1
|
Montesinos Á, Rubio-Cabetas MJ, Grimplet J. Characterization of Almond Scion/Rootstock Communication in Cultivar and Rootstock Tissues through an RNA-Seq Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:4166. [PMID: 38140493 PMCID: PMC10747828 DOI: 10.3390/plants12244166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The rootstock genotype plays a crucial role in determining various aspects of scion development, including the scion three-dimensional structure, or tree architecture. Consequently, rootstock choice is a pivotal factor in the establishment of new almond (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) intensive planting systems, demanding cultivars that can adapt to distinct requirements of vigor and shape. Nevertheless, considering the capacity of the rootstock genotype to influence scion development, it is likely that the scion genotype reciprocally affects rootstock performance. In the context of this study, we conducted a transcriptomic analysis of the scion/rootstock interaction in young almond trees, with a specific focus on elucidating the scion impact on the rootstock molecular response. Two commercial almond cultivars were grafted onto two hybrid rootstocks, thereby generating four distinct combinations. Through RNA-Seq analysis, we discerned that indeed, the scion genotype exerts an influence on the rootstock expression profile. This influence manifests through the modulation of genes associated with hormonal regulation, cell division, root development, and light signaling. This intricate interplay between scion and rootstock communication plays a pivotal role in the development of both scion and rootstock, underscoring the critical importance of a correct choice when establishing new almond orchards.
Collapse
Affiliation(s)
- Álvaro Montesinos
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (UPM-INIA/CSIC), 28223 Madrid, Spain;
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 4 177, 50013 Zaragoza, Spain
| | - María José Rubio-Cabetas
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 4 177, 50013 Zaragoza, Spain
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 4 177, 50013 Zaragoza, Spain
| |
Collapse
|
2
|
Xoconostle-Morán BB, Xoconostle-Cázares B, Vargas-Hernández BY, Núñez-Muñoz LA, Calderón-Pérez B, Ruiz-Medrano R. Long-Distance Movement of Solanum tuberosum Translationally Controlled Tumor Protein ( StTCTP) mRNA. PLANTS (BASEL, SWITZERLAND) 2023; 12:2839. [PMID: 37570993 PMCID: PMC10420919 DOI: 10.3390/plants12152839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Long-distance signaling molecules in plants, including different RNA species, play a crucial role in the development and environmental responses. Among these mobile signals, the Translationally Controlled Tumor Protein (TCTP) mRNA is one of the most abundant. TCTP regulates cell-cycle progression and programmed cell death and is involved in responses to abiotic and biotic stress as well as plant regeneration, among other functions. Considering that the ability to induce plant regeneration is linked to a possible role of TCTP in vegetative propagation and asexual reproduction, we analyzed TCTP overexpression in a solanaceous plant model that can reproduce asexually by regeneration from stolons and tubers. Therefore, in this study, the effect of transient expression of Solanum tuberosum TCTP (StTCTP) on tuber development and vegetative propagation was described. StTCTP mRNA was shown to be transported long-distance. Additionally, transient overexpression of StTCTP resulted in sprouts with a greater diameter compared to control plants. Furthermore, the early stages of tuberization were induced compared to control plants, in which only mature tubers were observed. These results suggest a role of TCTP in vegetative propagation and asexual reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico; (B.B.X.-M.); (B.X.-C.); (B.Y.V.-H.); (L.A.N.-M.); (B.C.-P.)
| |
Collapse
|
3
|
Badve SS, Gökmen-Polar Y. Targeting the Tumor-Tumor Microenvironment Crosstalk. Expert Opin Ther Targets 2023; 27:447-457. [PMID: 37395003 DOI: 10.1080/14728222.2023.2230362] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Cancer development and progression is a complex process influenced by co-evolution of the cancer cells and their microenvironment. However, traditional anti-cancer therapy is mostly targeted toward cancer cells. To improve the efficacy of cancer drugs, the complex interactions between the tumor (T) and the tumor microenvironment (TME) should be considered while developing therapeutics. AREAS COVERED The present review article will discuss the components of T-TME as well as the potential to co-target these two distinct elements. We document that these approaches have resulted in success in preventing tumor progression and metastasis, albeit in animal models in some cases. Lastly, it is important to consider the tissue context and tumor type as these could significantly modify the role of these molecules/pathways and hence the overall likelihood of response. Furthermore, we discuss the potential strategies to target the components of tumor microenvironment in anti-cancer therapy. PubMed and ClinicalTrials.gov was searched through May 2023. EXPERT OPINION The tumor-tumor microenvironment cross talk and heterogeneity are major mechanisms conferring resistance to standard of care. Better understanding of the tissue specific T-TME interactions and dual targeting has the promise of improving cancer control and clinical outcomes.
