25
|
Jacoblinnert K, Imholt C, Schenke D, Jacob J. Ethyl-iophenoxic acid as a quantitative bait marker for small mammals. Integr Zool 2021; 17:981-990. [PMID: 33876888 DOI: 10.1111/1749-4877.12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bait markers are indispensable for ecological research but in small mammals, most markers are invasive, expensive and do not enable quantitative analyses of consumption. Ethyl-iophenoxic acid (Et-IPA) is a non-toxic, quantitative bait marker, which has been used for studying bait uptake in several carnivores and ungulates. We developed a bait with Et-IPA, assessed its palatability to common voles (Microtus arvalis), and determined the dose-residue-relation for this important agricultural pest rodent species. Et-IPA concentrations of 40 to 1280 μg Et-IPA per g bait were applied to wheat using sunflower oil or polyethylene glycol 300 as potential carriers. In a laboratory study, common voles were offered the bait and blood samples were collected 1, 7, and 14 days after consumption. The samples were analyzed with LC-ESI-MS/MS for blood residues of Et-IPA. Sunflower-oil was the most suitable bait carrier. Et-IPA seemed to be palatable to common voles at all test concentrations. Dose-dependent residues could be detected in blood samples in a dose-dependent manner and up to 14 days after uptake enabling generation of a calibration curve of the dose-residue relationship. Et-IPA was present in common vole blood for at least 14 days, but there was dissipation by 33-37% depending on dose. Et-IPA meets many criteria for an "ideal" quantitative bait marker for use in future field studies on common voles and possibly other small mammal species.
Collapse
Affiliation(s)
- Kyra Jacoblinnert
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany.,Department of Behavioral Biology, University of Osnabrück, Osnabrück, Germany
| | - Christian Imholt
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Detlef Schenke
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Jens Jacob
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| |
Collapse
|
26
|
Hinds LA, Grice D, Watson DM, Jacob J. Efficacy of a combined insecticide-rodenticide product on ectoparasite and commensal rodent mortality. PEST MANAGEMENT SCIENCE 2021; 77:1160-1168. [PMID: 33201557 DOI: 10.1002/ps.6179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ectoparasites may transfer zoonotic pathogens from rodents to humans or livestock when rodents are managed with rodenticides. This could be minimized using a product combining a rodenticide with a delayed action and a systemic insecticide/acaricide that rapidly kills ectoparasites. Such a combination was tested in commensal pest rodent species to assess efficacy and timing of responses in rodents, and fleas and ticks feeding on them. Ticks or fleas attached to rats (Rattus norvegicus) and house mice (Mus musculus domesticus) were exposed to a product containing brodifacoum (50 ppm) and fipronil (40 ppm) for three days. RESULTS 98-100% of fleas on treated rodents died within one to two days after first exposure, whereas >90% fleas survived on control rodents. The effect persisted for four or more days after bait uptake. Ticks started to succumb to the effect of the combination product within one day (mice) and within four days (rats) of first exposure, with all ticks dying by Day (D)8. Tick survival in control rodents was 90-100%. Rodent mortality began at D3 (rats) and D4 (mice) after first consumption of product and all were dead by D9 (rats) and D7 (mice). CONCLUSION This product effectively killed ectoparasites and rodents. Flea mortality was swift and complete, generally within one day of exposure, whereas it took ticks up to four days to die, but before the rats and house mice died. The combination product might help to prevent ectoparasites migrating from dying rodents to another host. Field trials are warranted. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, Australia
| | - David Grice
- CSIRO Health and Biosecurity, Canberra, Australia
| | | | - Jens Jacob
- Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| |
Collapse
|
27
|
Jacob J. In Focus: vertebrate management and risk mitigation. PEST MANAGEMENT SCIENCE 2021; 77:597-598. [PMID: 33438843 DOI: 10.1002/ps.6199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Jens Jacob
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| |
Collapse
|
28
|
