1
|
Sánchez-Lanzas R, Jiménez-Pompa A, Ganuza M. The evolving hematopoietic niche during development. Front Mol Biosci 2024; 11:1488199. [PMID: 39417006 PMCID: PMC11480086 DOI: 10.3389/fmolb.2024.1488199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis. Multiple cellular components support HSC maturation and expansion and modulate their response to environmental and developmental cues. While the adult HSC niche has been extensively studied over the last two decades, the niches present in the major embryonic arteries, FL, FBM and perinatal bone marrow (BM) are poorly described. Recent investigations highlight important differences among FL, FBM and adult BM niches and emphasize the important role that inflammation, microbiota and hormonal factors play regulating HSCs and their niches. We provide a review on our current understanding of these important cellular microenvironments across ontogeny. We mainly focused on mice, as the most widely used research model, and, when possible, include relevant insights from other vertebrates including birds, zebrafish, and human. Developing a comprehensive picture on these processes is critical to understand the earliest origins of childhood leukemia and to achieve multiple goals in regenerative medicine, such as mimicking HSC development in vitro to produce HSCs for broad transplantation purposes in leukemia, following chemotherapy, bone marrow failure, and in HSC-based gene therapy.
Collapse
Affiliation(s)
| | | | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Jeyaraman M, Karthik KS, Choudary D, Jeyaraman N, Nallakumarasamy A, Ramasubramian S. Autologous Bone Marrow Aspiration Concentrate (BMAC) Therapy for Primary Knee Osteoarthritis-An Observational and Dose Escalation Study. Indian J Orthop 2024; 58:1016-1026. [PMID: 39087054 PMCID: PMC11286920 DOI: 10.1007/s43465-024-01194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/24/2024] [Indexed: 08/02/2024]
Abstract
Introduction Anti-inflammatory and anti-fibrotic properties maximize the therapeutic potential of bone marrow aspiration concentrate (BMAC) in osteoarthritis (OA) knee. There is a lack of studies to standardize the treatment procedure to make the studies done across various centers comparable to understand the lacunae better and develop further the deficiency in our understanding of BMAC for OA knee. We aimed to assess the degree of pain relief, functional outcome, and cartilage thickness with different doses of BMAC in primary OA knee. Materials and Methods A single-centered prospective observational study was conducted with 80 patients of OA knee who were divided into 4 groups where group A (n = 20), group B (n = 20), group C (n = 20), and group D (n = 20) received intra-articular 1, 2, 5 million BMAC cells per kg body weight, and intra-articular saline, respectively. All patients were followed up with Visual Analog Scale (VAS), knee Injury and Osteoarthritis Outcome Score (KOOS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and International Knee Documentation Committee (IKDC) scores both pre and post-procedurally at 1, 3, 6, and 12 months follow-up. Results The study found no significant differences in demographics or co-morbidities across four participant groups (A, B, C, D). However, clinical outcomes varied markedly: Groups B and C showed significant improvements in pain perception (VAS scores), knee function, and quality of life (KOOS and WOMAC scores), while Group A showed marginal or non-significant changes, and Group D exhibited no significant improvements. These findings suggest that treatments in Groups B and C reached the Minimal Clinically Important Difference, significantly enhancing patient-reported outcomes. Conclusion A dose of 2 million BMAC cells per kg body weight for knee OA serves as the better regenerative modality of choice in cartilage regeneration. With our dose-escalation study, we would be able to standardize the treatment procedure and enable global comparison of the treatment method across various regions of the world. Graphical Abstract
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077 India
| | - K. S. Karthik
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600095 India
| | - Dinesh Choudary
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600095 India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077 India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077 India
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER) – Karaikal, Puducherry, 609602 India
| | - Swaminathan Ramasubramian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu 600002 India
| |
Collapse
|
3
|
Centeno CJ, Fausel Z, Dodson E, Berger DR, Steinmetz NJ. Percutaneous bone marrow concentrate and platelet products versus exercise therapy for the treatment of rotator cuff tears: a randomized controlled, crossover trial with 2-year follow-up. BMC Musculoskelet Disord 2024; 25:392. [PMID: 38762734 PMCID: PMC11102209 DOI: 10.1186/s12891-024-07519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Surgical repair is recommended for the treatment of high-grade partial and full thickness rotator cuff tears, although evidence shows surgery is not necessarily superior to non-surgical therapy. The purpose of this study was to compare percutaneous orthobiologic treatment to a home exercise therapy program for supraspinatus tears. METHODS In this randomized-controlled, crossover design, participants with a torn supraspinatus tendon received either 'BMC treatment', consisting of a combination of autologous bone marrow concentrate (BMC) and platelet products, or underwent a home exercise therapy program. After three months, patients randomized to exercise therapy could crossover to receive BMC treatment if not satisfied with shoulder progression. Patient-reported outcomes of Numeric Pain Scale (NPS), Disabilities of the Arm, Shoulder, and Hand, (DASH), and a modified Single Assessment Numeric Evaluation (SANE) were collected at 1, 3, 6, 12, and 24 months. Pre- and post-treatment MRI were assessed using the Snyder Classification system. RESULTS Fifty-one patients were enrolled and randomized to the BMC treatment group (n = 34) or the exercise therapy group (n = 17). Significantly greater improvement in median ΔDASH, ΔNPS, and SANE scores were reported by the BMC treatment group compared to the exercise therapy group (-11.7 vs -3.8, P = 0.01; -2.0 vs 0.5, P = 0.004; and 50.0 vs 0.0, P < 0.001; respectively) after three months. Patient-reported outcomes continued to progress through the study's two-year follow-up period without a serious adverse event. Of patients with both pre- and post-treatment MRIs, a majority (73%) showed evidence of healing post-BMC treatment. CONCLUSIONS Patients reported significantly greater changes in function, pain, and overall improvement following BMC treatment compared to exercise therapy for high grade partial and full thickness supraspinatus tears. TRIAL REGISTRATION This protocol was registered with www. CLINICALTRIALS gov (NCT01788683; 11/02/2013).