Collapse
Affiliation(s)
- Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
Gutierrez‐Beltran E, Elander PH, Dalman K, Dayhoff GW, Moschou PN, Uversky VN, Crespo JL, Bozhkov PV. Tudor staphylococcal nuclease is a docking platform for stress granule components and is essential for SnRK1 activation in Arabidopsis. EMBO J 2021; 40:e105043. [PMID: 34287990 PMCID: PMC8447601 DOI: 10.15252/embj.2020105043] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Tudor staphylococcal nuclease (TSN; also known as Tudor-SN, p100, or SND1) is a multifunctional, evolutionarily conserved regulator of gene expression, exhibiting cytoprotective activity in animals and plants and oncogenic activity in mammals. During stress, TSN stably associates with stress granules (SGs), in a poorly understood process. Here, we show that in the model plant Arabidopsis thaliana, TSN is an intrinsically disordered protein (IDP) acting as a scaffold for a large pool of other IDPs, enriched for conserved stress granule components as well as novel or plant-specific SG-localized proteins. While approximately 30% of TSN interactors are recruited to stress granules de novo upon stress perception, 70% form a protein-protein interaction network present before the onset of stress. Finally, we demonstrate that TSN and stress granule formation promote heat-induced activation of the evolutionarily conserved energy-sensing SNF1-related protein kinase 1 (SnRK1), the plant orthologue of mammalian AMP-activated protein kinase (AMPK). Our results establish TSN as a docking platform for stress granule proteins, with an important role in stress signalling.
Collapse
Affiliation(s)
- Emilio Gutierrez‐Beltran
- Instituto de Bioquímica Vegetal y FotosíntesisConsejo Superior de Investigaciones Científicas (CSIC)‐Universidad de SevillaSevillaSpain
- Departamento de Bioquímica Vegetal y Biología MolecularFacultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Pernilla H Elander
- Department of Molecular SciencesUppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsalaSweden
| | - Kerstin Dalman
- Department of Molecular SciencesUppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsalaSweden
| | - Guy W Dayhoff
- Department of ChemistryCollege of Art and SciencesUniversity of South FloridaTampaFLUSA
| | - Panagiotis N Moschou
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology ‐ HellasHeraklionGreece
- Department of Plant BiologyUppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsalaSweden
- Department of BiologyUniversity of CreteHeraklionGreece
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFLUSA
- Institute for Biological Instrumentation of the Russian Academy of SciencesFederal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”PushchinoRussia
| | - Jose L Crespo
- Instituto de Bioquímica Vegetal y FotosíntesisConsejo Superior de Investigaciones Científicas (CSIC)‐Universidad de SevillaSevillaSpain
| | - Peter V Bozhkov
- Department of Molecular SciencesUppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsalaSweden
| |
Collapse
|
5
|
Dysregulation of TCTP in Biological Processes and Diseases. Cells 2020; 9:cells9071632. [PMID: 32645936 PMCID: PMC7407922 DOI: 10.3390/cells9071632] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF) or fortilin, is a multifunctional protein present in almost all eukaryotic organisms. TCTP is involved in a range of basic cell biological processes, such as promotion of growth and development, or cellular defense in response to biological stresses. Cellular TCTP levels are highly regulated in response to a variety of physiological signals, and regulatory mechanism at various levels have been elucidated. Given the importance of TCTP in maintaining cellular homeostasis, it is not surprising that dysregulation of this protein is associated with a range of disease processes. Here, we review recent progress that has been made in the characterisation of the basic biological functions of TCTP, in the description of mechanisms involved in regulating its cellular levels and in the understanding of dysregulation of TCTP, as it occurs in disease processes such as cancer.
Collapse
|
6
|
Lee H, Kim MS, Lee JS, Cho H, Park J, Hae Shin D, Lee K. Flexible loop and helix 2 domains of TCTP are the functional domains of dimerized TCTP. Sci Rep 2020; 10:197. [PMID: 31932619 PMCID: PMC6957494 DOI: 10.1038/s41598-019-57064-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/19/2019] [Indexed: 01/26/2023] Open
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor, is an evolutionarily conserved multifunctional protein in eukaryotes. We previously reported that extracellular TCTP acquires its cytokine-like function following dimerization. This study aims to identify the functional domain involved in the cytokine-like function of dimerized TCTP (dTCTP). We performed X-ray crystallographic studies and a deletion mutant of dTCTP which lacks the flexible loop domain. Synthetic peptides corresponding to TCTP domains and antibodies developed against them were examined for the anti-allergic effect. In an OVA-induced airway inflammation mouse model, inhibitory effect of synthetic peptides was evaluated. dTCTP was mediated by dimers between Cys172s of TCTP monomers. Synthetic peptides corresponding to the flexible loop and helix 2 domain of TCTP, and antibodies against them inhibited dTCTP-induced IL-8 release. In particular, the TCTP mutant lacking the flexible loop domain decreased the inflammatory cytokine activity of dTCTP. We conclude that the flexible loop and helix 2 domain of TCTP are the functional domains of dTCTP. They may have the potential to be therapeutic targets in the suppression of allergic reactions induced by dTCTP.