Rattner BA, Harvey JJ. Challenges in the interpretation of anticoagulant rodenticide residues and toxicity in predatory and scavenging birds. PEST MANAGEMENT SCIENCE 2021; 77:604-610. [PMID: 33052019 DOI: 10.1002/ps.6137] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Anticoagulant rodenticides (ARs) are part of the near billion-dollar rodenticide industry. Numerous studies have documented the presence of ARs in nontarget wildlife, with evidence of repeated exposure to second-generation ARs. While birds are generally less sensitive to ARs than target rodent species, in some locations predatory and scavenging birds are exposed by consumption of such poisoned prey and, depending on dose and frequency of exposure, exhibit effects of intoxication that can result in death. Evidence of hemorrhage in conjunction with summed hepatic AR residues >0.1-0.2 mg kg-1 liver wet weight are often used as criteria to diagnose ARs as the likely cause of death. In this review focusing on birds of prey and scavengers, we discuss AR potency, coagulopathy, toxicokinetics and long-lasting effects of residues, and the role of nutrition and vitamin K status on toxicity, and identify some research needs. A more complete understanding of the factors affecting AR toxicity in nontarget wildlife could enable regulators and natural resource managers to better predict and even mitigate risk. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Barnett A Rattner
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, MD, USA
| | - Joel J Harvey
- Columbia Environmental Research Center, US Geological Survey, Columbia, MO, USA
| |
Collapse
|
29
|
Walther B, Geduhn A, Schenke D, Schlötelburg A, Jacob J. Baiting location affects anticoagulant rodenticide exposure of non-target small mammals on farms. PEST MANAGEMENT SCIENCE 2021; 77:611-619. [PMID: 32633096 DOI: 10.1002/ps.5987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Commensal rodents such as Norway rats (Rattus norvegicus Berk.), black rats (R. rattus L.) and house mice (Mus musculus L.) damage stored produce and infrastructure, cause hygienic problems and transmit zoonotic pathogens to humans. The management of commensal rodents relies mainly on the use of anticoagulant rodenticides (ARs). ARs are persistent and bio-accumulative, which can cause exposure of non-target species. We compared the baiting strategies to use brodifacoum (BR) in bait boxes indoors only versus in and around buildings in replicated field trials at livestock farms to assess resulting BR residues in non-target small mammals. RESULTS When bait was used indoors only, the percentage of trapped non-target small mammals with BR residues as well as BR concentration in liver tissue was about 50% lower in comparison to bait application in and around buildings. These effects occurred in murid rodents and shrews but not in voles that were generally only mildly exposed. During the baiting period, BR concentration in murids was stable but decreased by about 50% in shrews. CONCLUSION Restricting the application of BR bait to indoors only can reduce exposure of non-target species. The positive effect of this baiting strategy on non-target species needs to be balanced with the need for an effective pest rodent management within a reasonable time. More research is needed to clarify which management approaches strike this balance best.
Collapse
Affiliation(s)
- Bernd Walther
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Anke Geduhn
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Detlef Schenke
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Annika Schlötelburg
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| |
Collapse
|
30
|
Murray M. Continued Anticoagulant Rodenticide Exposure of Red-tailed Hawks (Buteo jamaicensis) in the Northeastern United States with an Evaluation of Serum for Biomonitoring. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2325-2335. [PMID: 33405327 DOI: 10.1002/etc.4853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 05/10/2023]
Abstract
Prior studies (2006-2016) in birds of prey admitted to a wildlife clinic in Massachusetts, USA, revealed widespread exposure to second-generation anticoagulant rodenticides (SGARs) among red-tailed hawks (Buteo jamaicensis, RTHAs). Continued monitoring of species for which historic data are available can reveal trends in exposure that aid in evaluating the effectiveness of risk-mitigation measures. While the majority of exposure-monitoring studies utilize liver tissue collected postmortem, antemortem modalities, such as serum analysis, may be desirable for risk assessments in certain populations. However, the sensitivity of serum for detecting anticoagulant rodenticides (ARs) is not well studied. Paired liver and serum samples from 43 RTHAs were evaluated from 2017 to 2019. In liver tissue, 100% of birds were positive for ARs, with the SGARs brodifacoum, bromadiolone, and difethialone identified most frequently; 91% of birds had liver residues of 2 to 4 ARs. These findings represent the highest exposure both to ARs overall and to multiple ARs in RTHAs compared to previous studies. All birds diagnosed with AR toxicosis (n = 14) were positive for ARs in serum; however, all subclinically exposed birds (n = 29) were negative in serum. These data show that exposure to SGARs remains widespread in RTHAs in this geographic area. In addition, although serum analysis is not sensitive for detecting sublethal exposures in RTHAs, it can potentially support a diagnosis of AR toxicosis in conjunction with other consistent signs. Environ Toxicol Chem 2020;39:2325-2335. © 2020 SETAC.