Collapse
Affiliation(s)
- Christopher J Centeno
- Centeno-Schultz Clinic, Broomfield, CO, 80021, USA
- Regenexx, LLC, Research and Development, Broomfield, CO, 80021, USA
| | - Zachary Fausel
- Regenexx, LLC, Research and Development, Broomfield, CO, 80021, USA
| | - Ehren Dodson
- Regenexx, LLC, Research and Development, Broomfield, CO, 80021, USA.
| | - Dustin R Berger
- Regenexx, LLC, Research and Development, Broomfield, CO, 80021, USA
| | | |
Collapse
|
4
|
Zhai Y, Yang L, Zheng W, Wang Q, Zhu Z, Han F, Hao Y, Ma S, Cheng G. A precise design strategy for a cell-derived extracellular matrix based on CRISPR/Cas9 for regulating neural stem cell function. Biomater Sci 2023; 11:6537-6544. [PMID: 37593879 DOI: 10.1039/d2bm01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The extracellular matrix (ECM) is a natural microenvironment pivotal for stem cell survival, as well as proliferation, differentiation and metastasis, composed of a variety of biological molecular complexes secreted by resident cells in tissues and organs. Heparan sulfate proteoglycan (HSPG) is a type of ECM protein that contains one or more covalently attached heparan sulfate chains. Heparan sulphate chains have high affinity with growth factors, chemokines and morphogens, acting as cytokine-binding domains of great importance in development and normal physiology. Herein, we constructed endogenous HSPG2 overexpression in mouse embryonic fibroblasts based on the CRISPR/Cas9 synergistic activation mediator system and then fabricated a cell-derived HSPG2 functional ECM (ECMHSPG2). The ECMHSPG2 is capable of enriching basic fibroblast growth factor (bFGF), which binds more strongly than the negative control ECM. With a growing bFGF concentration, ECMHSPG2 could better maintain neural stem cell (NSCs) stemness and promote NSC proliferation and differentiation in culture. These findings provide a precise design strategy for producing a specific cell-derived ECM for biomaterials in research and regenerative medicine.
Collapse
Affiliation(s)
- Yuanxin Zhai
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Lingyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Wenlong Zheng
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, Jiangsu 215123, China.
| | - Quanwei Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Zhanchi Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Fang Han
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Sancheng Ma
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, Jiangsu 215123, China.
| | - Guosheng Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China
| |
Collapse
|
5
|
Shi G, Zhang P, Zhang X, Li J, Zheng X, Yan J, Zhang N, Yang H. The spatiotemporal heterogeneity of the biophysical microenvironment during hematopoietic stem cell development: from embryo to adult. Stem Cell Res Ther 2023; 14:251. [PMID: 37705072 PMCID: PMC10500792 DOI: 10.1186/s13287-023-03464-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Hematopoietic stem cells (HSCs) with the ability to self-renew and differentiate are responsible for maintaining the supply of all types of blood cells. The complex and delicate microenvironment surrounding HSCs is called the HSC niche and can provide physical, chemical, and biological stimuli to regulate the survival, maintenance, proliferation, and differentiation of HSCs. Currently, the exploration of the biophysical regulation of HSCs remains in its infancy. There is evidence that HSCs are susceptible to biophysical stimuli, suggesting that the construction of engineered niche biophysical microenvironments is a promising way to regulate the fate of HSCs in vitro and ultimately contribute to clinical applications. In this review, we introduced the spatiotemporal heterogeneous biophysical microenvironment during HSC development, homeostasis, and malignancy. Furthermore, we illustrated how these biophysical cues contribute to HSC behaviors, as well as the possible mechanotransduction mechanisms from the extracellular microenvironment into cells. Comprehending the important functions of these biophysical regulatory factors will provide novel approaches to resolve clinical problems.
Collapse
Affiliation(s)
- Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Xi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jing Li
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jinxiao Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, Shaanxi, China.
