1
|
Chargo NJ, Kang HJ, Das S, Jin Y, Rockwell C, Cho JY, McCabe LR, Parameswaran N. Korean red ginseng extract prevents bone loss in an oral model of glucocorticoid induced osteoporosis in mice. Front Pharmacol 2024; 15:1268134. [PMID: 38533264 PMCID: PMC10963623 DOI: 10.3389/fphar.2024.1268134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
The gut microbiota and barrier function play important roles in bone health. We previously demonstrated that chronic glucocorticoid (GC)-induced bone loss in mice is associated with significant shifts in gut microbiota composition and impaired gut barrier function. Korean Red Ginseng (KRG, Panax Ginseng Meyer, Araliaceae) extract has been shown to prevent glucocorticoid-induced osteoporosis (GIO) in a subcutaneous pellet model in mice, but its effect on gut microbiota and barrier function in this context is not known. The overall goal of this study was to test the effect of KRG extract in a clinically relevant, oral model of GIO and further investigate its role in modulating the gut-bone axis. Growing male mice (CD-1, 8 weeks) were treated with 75 μg/mL corticosterone (∼9 mg/kg/day) or 0.4% ethanol vehicle in the drinking water for 4 weeks. During this 4-week period, mice were treated daily with 500 mg/kg/day KRG extract dissolved in sterile water or an equal amount of sterile water via oral gastric gavage. After 4 weeks of treatment, we assessed bone volume, microbiota composition, gut barrier integrity, and immune cells in the bone marrow (BM) and mesenteric lymph nodes (MLNs). 4 weeks of oral GC treatment caused significant distal femur trabecular bone loss, and this was associated with changes in gut microbiota composition, impaired gut barrier function and altered immune cell composition. Importantly, KRG extract prevented distal femur trabecular bone loss and caused significant alterations in gut microbiota composition but had only modest effects on gut barrier function and immune cell populations. Taken together, these results demonstrate that KRG extract significantly modulates the gut microbiota-bone axis and prevents glucocorticoid-induced bone loss in mice.
Collapse
Affiliation(s)
- Nicholas J. Chargo
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Subhashari Das
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Yining Jin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Wang Y, Zhang X, Tang G, Deng P, Qin Y, Han J, Wang S, Sun X, Li D, Chen Z. The causal relationship between gut microbiota and bone mineral density: a Mendelian randomization study. Front Microbiol 2023; 14:1268935. [PMID: 37937216 PMCID: PMC10625988 DOI: 10.3389/fmicb.2023.1268935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Background The gut microbiota has emerged as an intriguing and potentially influential factor in regulating bone health. However, the causal effect of the gut microbiota on bone mineral density (BMD) appears to differ throughout various life stages. Methods We conducted a Mendelian randomization (MR) analysis to investigate the potential causal relationship between gut microbiota and BMD in five distinct age groups: 0-15, 15-30, 30-45, 45-60, and 60 years and older. The analysis employed three different methods, namely MR-Egger, weighted median, and Inverse-variance weighting, to ensure the robustness of our findings, a series of sensitivity analyses were also conducted, such as horizontal pleiotropy tests, heterogeneity tests, and leave-one-out sensitivity tests. Results In the age group of 0-15 years, Eubacterium_fissicatena_group and Eubacterium_hallii_group were identified as risk factors for BMD. During the 15-30 age group, Phascolarctobacterium, Roseburia, and Ruminococcaceae_UCG_003 were found to be protective factors for BMD. In the 30-45 age group, Lachnospira genus demonstrated a protective effect on BMD, while Barnesiella and Lactococcus were identified as risk factors for BMD. Moving on to the 45-60 age group, Eubacterium_ventriosum_group, Lachnospiraceae_UCG_004, and Subdoligranulum were observed to be protective factors for BMD, while Eubacterium_coprostanoligenes_group, Fusicatenibacter, and Lactococcus were associated with an increased risk of BMD. In individuals aged 60 years and older, Fusicatenibacter and Ruminococcaceae_UCG_002 were also noted as risk factors for BMD. Conversely, Eubacterium_ruminantium_group, Ruminococcus_gauvreauii_group, Alistipes, and Coprococcus_3 were found to be protective factors for BMD, whereas Barnesiella and Sellimonas were identified as risk factors for BMD. Conclusion A robust causal relationship between gut microbiota and bone mineral density (BMD) exists throughout all stages of life, with Firmicutes phylum being the primary group associated with BMD across age groups. Gut microbiota linked with BMD primarily belong to the Firmicutes phylum across age groups. The diversity of gut microbiota phyla associated with BMD depicts relatively stable patterns during the ages of 0-45 years. However, for individuals aged 45 years and above, there is an observed increase in the number of gut microbiota species linked with BMD, and by the age of 60 years, a trend toward an increase in the Bacteroidetes phylum categories is proposed.