Collapse
Affiliation(s)
- Maureen Murray
- Tufts Wildlife Clinic, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| |
Collapse
|
31
|
Dickson AJ, Belthoff JR, Mitchell KA, Smith BW, Wallace ZP, Stuber MJ, Lockhart MJ, Rattner BA, Katzner TE. Evaluating a Rapid Field Assessment System for Anticoagulant Rodenticide Exposure of Raptors. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:454-460. [PMID: 33140186 DOI: 10.1007/s00244-020-00763-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Anticoagulant rodenticides (ARs) are commonly used to control rodent pests. However, worldwide, their use is associated with secondary and tertiary poisoning of nontarget species, especially predatory and scavenging birds. No medical device can rapidly test for AR exposure of avian wildlife. Prothrombin time (PT) is a useful biomarker for AR exposure, and multiple commercially available point-of-care (POC) devices measure PT of humans, and domestic and companion mammals. We evaluated the potential of one commercially available POC device, the Coag-Sense® PT/INR Monitoring System, to rapidly detect AR exposure of living birds of prey. The Coag-Sense device delivered repeatable PT measurements on avian blood samples collected from four species of raptors trapped during migration (Intraclass Correlation Coefficient > 0.9; overall intra-sample variation CV: 5.7%). However, PT measurements reported by the Coag-Sense system from 81 ferruginous hawk (Buteo regalis) nestlings were not correlated to those measured by a one-stage laboratory avian PT assay (r = - 0.017, p = 0.88). Although precise, the lack of agreement in PT estimates from the Coag-Sense device and the laboratory assay indicates that this device is not suitable for detecting potential AR exposure of birds of prey. The lack of suitability may be related to the use of a mammalian reagent in the clotting reaction, suggesting that the device may perform better in testing mammalian wildlife.
Collapse
Affiliation(s)
- Ariana J Dickson
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID, 83725, USA.
- Raptor Research Center, Boise State University, 1910 University Drive, Boise, ID, 83725, USA.