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Kawai H, Oo MW, Takabatake K, Tosa I, Soe Y, Eain HS, Sanou S, Fushimi S, Sukegawa S, Nakano K, Takeshi T, Nagatsuka H. Enzyme-Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells. JBMR Plus 2023; 7:e10722. [PMID: 36936364 PMCID: PMC10020919 DOI: 10.1002/jbm4.10722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising approach to curing bone diseases and disorders. In treating genetic bone disorders, MSC therapy is local or systemic transplantation of isolated and in vitro proliferated MSC rather than bone marrow transplantation. Recent evidence showed that bone marrow MSC engraftment to bone regeneration has been controversial in animal and human studies. Here, our modified bone marrow transplantation (BMT) method solved this problem. Like routine BMT, our modified method involves three steps: (i) isolation of bone marrow cells from the donor, (ii) whole-body lethal irradiation to the recipient, and (iii) injection of isolated bone marrow cells into irradiated recipient mice via the tail vein. The significant modification is imported at the bone marrow isolation step. While the bone marrow cells are flushed out from the bone marrow with the medium in routine BMT, we applied the enzymes' (collagenase type 4 and dispase) integrated medium to wash out the bone marrow cells. Then, cells were incubated in enzyme integrated solution at 37°C for 10 minutes. This modification designated BMT as collagenase-integrated BMT (c-BMT). Notably, successful engraftment of bone marrow MSC to the new bone formation, such as osteoblasts and chondrocytes, occurs in c-BMT mice, whereas routine BMT mice do not recruit bone marrow MSC. Indeed, flow cytometry data showed that c-BMT includes a higher proportion of LepR+, CD51+, or RUNX2+ non-hematopoietic cells than BMT. These findings suggested that c-BMT is a time-efficient and more reliable technique that ensures the disaggregation and collection of bone marrow stem cells and engraftment of bone marrow MSC to the recipient. Hence, we proposed that c-BMT might be a promising approach to curing genetic bone disorders. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ikue Tosa
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental MedicineColumbia University Irving Medical CenterNew YorkNYUSA
| | - Yamin Soe
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Sho Sanou
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Oral and Maxillofacial SurgeryKagawa Prefectural Central HospitalTakamatsuJapan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Takarada Takeshi
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
7
|
IGFBP-6 Alters Mesenchymal Stromal Cell Phenotype Driving Dasatinib Resistance in Chronic Myeloid Leukemia. Life (Basel) 2023; 13:life13020259. [PMID: 36836615 PMCID: PMC9960877 DOI: 10.3390/life13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Chronic myeloid leukemia (CML), BCR-ABL1-positive, is classified as a myeloproliferative characterized by Philadelphia chromosome/translocation t(9;22) and proliferating granulocytes. Despite the clinical success of tyrosine kinase inhibitors (TKi) agents in the treatment of CML, most patients have minimal residual disease contained in the bone marrow microenvironment, within which stromal cells assume a pro-inflammatory phenotype that determines their transformation in cancer-associated fibroblasts (CAF) which, in turn can play a fundamental role in resistance to therapy. Insulin-like Growth Factor Binding Protein-6 (IGFBP-6) is expressed during tumor development, and is involved in immune-escape and inflammation as well, providing a potential additional target for CML therapy. Here, we aimed at investigating the role of IGFBP-6/SHH/TLR4 axis in TKi response. We used a CML cell line, LAMA84-s, and healthy bone marrow stromal cells, HS-5, in mono- or co-culture. The two cell lines were treated with Dasatinib and/or IGFBP-6, and the expression of inflammatory markers was tested by qRT-PCR; furthermore, expression of IGFBP-6, TLR4 and Gli1 were evaluated by Western blot analysis and immumocytochemistry. The results showed that both co-culture and Dasatinib exposure induce inflammation in stromal and cancer cells so that they modulate the expression of TLR4, and these effects were more marked following IGFBP-6 pre-treatment suggesting that this molecule may confer resistance through the inflammatory processes. This phenomenon was coupled with sonic hedgehog (SHH) signaling. Indeed, our data also demonstrate that HS-5 treatment with PMO (an inducer of SHH) induces significant modulation of TLR4 and overexpression of IGFPB-6 suggesting that the two pathways are interconnected with each other and with the TLR-4 pathway. Finally, we demonstrated that pretreatment with IGFBP-6 and/or PMO restored LAMA-84 cell viability after treatment with Dasatinib, suggesting that both IGFBP-6 and SHH are involved in the resistance mechanisms induced by the modulation of TLR-4, thus indicating that the two pathways may be considered as potential therapeutic targets.
Collapse
|
8
|
Sánchez‐Lanzas R, Kalampalika F, Ganuza M. Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. Br J Haematol 2022; 199:647-664. [PMID: 35837798 PMCID: PMC9796334 DOI: 10.1111/bjh.18355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
Our view on the role and composition of the bone marrow (BM) has dramatically changed over time from a simple nutrient for the bone to a highly complex multicellular tissue that sustains haematopoiesis. Among these cells, multipotent haematopoietic stem cells (HSCs), which are predominantly quiescent, possess unique self-renewal capacity and multilineage differentiation potential and replenish all blood lineages to maintain lifelong haematopoiesis. Adult HSCs reside in specialised BM niches, which support their functions. Much effort has been put into deciphering HSC niches due to their potential clinical relevance. Multiple cell types have been implicated as HSC-niche components including sinusoidal endothelium, perivascular stromal cells, macrophages, megakaryocytes, osteoblasts and sympathetic nerves. In this review we provide a historical perspective on how technical advances, from genetic mouse models to imaging and high-throughput sequencing techniques, are unveiling the plethora of molecular cues and cellular components that shape the niche and regulate HSC functions.
Collapse
Affiliation(s)
- Raúl Sánchez‐Lanzas
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Foteini Kalampalika
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Miguel Ganuza
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
9
|
Modulation of SIRT6 activity acts as an emerging therapeutic implication for pathological disorders in the skeletal system. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Zhang X, Grimes HL. Why Single-Cell Sequencing Has Promise in MDS. Front Oncol 2021; 11:769753. [PMID: 34926276 PMCID: PMC8675176 DOI: 10.3389/fonc.2021.769753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases characterized by ineffective hematopoiesis. The risk of MDS is associated with aging and the accumulation of somatic mutations in hematopoietic stem cells and progenitors (HSPC). While advances in DNA sequencing in the past decade unveiled clonal selection driven by mutations in MDS, it is unclear at which stage the HSPCs are trapped or what prevents mature cells output. Single-cell-sequencing techniques in recent years have revolutionized our understanding of normal hematopoiesis by identifying the transitional cell states between classical hematopoietic hierarchy stages, and most importantly the biological activities behind cell differentiation and lineage commitment. Emerging studies have adapted these powerful tools to investigate normal hematopoiesis as well as the clonal heterogeneity in myeloid malignancies and provide a progressive description of disease pathogenesis. This review summarizes the potential of growing single-cell-sequencing techniques, the evolving efforts to elucidate hematopoiesis in physiological conditions and MDS at single-cell resolution, and discuss how they may fill the gaps in our current understanding of MDS biology.