Collapse
Affiliation(s)
- Ying Wang
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xuejian Zhang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Guangjun Tang
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Pin Deng
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyan Qin
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jinglu Han
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Shulong Wang
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xiaojie Sun
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Dongxiao Li
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Zhaojun Chen
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
3
|
Li W, Li T, Tang Z, Qi X, Zhou Y, Tang X, Xu W, Xiong H. Taohong Siwu Decoction promotes the process of fracture healing by activating the VEGF-FAK signal pathway and systemically regulating the gut microbiota. J Appl Microbiol 2022; 133:1363-1377. [PMID: 35475538 DOI: 10.1111/jam.15598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
AIMS This study aimed to explore the effect of Taohong Siwu Decoction (THSWD) on Bone marrow mesenchymal stem cells (BMSCs) at the cellular level and the possible mechanism of systemic regulation of gut microbiota on fracture recovery. METHODS AND RESULTS Cell Counting Kit-8 (CCK-8) experiments show that THSWD effectively promotes the proliferation of BMSCs. Transwell and wound healing assays show that THSWD effectively promotes the invasion and migration of BMSCs. Alizarin red staining showed that the THSWD model enhanced the osteogenic differentiation of BMSCs. Moreover, the effect of THSWD on BMSCs is time- and concentration-dependent. RT-qPCR and Western blot results showed that THSWD treatment up-regulated the expression of vascular endothelial growth factor (VEGF) and focal adhesion kinase (FAK) at mRNA and protein levels, respectively. Hematoxylin-eosin and crocin O-quick green staining showed that rats with right femoral shaft fractures, after 14 days of THSWD treatment, the area of callus and cartilage regeneration at the fracture site increased significantly. Gut microbiota was changed in fractured rats, such as the abundance of Bacteroidetes and Firmicutes was increased. THSWD showed positive regulation of both to a certain extent. CONCLUSION THSWD up-regulates VEGF and activates the FAK signaling pathway to enhance the development and differentiation of BMSCs, and systematically regulates the gut microbiota to promote fracture healing. SIGNIFICANCE AND IMPACT OF STUDY This study provides new insights on the cellular and systemic level to understand the mechanism of THSWD in the treatment of fractures.
Collapse
Affiliation(s)
- Wangyang Li
- Hunan University of Chinese Medicine, Changsha, Hunan
| | - Tiao Li
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan
| | - Zhi Tang
- Xiangtan Chinese Medicine hospital, Xiangtan, Hunan
| | - Xinyu Qi
- Hunan University of Chinese Medicine, Changsha, Hunan
| | - Youliang Zhou
- Department of Emergency First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan
| | - Xiaolu Tang
- Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan
| | - Weijie Xu
- Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, Hunan
| |
Collapse
|
4
|
Fisher L, Fisher A, Smith PN. Helicobacter pylori Related Diseases and Osteoporotic Fractures (Narrative Review). J Clin Med 2020; 9:E3253. [PMID: 33053671 PMCID: PMC7600664 DOI: 10.3390/jcm9103253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) and osteoporotic fractures (OFs) are common multifactorial and heterogenic disorders of increasing incidence. Helicobacter pylori (H.p.) colonizes the stomach approximately in half of the world's population, causes gastroduodenal diseases and is prevalent in numerous extra-digestive diseases known to be associated with OP/OF. The studies regarding relationship between H.p. infection (HPI) and OP/OFs are inconsistent. The current review summarizes the relevant literature on the potential role of HPI in OP, falls and OFs and highlights the reasons for controversies in the publications. In the first section, after a brief overview of HPI biological features, we analyze the studies evaluating the association of HPI and bone status. The second part includes data on the prevalence of OP/OFs in HPI-induced gastroduodenal diseases (peptic ulcer, chronic/atrophic gastritis and cancer) and the effects of acid-suppressive drugs. In the next section, we discuss the possible contribution of HPI-associated extra-digestive diseases and medications to OP/OF, focusing on conditions affecting both bone homeostasis and predisposing to falls. In the last section, we describe clinical implications of accumulated data on HPI as a co-factor of OP/OF and present a feasible five-step algorithm for OP/OF risk assessment and management in regard to HPI, emphasizing the importance of an integrative (but differentiated) holistic approach. Increased awareness about the consequences of HPI linked to OP/OF can aid early detection and management. Further research on the HPI-OP/OF relationship is needed to close current knowledge gaps and improve clinical management of both OP/OF and HPI-related disorders.