| | - James R Belthoff
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
- Raptor Research Center, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Kristen A Mitchell
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Brian W Smith
- Division of Migratory Birds, U.S. Fish and Wildlife Service, Denver, CO, USA
| | - Zachary P Wallace
- Wyoming Natural Diversity Database, University of Wyoming, Dept. 3381, Laramie, WY, USA
| | - Matthew J Stuber
- Division of Migratory Birds, U.S. Fish and Wildlife Service, Medford, OR, USA
| | | | - Barnett A Rattner
- U.S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD, USA
| | - Todd E Katzner
- U.S. Geological Survey, Forest and Rangeland Ecosystem Center, Boise, ID, USA
| |
Collapse
|
32
|
Rattner BA, Volker SF, Lankton JS, Bean TG, Lazarus RS, Horak KE. Brodifacoum Toxicity in American Kestrels (Falco sparverius) with Evidence of Increased Hazard on Subsequent Anticoagulant Rodenticide Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:468-481. [PMID: 31707739 DOI: 10.1002/etc.4629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
A seminal question in ecotoxicology is the extent to which contaminant exposure evokes prolonged effects on physiological function and fitness. A series of studies were undertaken with American kestrels ingesting environmentally realistic concentrations of the second-generation anticoagulant rodenticide (SGAR) brodifacoum. Kestrels fed brodifacoum at 0.3, 1.0, or 3.0 µg/g diet wet weight for 7 d exhibited dose-dependent hemorrhage, histopathological lesions, and coagulopathy (prolonged prothrombin and Russell's viper venom times). Following termination of a 7-d exposure to 0.5 µg brodifacoum/g diet, prolonged blood clotting time returned to baseline values within 1 wk, but brodifacoum residues in liver and kidney persisted during the 28-d recovery period (terminal half-life estimates >50 d). To examine the hazard of sequential anticoagulant rodenticide (AR) exposure, kestrels were exposed to either the first-generation AR chlorophacinone (1.5 µg/g diet) or the SGAR brodifacoum (0.5 µg/g diet) for 7 d and, following a recovery period, challenged with a low dose of chlorophacinone (0.75 µg/g diet) for 7 d. In brodifacoum-exposed kestrels, the challenge exposure clearly prolonged prothrombin time compared to naive controls and kestrels previously exposed to chlorophacinone. These data provide evidence that the SGAR brodifacoum may have prolonged effects that increase the toxicity of subsequent AR exposure. Because free-ranging predatory and scavenging wildlife are often repeatedly exposed to ARs, such protracted toxicological effects need to be considered in hazard and risk assessments. Environ Toxicol Chem 2020;39:468-481. © 2020 SETAC.
Collapse
Affiliation(s)
- Barnett A Rattner
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, Maryland, USA
| | - Steven F Volker
- National Wildlife Research Center, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, Colorado, USA
| | - Julia S Lankton
- National Wildlife Health Center, US Geological Survey, Madison, Wisconsin, USA
| | - Thomas G Bean
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Rebecca S Lazarus
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, Maryland, USA
| | - Katherine E Horak
- National Wildlife Research Center, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, Colorado, USA
| |
Collapse
|
33
|
Lattard V, Benoit E. The stereoisomerism of second generation anticoagulant rodenticides: a way to improve this class of molecules to meet the requirements of society? PEST MANAGEMENT SCIENCE 2019; 75:887-892. [PMID: 30051584 DOI: 10.1002/ps.5155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Second generation anticoagulant rodenticides (SGAR) are generally highly efficient for rodent management even towards warfarin-resistant rodents. Nevertheless, because of their long tissue-persistence, they are very associated with non-target exposure of wildlife and have been identified as 'Candidates for Substitution' by the European Union's competent authority. A promising way to reduce ecotoxicity issues associated to SGAR could be the improvement of SGAR based on their stereoisomery, and due to this improvement, positioning about SGAR might be reconsidered. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Virginie Lattard
- USC 1233 RS2GP, VetAgro Sup, INRA, Univ Lyon, Marcy l'Etoile, France
| | - Etienne Benoit
- USC 1233 RS2GP, VetAgro Sup, INRA, Univ Lyon, Marcy l'Etoile, France
| |
Collapse
|
34
|