Collapse
Affiliation(s)
- Xuan Zhang
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - H. Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
11
|
Hyperleukocytic Acute Leukemia Circulating Exosomes Regulate HSCs and BM-MSCs. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9457070. [PMID: 34840706 PMCID: PMC8626181 DOI: 10.1155/2021/9457070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
Hyperleukocytic acute leukemia (HLAL) circulating exosomes are delivered to hematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BM-MSCs), thereby inhibiting the normal hematopoietic process. In this paper, we have evaluated and explored the effects of miR-125b, which is carried by HLAL-derived exosomes, on the hematopoietic function of HSCs and BM-MSCs. For this purpose, we have isolated exosomes from the peripheral blood of HLAL patients and healthy volunteers. Then, we measured the level of miR-125b in exosomes cocultured exosomes with HSCs and BM-MSCs. Moreover, we have used miR-125b inhibitors/mimic for intervention and then measured miR-125b expression and colony forming unit (CFU). Apart from it, HSC and BM-MSC hematopoietic-related factors α-globulin, γ-globulin, CSF2, CRTX4 and CXCL12, SCF, IGF1, and DKK1 expression were measured. Evaluation of the miR-125b and BAK1 targeting relationship, level of miR-125b, and expression of hematopoietic-related genes was performed after patients are treated with miR-125b mimic and si-BAK1. We have observed that miR-125b was upregulated in HLAL-derived exosomes. After HLAL-exosome acts on HSCs, the level of miR-125b is upregulated, reducing CFU and affecting the expression of α-globulin, γ-globulin, CSF2, and CRCX4. For BM-MSCs, after the action of HLAL-exo, the level of miR-125b is upregulated and affected the expression of CXCL12, SCF, IGF1, and DKK1. Exosomes derived from HLAL carry miR-125b to target and regulate BAK1. Further study confirmed that miR-125b and BAK1mimic reduced the expression of miR-125b and reversed the effect of miR-125b mimic on hematopoietic-related genes. These results demonstrated that HLAL-derived exosomes carrying miR-125b inhibit the hematopoietic differentiation of HSC and hematopoietic support function of BM-MSC through BAK1.
Collapse
|
12
|
Mitochondria and the Tumour Microenvironment in Blood Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:181-203. [PMID: 34664240 DOI: 10.1007/978-3-030-73119-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The bone marrow (BM) is a complex organ located within the cavities of bones. The main function of the BM is to produce all the blood cells required for a normal healthy blood system. As with any major organ, many diseases can arise from errors in bone marrow function, including non-malignant disorders such as anaemia and malignant disorders such as leukaemias. This article will explore the role of the bone marrow, in normal and diseased haematopoiesis, with an emphasis on the requirement for intercellular mitochondrial transfer in leukaemia.
Collapse
|
13
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
14
|
Geskovski N, Matevska-Geshkovska N, Dimchevska Sazdovska S, Glavas Dodov M, Mladenovska K, Goracinova K. The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:375-401. [PMID: 33981532 PMCID: PMC8093552 DOI: 10.3762/bjnano.12.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 05/21/2023]
Abstract
Nanomedicine has emerged as a novel cancer treatment and diagnostic modality, whose design constantly evolves towards increasing the safety and efficacy of the chemotherapeutic and diagnostic protocols. Molecular diagnostics, which create a great amount of data related to the unique molecular signatures of each tumor subtype, have emerged as an important tool for detailed profiling of tumors. They provide an opportunity to develop targeting agents for early detection and diagnosis, and to select the most effective combinatorial treatment options. Alongside, the design of the nanoscale carriers needs to cope with novel trends of molecular screening. Also, multiple targeting ligands needed for robust and specific interactions with the targeted cell populations have to be introduced, which should result in substantial improvements in safety and efficacy of the cancer treatment. This article will focus on novel design strategies for nanoscale drug delivery systems, based on the unique molecular signatures of myeloid leukemia and EGFR/CD44-positive solid tumors, and the impact of novel discoveries in molecular tumor profiles on future chemotherapeutic protocols.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Nadica Matevska-Geshkovska
- Center for Pharmaceutical Biomolecular Analyses, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- Department of Nanobiotechnology, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Kristina Mladenovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, Skopje, North Macedonia
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
15
|
Human Acquired Aplastic Anemia Patients' Bone-Marrow-Derived Mesenchymal Stem Cells Are Not Influenced by Hematopoietic Compartment and Maintain Stemness and Immune Properties. Anemia 2021; 2021:6678067. [PMID: 34012684 PMCID: PMC8105116 DOI: 10.1155/2021/6678067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
Methods In the current study, we investigated the morphological differences, proliferation capacity, population doubling time (PDT), surface marker profiling, trilineage differentiation potential, and immunosuppressive ability of BM Mesenchymal Stem Cells (BM-MSCs) from untreated aAA patients and in the same number of age- and gender-matched controls. Results We observed similar morphology, proliferation capacity, phenotype, trilineage differentiation potential, and immunomodulatory properties of BM-MSCs in aAA patients and control subjects. Conclusion Our results confirm that the basic and immunosuppressive properties of BM-MSCs from aAA patients do not differ from normal BM-MSCs. Our data suggest that BM-MSCs from aAA patients might not be involved in disease pathogenesis. However, owing to a smaller number of samples, it is not conclusive, and future studies with more exhaustive investigation at transcriptome level are warranted.