Collapse
Affiliation(s)
- Leon Fisher
- Department of Gastroenterology, Frankston Hospital, Peninsula Health, Melbourne 3199, Australia
| | - Alexander Fisher
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| | - Paul N Smith
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| |
Collapse
|
5
|
Moran MM, Wilson BM, Li J, Engen PA, Naqib A, Green SJ, Virdi AS, Plaas A, Forsyth CB, Keshavarzian A, Sumner DR. The gut microbiota may be a novel pathogenic mechanism in loosening of orthopedic implants in rats. FASEB J 2020; 34:14302-14317. [PMID: 32931052 DOI: 10.1096/fj.202001364r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023]
Abstract
Particles released from implants cause inflammatory bone loss, which is a key factor in aseptic loosening, the most common reason for joint replacement failure. With the anticipated increased incidence of total joint replacement in the next decade, implant failure will continue to burden patients. The gut microbiome is increasingly recognized as an important factor in bone physiology, however, its role in implant loosening is currently unknown. We tested the hypothesis that implant loosening is associated with changes in the gut microbiota in a preclinical model. When the particle challenge caused local joint inflammation, decreased peri-implant bone volume, and decreased implant fixation, the gut microbiota was affected. When the particle challenge did not cause this triad of local effects, the gut microbiota was not affected. Our results suggest that cross-talk between these compartments is a previously unrecognized mechanism of failure following total joint replacement.
Collapse
Affiliation(s)
- Meghan M Moran
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Brittany M Wilson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Jun Li
- Department of Internal Medicine, Division of Rheumatology, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Phillip A Engen
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush Medical College, Chicago, IL, USA
| | - Ankur Naqib
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA.,Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush Medical College, Chicago, IL, USA
| | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois-Chicago, Chicago, IL, USA
| | - Amarjit S Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Anna Plaas
- Department of Internal Medicine, Division of Rheumatology, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush Medical College, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush Medical College, Chicago, IL, USA
| | - Dale R Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
6
|
Gut microbiota-dependent Trimethylamine N-Oxide are related with hip fracture in postmenopausal women: a matched case-control study. Aging (Albany NY) 2020; 12:10633-10641. [PMID: 32482913 PMCID: PMC7346070 DOI: 10.18632/aging.103283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
The study evaluates the serum levels of Trimethylamine N-Oxide (TMAO), a gut microbial metabolite, in 286 postmenopausal women with hip fracture. From January 1, 2018 to December 31, 2018, eligible patients were included. Same women without fracture mated age were enrolled. TMAO serum levels were tested by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The serum levels of TMAO were significantly higher in patients with hip fracture than in those controls (P<0.001). The serum levels of TMAO were also higher in patients with hip fracture only than in those who also had upper limb fracture (P=0.001). High level of TMAO was proved a predictor of both hip fracture and had upper limb fracture combined hip fracture, after the adjustment of other existing risk factors [e.g., for each 1 uM increase of TMAO, odd ratio 1.16 (95% CI, 1.07–1.25), P < 0.001; and 1.12 (95% CI, 1.03–1.26), P=0.008, respectively]. In summary, increased TMAO serum levels associated with high risk of hip fracture, suggesting that increase TMAO may contribute to osteoporosis and fracture in postmenopausal women.
Collapse
|
7
|
Behera J, Ison J, Tyagi SC, Tyagi N. The role of gut microbiota in bone homeostasis. Bone 2020; 135:115317. [PMID: 32169602 PMCID: PMC8457311 DOI: 10.1016/j.bone.2020.115317] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 02/08/2023]
Abstract
The gut microbiota (GM) is referred to as the second gene pool of the human body and a commensal, symbiotic, and pathogenic microorganism living in our intestines. The knowledge of the complex interaction between intestinal microbiota and health outcomes is a novel and rapidly expanding the field. Earlier studies have reported that the microbial communities affect the cellular responses and shape many aspects of physiology and pathophysiology within the body, including muscle and bone metabolism (formation and resorption). GM influences the skeletal homeostasis via affecting the host metabolism, immune function, hormone secretion, and the gut-brain axis. The premise of this review is to discuss the role of GM on bone homeostasis and skeletal muscle mass function. This review also opens up new perspectives for pathophysiological studies by establishing the presence of a 'microbiota-skeletal' axis and raising the possibility of innovative new treatments for skeletal development.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jessica Ison
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
8
|
Ponsuksili S, Reyer H, Hadlich F, Weber F, Trakooljul N, Oster M, Siengdee P, Muráni E, Rodehutscord M, Camarinha-Silva A, Bennewitz J, Wimmers K. Identification of the Key Molecular Drivers of Phosphorus Utilization Based on Host miRNA-mRNA and Gut Microbiome Interactions. Int J Mol Sci 2020; 21:E2818. [PMID: 32316683 PMCID: PMC7215353 DOI: 10.3390/ijms21082818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphorus is an essential mineral for all living organisms and a limited resource worldwide. Variation and heritability of phosphorus utilization (PU) traits were observed, indicating the general possibility of improvement. Molecular mechanisms of PU, including host and microbial effects, are still poorly understood. The most promising molecules that interact between the microbiome and host are microRNAs. Japanese quail representing extremes for PU were selected from an F2 population for miRNA profiling of the ileal tissue and subsequent association with mRNA and microbial data of the same animals. Sixty-nine differentially expressed miRNAs were found, including 21 novel and 48 known miRNAs. Combining miRNAs and mRNAs based on correlated expression and target prediction revealed enrichment of transcripts in functional pathways involved in phosphate or bone metabolism such as RAN, estrogen receptor and Wnt signaling, and immune pathways. Out of 55 genera of microbiota, seven were found to be differentially abundant between PU groups. The study reveals molecular interactions occurring in the gut of quail which represent extremes for PU including miRNA-16-5p, miR-142b-5p, miR-148a-3p, CTDSP1, SMAD3, IGSF10, Bacteroides, and Alistipes as key indicators due to their trait-dependent differential expression and occurrence as hub-members of the network of molecular drivers of PU.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (H.R.); (F.H.); (F.W.); (N.T.); (M.O.); (P.S.); (E.M.); (K.W.)