Collapse
Affiliation(s)
- Heewon Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Mi-Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Ji-Sun Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Hyunsoo Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Jimin Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Dong Hae Shin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea.
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
7
|
Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, Kramdi A, Olas J, Mueller-Roeber B, Sokolowska E, Zhang W, Li R, Pitzalis N, Heinlein M, Zhang S, Genovesio A, Colot V, Kragler F. m 5C Methylation Guides Systemic Transport of Messenger RNA over Graft Junctions in Plants. Curr Biol 2019; 29:2465-2476.e5. [PMID: 31327714 DOI: 10.1016/j.cub.2019.06.042] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility. We identified Arabidopsis thaliana mRNAs harboring the modified base 5-methylcytosine (m5C) and found that these are significantly enriched in mRNAs previously described as mobile, moving over graft junctions to distinct plant parts. We confirm this finding with graft-mobile methylated mRNAs TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1 (TCTP1) and HEAT SHOCK COGNATE PROTEIN 70.1 (HSC70.1), whose mRNA transport is diminished in mutants deficient in m5C mRNA methylation. Together, our results point toward an essential role of cytosine methylation in systemic mRNA mobility in plants and that TCTP1 mRNA mobility is required for its signaling function.
Collapse
Affiliation(s)
- Lei Yang
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Valentina Perrera
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Eleftheria Saplaoura
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Federico Apelt
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Mathieu Bahin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Amira Kramdi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Justyna Olas
- Institute of Biochemistry and Biology, University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam, Germany
| | - Ewelina Sokolowska
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Wenna Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany; China Agricultural University, 17 Qinghua East Road, 100080 Haidian, Beijing, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Nicolas Pitzalis
- Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China; Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, China
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, PSL Research University, 75230 Paris, France
| | - Friedrich Kragler
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany.
| |
Collapse
|
8
|
Betsch L, Boltz V, Brioudes F, Pontier G, Girard V, Savarin J, Wipperman B, Chambrier P, Tissot N, Benhamed M, Mollereau B, Raynaud C, Bendahmane M, Szécsi J. TCTP and CSN4 control cell cycle progression and development by regulating CULLIN1 neddylation in plants and animals. PLoS Genet 2019; 15:e1007899. [PMID: 30695029 PMCID: PMC6368322 DOI: 10.1371/journal.pgen.1007899] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 02/08/2019] [Accepted: 12/15/2018] [Indexed: 11/30/2022] Open
Abstract
Translationally Controlled Tumor Protein (TCTP) controls growth by regulating the G1/S transition during cell cycle progression. Our genetic interaction studies show that TCTP fulfills this role by interacting with CSN4, a subunit of the COP9 Signalosome complex, known to influence CULLIN-RING ubiquitin ligases activity by controlling CULLIN (CUL) neddylation status. In agreement with these data, downregulation of CSN4 in Arabidopsis and in tobacco cells leads to delayed G1/S transition comparable to that observed when TCTP is downregulated. Loss-of-function of AtTCTP leads to increased fraction of deneddylated CUL1, suggesting that AtTCTP interferes negatively with COP9 function. Similar defects in cell proliferation and CUL1 neddylation status were observed in Drosophila knockdown for dCSN4 or dTCTP, respectively, demonstrating a conserved mechanism between plants and animals. Together, our data show that CSN4 is the missing factor linking TCTP to the control of cell cycle progression and cell proliferation during organ development and open perspectives towards understanding TCTP's role in organ development and disorders associated with TCTP miss-expression.
Collapse
Affiliation(s)
- Léo Betsch
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Véronique Boltz
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Florian Brioudes
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Garance Pontier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Victor Girard
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Univ Lyon, Lyon, France
| | - Julie Savarin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Barbara Wipperman
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Pierre Chambrier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Nicolas Tissot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Orsay, France
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Univ Lyon, Lyon, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Orsay, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Judit Szécsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| |
Collapse
|