Collapse
|
16
|
Wen X, Zhang J, Yang W, Nie X, Gui R, Shan D, Huang R, Deng H. CircRNA-016901 silencing attenuates irradiation-induced injury in bone mesenchymal stem cells via regulating the miR-1249-5p/HIPK2 axis. Exp Ther Med 2021; 21:355. [PMID: 33732328 PMCID: PMC7903417 DOI: 10.3892/etm.2021.9786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, bone marrow transplantation remains the basic treatment for various hematological tumors and irradiation is one of the most important pretreatment methods. However, irradiation pretreatment may result in damage to bone mesenchymal stem cells (BMSCs). The present study aimed to investigate the effect of circular RNA-016901 (circ-016901) on the injury of irradiation-induced BMSCs and the underlying mechanism. The expression levels of circ-016901, microRNA-1249-5p (miR-1249-5p) and homeodomain interacting protein kinase 2 (HIPK2) in irradiation-induced mouse BMSCs at various irradiation doses were detected via reverse transcription-quantitative PCR (RT-qPCR). The effect of circ-016901 on cell proliferation was examined using Cell Counting Kit-8 assays following silencing or overexpression of circ-016901. Cell apoptosis was detected by flow cytometry and caspase-3/7 activity. The expression of autophagy-related markers, including Beclin-1 and LC3-II/I, was detected at the mRNA and protein levels by RT-qPCR and western blotting, respectively. Irradiation treatment upregulated the expression of circ-016901 and HIPK2 and downregulated miR-1249-5p expression. The expression levels of LC3-II/I and Beclin-1 in BMSCs were downregulated in a dose-dependent manner. Silencing of circ-016901 promoted proliferation of irradiation-induced BMSCs and attenuated irradiation-induced apoptosis. Moreover, silencing of circ-016901 elevated the expressions of LC3-II/I and Beclin-1 in irradiation-induced BMSCs. Similar results were obtained with miR-1249-5p overexpression and HIPK2 silencing. These results demonstrated that circ-016901 silencing attenuated injury in irradiation-induced mouse BMSCs by regulating the miR-1249-5p/HIPK2 axis, providing a novel target for future research on the mechanism of radiation resistance in BMSCs.
Collapse
Affiliation(s)
- Xianhui Wen
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Department of Clinical Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Junhua Zhang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenjuan Yang
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Dongyong Shan
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongyu Deng
- Department of Laboratory Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
17
|
Huang C, Yang D, Ye GW, Powell CA, Guo P. Vascular Notch Signaling in Stress Hematopoiesis. Front Cell Dev Biol 2021; 8:606448. [PMID: 33585446 PMCID: PMC7873850 DOI: 10.3389/fcell.2020.606448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Canonical Notch signaling is one of the most conserved signaling cascades. It regulates cell proliferation, cell differentiation, and cell fate maintenance in a variety of biological systems during development and cancer (Fortini, 2009; Kopan and Ilagan, 2009; Andersson et al., 2011; Ntziachristos et al., 2014). For the hematopoietic system, during embryonic development, Notch1 is essential for the emergence of hematopoietic stem cells (HSCs) at the aorta-gornado-mesonephro regions of the dorsal aorta. At adult stage, Notch receptors and Notch targets are expressed at different levels in diverse hematopoietic cell types and influence lineage choices. For example, Notch specifies T cell lineage over B cells. However, there has been a long-lasting debate on whether Notch signaling is required for the maintenance of adult HSCs, utilizing transgenic animals inactivating different components of the Notch signaling pathway in HSCs or niche cells. The aims of the current mini-review are to summarize the evidence that disapproves or supports such hypothesis and point at imperative questions waiting to be addressed; hence, some of the seemingly contradictory findings could be reconciled. We need to better delineate the Notch signaling events using biochemical assays to identify direct Notch targets within HSCs or niche cells in specific biological context. More importantly, we call for more elaborate studies that pertain to whether niche cell type (vascular endothelial cells or other stromal cell)-specific Notch ligands regulate the differentiation of T cells in solid tumors during the progression of T-lymphoblastic lymphoma (T-ALL) or chronic myelomonocytic leukemia (CMML). We believe that the investigation of vascular endothelial cells' or other stromal cell types' interaction with hematopoietic cells during homeostasis and stress can offer insights toward specific and effective Notch-related therapeutics.
Collapse
Affiliation(s)
- Can Huang
- McCann Health Medical Communications, New York, NY, United States
| | - Dawei Yang
- Zhongshan Hospital Fudan University, Zhongshan Hospital Institute for Clinical Science, Shanghai Medical College, Fudan University; Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Disease, Shanghai, China.,Division of Pulmonary, Critical Care, and Sleep Medicine, Fibrosis Research Center, Icahn School of Medicine at Mount Sinai, Mount Sinai-National Jewish Respiratory Institute, New York, NY, United States
| | - George W Ye
- Division of Pulmonary, Critical Care, and Sleep Medicine, Fibrosis Research Center, Icahn School of Medicine at Mount Sinai, Mount Sinai-National Jewish Respiratory Institute, New York, NY, United States
| | - Charles A Powell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Fibrosis Research Center, Icahn School of Medicine at Mount Sinai, Mount Sinai-National Jewish Respiratory Institute, New York, NY, United States
| | - Peipei Guo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Fibrosis Research Center, Icahn School of Medicine at Mount Sinai, Mount Sinai-National Jewish Respiratory Institute, New York, NY, United States
| |
Collapse
|
18
|
Kumar RS, Goyal N. Estrogens as regulator of hematopoietic stem cell, immune cells and bone biology. Life Sci 2021; 269:119091. [PMID: 33476629 DOI: 10.1016/j.lfs.2021.119091] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Hematopoietic stem cells provide continuous supply of all the immune cells, through proliferation and differentiation decisions. These decisions are controlled by local bone marrow environment as well as by long-range signals for example endocrine system. Sex dependent differential immunological responses have been described under homeostasis and disease conditions. Females show higher longevity than male counterpart that seems to depend on major female sex hormone, estrogen. There are four estrogens - Estrone (E1), estradiol (E2), Estriol (E3) and Estetrol (E4) that spatially and temporarily present during different female reproductive phases. In this review, we discussed recent updates describing the effects of estrogen on HSC, immune cells and in bone biology. Estradiol (E2) being a major/abundant estrogen is extensively investigated, while effects of other estrogens E1, E3 and E4 are started to unravel recently. Furthermore, clinical effect of estrogen as hormone therapy is discussed in HSC and immune cells perspectives. The data presented in this review is compiled by searches of PubMed, database of American Cancer Society (ACS). We have included article from September 1994 to March 2020 as covering all article in chronological order is not fissile so we included relevant article with substantial information in this specific area of research by using the search term (alone or in combination) estrogen, hematopoietic stem cell, immune cells, gender difference, estrone, estriol, estetrol, therapeutic application, pregnancy, effect on bone.