Hein S, Jacob J. Population recovery of a common vole population (Microtus arvalis) after population collapse. PEST MANAGEMENT SCIENCE 2019; 75:908-914. [PMID: 30230169 DOI: 10.1002/ps.5211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Population collapses in small mammals occur naturally after natural disasters and during multi-annual population fluctuations as well as after man-made intervention such as rodent management action. Although there has been extensive previous work on patterns and mechanisms of population fluctuations and cyclicity, little is known about population recovery after collapse. In Europe, the common vole (Microtus arvalis) is the major pest species in agriculture, damaging crops, competing with livestock and potentially posing a health risk to people. In this study, we investigated population recovery, recovery mechanism and recovery time of common vole populations after artificially inducing a collapse through rodenticide application. RESULTS The rodenticide treatment reduced abundance in spring (by about 90%) but not in summer. Demographic data (age, sex-ratio, breeding activity) suggest that it was mostly immigration and not reproduction that led to population recovery after collapse. CONCLUSIONS The findings indicate that rodenticide treatment should be conducted in spring before the main reproductive season starts. The treatment effect was transient and lasted for about 3 months before immigration offset the initial reduction in population abundance. This indicates that immigration patterns should be considered by managing vole populations at an appropriate spatial scale and frequency to prevent rapid repopulation. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Susanne Hein
- Julius Kuehn Institute-Federal Research Center for Cultivated Plants, Institute for Plant Protection in Horticulture and Forest, Vertebrate Research, Muenster, Germany
- University Muenster, Faculty of Geosciences. Institute for Landscape Ecology, Muenster, Germany
| | - Jens Jacob
- Julius Kuehn Institute-Federal Research Center for Cultivated Plants, Institute for Plant Protection in Horticulture and Forest, Vertebrate Research, Muenster, Germany
| |
Collapse
|
35
|
Borowski Z, Zub K, Jacob J. Applied research for optimized vertebrate management: 11 th European Vertebrate Pest Management Conference. PEST MANAGEMENT SCIENCE 2019; 75:885-886. [PMID: 30848566 DOI: 10.1002/ps.5302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Zbigniew Borowski
- Forest Research Institute, Department of Forest Ecology, Raszyn, Poland
| | - Karol Zub
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| |
Collapse
|
36
|
Fernandez-de-Simon J, Coeurdassier M, Couval G, Fourel I, Giraudoux P. Do bromadiolone treatments to control grassland water voles (Arvicola scherman) affect small mustelid abundance? PEST MANAGEMENT SCIENCE 2019; 75:900-907. [PMID: 30175431 DOI: 10.1002/ps.5194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/19/2018] [Accepted: 08/26/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The use of pesticides can affect non-target species by causing population declines through indirect intoxication. Small mustelids (SMs; weasels, Mustela nivalis L.; stoats, Mustela erminea L.) consume water voles (WVs, Arvicola scherman S.) and can be exposed to bromadiolone, an anticoagulant rodenticide used in some countries to reduce WV damage to grasslands. Here, we investigated whether bromadiolone affected SM abundance. RESULTS We monitored SM abundance using footprint tracking tunnels in spring and autumn at ten sites. Among these sites, four were treated with bromadiolone, while six were not treated. We found reduced SM abundance at these four sites from spring to autumn (treated sites, mean ± SE SM abundance change = -1.68 ± 0.42; untreated sites, 0.29 ± 0.25). Using a linear model, we observed that SM abundance decreased as a function of the quantity of bromadiolone applied during the 3 months before the autumn estimate. We found that WV abundance increased at treated sites (linear model, treated sites, mean ± SE WV abundance change = 1.4 ± 0.4; untreated sites, 0.33 ± 0.25). Thus, at treated sites, SM abundance declined despite increased food availability. By analyzing residues in vole livers and SM scats we showed that SMs may be exposed to bromadiolone at the sites where this compound was used. CONCLUSION This study is the first to document the relationship between SM abundance and bromadiolone usage for small mammal control. Declines in SM abundance were observed at treated sites, where bromadiolone residue was found in SM scats. This correlative approach suggests that bromadiolone treatment may lead to seasonal SM declines and associated WV increases. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Javier Fernandez-de-Simon
- Laboratoire Chrono-environnement (UMR 6249), Centre National de la Recherche Scientifique, CNRS, Université Bourgogne Franche-Comté, UBFC, Besançon, France
| | - Michael Coeurdassier