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (H.R.); (F.H.); (F.W.); (N.T.); (M.O.); (P.S.); (E.M.); (K.W.)
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (H.R.); (F.H.); (F.W.); (N.T.); (M.O.); (P.S.); (E.M.); (K.W.)
| | - Frank Weber
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (H.R.); (F.H.); (F.W.); (N.T.); (M.O.); (P.S.); (E.M.); (K.W.)
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (H.R.); (F.H.); (F.W.); (N.T.); (M.O.); (P.S.); (E.M.); (K.W.)
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (H.R.); (F.H.); (F.W.); (N.T.); (M.O.); (P.S.); (E.M.); (K.W.)
| | - Puntita Siengdee
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (H.R.); (F.H.); (F.W.); (N.T.); (M.O.); (P.S.); (E.M.); (K.W.)
| | - Eduard Muráni
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (H.R.); (F.H.); (F.W.); (N.T.); (M.O.); (P.S.); (E.M.); (K.W.)
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (M.R.); (A.C.-S.); (J.B.)
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (M.R.); (A.C.-S.); (J.B.)
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (M.R.); (A.C.-S.); (J.B.)
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (H.R.); (F.H.); (F.W.); (N.T.); (M.O.); (P.S.); (E.M.); (K.W.)
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| |
Collapse
|
9
|
Javanainen M, Pekkarinen T, Mustonen H, Scheinin T, Leivonen M. Two-Year Nutrition Data in Terms of Vitamin D, Vitamin B12, and Albumin After Bariatric Surgery and Long-term Fracture Data Compared with Conservatively Treated Obese Patients: a Retrospective Cohort Study. Obes Surg 2019; 28:2968-2975. [PMID: 29934782 DOI: 10.1007/s11695-018-3336-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Nutritional deficiencies may occur after bariatric surgery despite supplementation. Fracture risk may also be elevated after bariatric surgery. OBJECTIVES To compare 25-hydroxyvitamin D [25(OH)D], vitamin B12, and albumin serum concentrations in severely obese patients who had undergone either Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG). Fracture data was compared with data for a conservatively treated group of severely obese patients. METHODS We considered 253 RYGB and 142 SG performed between 2007 and 2010. At 1- and 2-year control follow-ups, weight was measured and blood samples were drawn. The control group of 199 obese patients received lifestyle intervention and weight was measured at 1 and 2 years post-intervention between 2002 and 2006. We retrospectively collected fracture data for all patients through the end of 2016. RESULTS At follow-ups, the mean serum 25(OH)D and albumin levels were within reference ranges and were similar between the RYGB and SG groups. Serum median vitamin B12 level was significantly higher in the SG group compared with the RYBG group, 319 versus 286 pmol/L at 2 years, respectively, p = 0.04. The cumulative risk for fracture was higher in the bariatric groups compared with the control group. The Cox multivariate model showed higher age, bariatric surgery, and lower body mass index (BMI) at the 2-year control increased the risk for fracture after obesity treatment. CONCLUSION Vitamin 25(OH)D, B12, and albumin levels were mainly within recommended levels during the 2 years after bariatric surgery. The cumulative fracture risk was higher in bariatric patients.
Collapse
Affiliation(s)
| | | | - Harri Mustonen
- Biomedicum Helsinki, Department of Surgery, Helsinki University Central Hospital, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Tom Scheinin
- Jorvi Hospital, Turuntie 150, 02740, Espoo, Finland
| | - Marja Leivonen
- Seinäjoki Central Hospital, Hanneksenrinne 7, 60220, Seinäjoki, Finland
| |
Collapse
|