Collapse
Affiliation(s)
- Rupali Sani Kumar
- CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| | - Neena Goyal
- CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
19
|
Yuan S, Sun G, Zhang Y, Dong F, Cheng H, Cheng T. Understanding the "SMART" features of hematopoietic stem cells and beyond. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2030-2044. [PMID: 34341896 PMCID: PMC8328818 DOI: 10.1007/s11427-021-1961-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Since the huge success of bone marrow transplantation technology in clinical practice, hematopoietic stem cells (HSCs) have become the gold standard for defining the properties of adult stem cells (ASCs). Here, we describe the "self-renewal, multi-lineage differentiation, apoptosis, rest, and trafficking" or "SMART" model, which has been developed based on data derived from studies of HSCs as the most well-characterized stem cell type. Given the potential therapeutic applications of ASCs, we delineate the key characteristics of HSCs using this model and speculate on the physiological relevance of stem cells identified in other tissues. Great strides are being made in understanding the biology of ASCs, and efforts are now underway to develop safe and effective ASC-based therapies in this emerging area.
Collapse
Affiliation(s)
- Shiru Yuan
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Guohuan Sun
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yawen Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Fang Dong
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Hui Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Tao Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
20
|
Santos Rosalem G, Gonzáles Torres LA, de Las Casas EB, Mathias FAS, Ruiz JC, Carvalho MGR. Microfluidics and organ-on-a-chip technologies: A systematic review of the methods used to mimic bone marrow. PLoS One 2020; 15:e0243840. [PMID: 33306749 PMCID: PMC7732112 DOI: 10.1371/journal.pone.0243840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022] Open
Abstract
Bone marrow (BM) is an organ responsible for crucial processes in living organs, e. g., hematopoiesis. In recent years, Organ-on-a-Chip (OoC) devices have been used to satisfy the need for in vitro systems that better mimic the phenomena occurring in the BM microenvironment. Given the growing interest in these systems and the diversity of developed devices, an integrative systematic literature review is required. We have performed this review, following the PRISMA method aiming to identify the main characteristics and assess the effectiveness of the devices that were developed to represent the BM. A search was performed in the Scopus, PubMed, Web of Science and Science Direct databases using the keywords (("bone marrow" OR "hematopoietic stem cells" OR "haematopoietic stem cells") AND ("organ in a" OR "lab on a chip" OR "microfluidic" OR "microfluidic*" OR ("bioreactor" AND "microfluidic*"))). Original research articles published between 2009 and 2020 were included in the review, giving a total of 21 papers. The analysis of these papers showed that their main purpose was to study BM cells biology, mimic BM niches, model pathological BM, and run drug assays. Regarding the fabrication protocols, we have observed that polydimethylsiloxane (PDMS) material and soft lithography method were the most commonly used. To reproduce the microenvironment of BM, most devices used the type I collagen and alginate. Peristaltic and syringe pumps were mostly used for device perfusion. Regarding the advantages compared to conventional methods, there were identified three groups of OoC devices: perfused 3D BM; co-cultured 3D BM; and perfused co-cultured 3D BM. Cellular behavior and mimicking their processes and responses were the mostly commonly studied parameters. The results have demonstrated the effectiveness of OoC devices for research purposes compared to conventional cell cultures. Furthermore, the devices have a wide range of applicability and the potential to be explored.
Collapse
Affiliation(s)
- Gabriel Santos Rosalem
- Mechanical Engineering Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Jeronimo Conceição Ruiz
- Biosystems and Genomics Group, René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
- Graduate Program in Computational and Systems Biology of the Institute Oswaldo Cruz (PGBCS/IOC/Fiocruz), Rio de Janeiro, Brazil
| | | |
Collapse
|
21
|
Jiang Y, Xu Z, Ma N, Yin L, Hao C, Li J. Effects of signaling pathway inhibitors on hematopoietic stem cells. Mol Med Rep 2020; 23:9. [PMID: 33179097 PMCID: PMC7687261 DOI: 10.3892/mmr.2020.11647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
While there are numerous small molecule inhibitory drugs available for a wide range of signalling pathways, at present, they are generally not used in combination in clinical settings. Previous reports have reported that the effects of glycogen synthase kinase (GSK)3β, p38MAPK, mTOR and histone deacetylase signaling combined together to suppress the stem-like nature of hematopoietic stem cells (HSCs), driving these cells to differentiate, cease proliferating and thereby impairing normal hematopoietic functionality. The present study aimed to determine the effect of HDACs, mTOR, GSK-3β and p38MAPK inhibitor combinations on the efficient expansion of HSCs using flow cytometry. Moreover, it specifically aimed to determine how inhibitors of the GSK3β signaling pathway, in combination with inhibitors of P38MAPK and mTOR signaling or histone deacetylase (HDAC) inhibitors, could affect HSC expansion, with the goal of identifying novel combination strategies useful for the expansion of HSCs. The results indicated that p38MAPK and/or GSK3β inhibitors increased Lin− cell and Lin−Sca-1+c-kit+ (LSK) cell numbers in vitro. Taken together, these results suggested that a combination of p38MAPK and GSK3β signaling may regulate HSC differentiation in vitro. These findings further indicated that the suppression of p38MAPK and/or GSK3β signalling may modulate HSC differentiation and self-renewal to enhance HSC expansion.