- Laboratoire Chrono-environnement (UMR 6249), Centre National de la Recherche Scientifique, CNRS, Université Bourgogne Franche-Comté, UBFC, Besançon, France
| | - Geoffroy Couval
- Fédération Régionale de Défense contre les Organismes Nuisibles (Regional Federation of Defense against Pest Organisms, FREDON, Franche-Comté), École-Valentin, France
| | - Isabelle Fourel
- USC 1233 Rongeurs Sauvages, Risques Sanitaires et Gestion des Populations (Wild Rodents, Health Risks and Population Management, RS2GP), VetAgro Sup, Institut National de la Recherche Agronomique (French National Institute for Agricultural Research, INRA), Université de Lyon, Marcy l'Etoile, France
| | - Patrick Giraudoux
- Laboratoire Chrono-environnement (UMR 6249), Centre National de la Recherche Scientifique, CNRS, Université Bourgogne Franche-Comté, UBFC, Besançon, France
| |
Collapse
|
37
|
Nakayama SMM, Morita A, Ikenaka Y, Mizukawa H, Ishizuka M. A review: poisoning by anticoagulant rodenticides in non-target animals globally. J Vet Med Sci 2018; 81:298-313. [PMID: 30587672 PMCID: PMC6395208 DOI: 10.1292/jvms.17-0717] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Worldwide use of anticoagulant rodenticides (ARs) for rodents control has frequently led
to secondary poisoning of non-target animals, especially raptors. In spite of the
occurrence of many incidents of primary or secondary AR-exposure and poisoning of
non-target animals, these incidents have been reported only for individual countries, and
there has been no comprehensive worldwide study or review. Furthermore, the AR exposure
pathway in raptors has not yet been clearly identified. The aim of this review is
therefore to comprehensively analyze the global incidence of primary and secondary
AR-exposure in non-target animals, and to explore the exposure pathways. We reviewed the
published literature, which reported AR residues in the non-target animals between 1998
and 2015, indicated that various raptor species had over 60% AR- detection rate and have a
risk of AR poisoning. According to several papers studied on diets of raptor species,
although rodents are the most common diets of raptors, some raptor species prey mainly on
non-rodents. Therefore, preying on targeted rodents does not necessarily explain all
causes of secondary AR-exposure of raptors. Since AR residue-detection was also reported
in non-target mammals, birds, reptiles and invertebrates, which are the dominant prey of
some raptors, AR residues in these animals, as well as in target rodents, could be the
exposure source of ARs to raptors.
Collapse
Affiliation(s)
- Shouta M M Nakayama
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Ayuko Morita
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Hazuki Mizukawa
- Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
38
|
Hansen SC, Stolter C, Imholt C, Jacob J. Plant Secondary Metabolites as Rodent Repellents: a Systematic Review. J Chem Ecol 2016; 42:970-983. [PMID: 27613544 DOI: 10.1007/s10886-016-0760-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/29/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
The vast number of plant secondary metabolites (PSMs) produced by higher plants has generated many efforts to exploit their potential for pest control. We performed a systematic literature search to retrieve relevant publications, and we evaluated these according to PSM groups to derive information about the potential for developing plant-derived rodent repellents. We screened a total of 54 publications where different compounds or plants were tested regarding rodent behavior/metabolism. In the search for widely applicable products, we recommend multi-species systematic screening of PSMs, especially from the essential oil and terpenoid group, as laboratory experiments have uniformly shown the strongest effects across species. Other groups of compounds might be more suitable for the management of species-specific or sex-specific issues, as the effects of some compounds on particular rodent target species or sex might not be present in non-target species or in both sexes. Although plant metabolites have potential as a tool for ecologically-based rodent management, this review demonstrates inconsistent success across laboratory, enclosure, and field studies, which ultimately has lead to a small number of currently registered PSM-based rodent repellents.
Collapse
Affiliation(s)
- Sabine C Hansen
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany. .,University Hamburg, Biocenter Grindel and Zoological Museum, Hamburg, Germany.
| | - Caroline Stolter
- University Hamburg, Biocenter Grindel and Zoological Museum, Hamburg, Germany
| | - Christian Imholt
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Jens Jacob
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| |
Collapse
|