Collapse
Affiliation(s)
- Yuyu Jiang
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Zhaofeng Xu
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Na Ma
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Lizhi Yin
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Caiqin Hao
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Jing Li
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| |
Collapse
|
22
|
Grenier‐Pleau I, Tyryshkin K, Le TD, Rudan J, Bonneil E, Thibault P, Zeng K, Lässer C, Mallinson D, Lamprou D, Hui J, Postovit L, Chan EYW, Abraham SA. Blood extracellular vesicles from healthy individuals regulate hematopoietic stem cells as humans age. Aging Cell 2020; 19:e13245. [PMID: 33029858 PMCID: PMC7681054 DOI: 10.1111/acel.13245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cells (HSCs) maintain balanced blood cell production in a process called hematopoiesis. As humans age, their HSCs acquire mutations that allow some HSCs to disproportionately contribute to normal blood production. This process, known as age‐related clonal hematopoiesis, predisposes certain individuals to cancer, cardiovascular and pulmonary pathologies. There is a growing body of evidence suggesting that factors outside cells, such as extracellular vesicles (EVs), contribute to the disruption of stem cell homeostasis during aging. We have characterized blood EVs from humans and determined that they are remarkably consistent with respect to size, concentration, and total protein content, across healthy subjects aged 20–85 years. When analyzing EV protein composition from mass spectroscopy data, our machine‐learning‐based algorithms are able to distinguish EV proteins based on age and suggest that different cell types dominantly produce EVs released into the blood, which change over time. Importantly, our data show blood EVs from middle and older age groups (>40 years) significantly stimulate HSCs in contrast to untreated and EVs sourced from young subjects. Our study establishes for the first time that although EV particle size, concentration, and total protein content remain relatively consistent over an adult lifespan in humans, EV content evolves during aging and potentially influences HSC regulation.
Collapse
Affiliation(s)
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine Queen's University Kingston ON Canada
| | - Tri Dung Le
- Department of Biomedical and Molecular Sciences Queen's University Kingston ON Canada
| | - John Rudan
- Department of Surgery Kingston Health Sciences Centre Queen's University Kingston ON Canada
| | - Eric Bonneil
- Proteomics and Bioanalytical Mass Spectrometry Research Unit Institute for Research in Immunology and Cancer of the Université de Montréal Montréal QC Canada
| | - Pierre Thibault
- Proteomics and Bioanalytical Mass Spectrometry Research Unit Institute for Research in Immunology and Cancer of the Université de Montréal Montréal QC Canada
| | - Karen Zeng
- Department of Biomedical and Molecular Sciences Queen's University Kingston ON Canada
| | - Cecilia Lässer
- Krefting Research Centre Institute of Medicine at Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - David Mallinson
- Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow UK
| | | | - Jialui Hui
- Department of Oncology University of Alberta Edmonton AB Canada
| | - Lynne‐Marie Postovit
- Department of Biomedical and Molecular Sciences Queen's University Kingston ON Canada
- Department of Oncology University of Alberta Edmonton AB Canada
| | - Edmond Y. W. Chan
- Department of Biomedical and Molecular Sciences Queen's University Kingston ON Canada
| | - Sheela A. Abraham
- Department of Biomedical and Molecular Sciences Queen's University Kingston ON Canada
| |
Collapse
|
23
|
Chattopadhyay S, Law S. Morphogen signaling by Wnt/β-catenin pathway and microenvironmental alteration in the bone marrow of agricultural pesticide exposure-induced experimental aplastic anemia. J Biochem Mol Toxicol 2020; 34:e22523. [PMID: 32410290 DOI: 10.1002/jbt.22523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/14/2020] [Accepted: 04/27/2020] [Indexed: 11/08/2022]
Abstract
The etiologic link between pesticide toxicity and aplastic anemia in agricultural and agro-industrial setting has been frequently reported in epidemiological studies conducted worldwide. Chronic pesticide toxicity causes long-term bone marrow injury and perturbs the normal hematopoietic physiology, including survival of hematopoietic progenitor cells and bone marrow's blood cell forming ability. The purpose of this study is to understand the mechanism of pesticide toxicity-mediated bone marrow aplasia by studying Wnt/β-catenin signaling pathway and microenvironmental stromal components. An agricultural pesticide formulation comprising of cypermethrin, chlorpyriphos, and hexaconazole was used to induce bone marrow aplasia in inbred Swiss albino mice. Marrow failure followed by the onset of aplastic condition was confirmed by pancytopenic peripheral blood and hypocellular bone marrow filled with adipocytes. Significant downregulation of canonical Wnt/β-catenin signaling was identified by expression analysis of Wnt3a, β-catenin, and telomerase reverse transcriptase in the aplastic bone marrow hematopoietic stem/progenitor compartment. Along with signaling deregulation, disruption in both the osteoblastic and vascular stromal components was observed in the pesticide-exposed bone marrow microenvironment when compared to control. In this study, we tried to establish the correlation among disease pathophysiology, signaling deregulation in the hematopoietic cells, and bone marrow microenvironmental alteration during environmental exposure-mediated aplastic hematopoietic catastrophe, which may shed light on the unexplored mechanistic perspective of this fatal blood disease.
Collapse
Affiliation(s)
- Sukalpa Chattopadhyay
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
24
|
Tu J, Liu X, Jia H, Reilly J, Yu S, Cai C, Liu F, Lv Y, Huang Y, Lu Z, Han S, Jiang T, Shu X, Wu X, Tang Z, Lu Q, Liu M. The chromatin remodeler Brg1 is required for formation and maintenance of hematopoietic stem cells. FASEB J 2020; 34:11997-12008. [PMID: 32738093 DOI: 10.1096/fj.201903168rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 11/11/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) have the ability to self-renew and differentiate into various blood cells, thus playing an important role in maintenance of lifelong hematopoiesis. Brahma-related gene 1 (BRG1), which acts as the ATP subunit of mammalian SWI-SNF-related chromatin remodeling complexes, is involved in human acute myeloid leukemia and highly expresses in short-term HSPCs. But its role and regulatory mechanism for HSPC development have not yet been well established. Here, we generated a brg1 knockout zebrafish model using TALEN technology. We found that in brg1-/- embryo, the primitive hematopoiesis remained well, while definitive hematopoiesis formation was significantly impaired. The number of hemogenic endothelial cells was decreased, further affecting definitive hematopoiesis with reduced myeloid and lymphoid cells. During embryogenesis, the nitric oxide (NO) microenvironment in brg1-/- embryo was seriously damaged and the reduction of HSPCs could be partially rescued by a NO donor. Chromatin immunoprecipitation (ChIP) assays showed that BRG1 could bind to the promoter of KLF2 and trigger its transcriptional activity of NO synthase. Our findings show that Brg1 promotes klf2a expression in hemogenic endothelium and highlight a novel mechanism for HSPC formation and maintenance.
Collapse
Affiliation(s)
- Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chen Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhaojing Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shanshan Han
- Medical College, China Three Gorges University, Yichang, China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
25
|
Deutsch JL, Heath JL. MLLT10 in benign and malignant hematopoiesis. Exp Hematol 2020; 87:1-12. [PMID: 32569758 DOI: 10.1016/j.exphem.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
Abstract
Non-random chromosomal translocations involving the putative transcription factor Mixed Lineage Leukemia Translocated to 10 (MLLT10, also known as AF10) are commonly observed in both acute myeloid and lymphoid leukemias and are indicative of a poor prognosis. Despite the well-described actions of oncogenic MLLT10 fusion proteins, the role of wild-type MLLT10 in hematopoiesis is not well characterized. The protein structure and several interacting partners have been described and provide indications as to the potential functions of MLLT10. This review examines these aspects of MLLT10, contextualizing its function in benign and malignant hematopoiesis.
Collapse
Affiliation(s)
- Jamie L Deutsch
- Department of Pediatrics, University of Vermont, Burlington, VT
| | - Jessica L Heath
- Department of Pediatrics, University of Vermont, Burlington, VT; Department of Biochemistry, University of Vermont, Burlington, VT 05405; University of Vermont Cancer Center, Burlington, VT.
| |
Collapse
|
26
|
Kim GB, Seo MS, Park WT, Lee GW. Bone Marrow Aspirate Concentrate: Its Uses in Osteoarthritis. Int J Mol Sci 2020; 21:E3224. [PMID: 32370163 PMCID: PMC7247342 DOI: 10.3390/ijms21093224] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022] Open
Abstract
Human bone marrow (BM) is a kind of source of mesenchymal stem cells (MSCs) as well as growth factors and cytokines that may aid anti-inflammation and regeneration for various tissues, including cartilage and bone. However, since MSCs in BM usually occupy only a small fraction (0.001%) of nucleated cells, bone marrow aspirate concentrate (BMAC) for cartilage pathologies, such as cartilage degeneration, defect, and osteoarthritis, have gained considerable recognition in the last few years due to its potential benefits including disease modifying and regenerative capacity. Although further research with well-designed, randomized, controlled clinical trials is needed to elucidate the exact mechanism of BMAC, this may have the most noteworthy effect in patients with osteoarthritis. The purpose of this article is to review the general characteristics of BMAC, including its constituent, action mechanisms, and related issues. Moreover, this article aims to summarize the clinical outcomes of BMAC reported to date.
Collapse
Affiliation(s)
- Gi Beom Kim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (W.T.P.)
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Wook Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (W.T.P.)
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (W.T.P.)
| |
Collapse
|
27
|
Simantirakis E, Tsironis I, Vassilopoulos G. FV Vectors as Alternative Gene Vehicles for Gene Transfer in HSCs. Viruses 2020; 12:E332. [PMID: 32204324 PMCID: PMC7150843 DOI: 10.3390/v12030332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/08/2020] [Accepted: 03/15/2020] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic Stem Cells (HSCs) are a unique population of cells, capable of reconstituting the blood system of an organism through orchestrated self-renewal and differentiation. They play a pivotal role in stem cell therapies, both autologous and allogeneic. In the field of gene and cell therapy, HSCs, genetically modified or otherwise, are used to alleviate or correct a genetic defect. In this concise review, we discuss the use of SFVpsc_huHSRV.13, formerly known as Prototype Foamy Viral (PFV or FV) vectors, as vehicles for gene delivery in HSCs. We present the properties of the FV vectors that make them ideal for HSC delivery vehicles, we review their record in HSC gene marking studies and their potential as therapeutic vectors for monogenic disorders in preclinical animal models. FVs are a safe and efficient tool for delivering genes in HSCs compared to other retroviral gene delivery systems. Novel technological advancements in their production and purification in closed systems, have allowed their production under cGMP compliant conditions. It may only be a matter of time before they find their way into the clinic.
Collapse
Affiliation(s)
- Emmanouil Simantirakis
- Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, Division of Genetics and Gene Therapy, Basic Research II, 11527 Athens, Greece; (E.S.); (I.T.)
| | - Ioannis Tsironis
- Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, Division of Genetics and Gene Therapy, Basic Research II, 11527 Athens, Greece; (E.S.); (I.T.)
| | - George Vassilopoulos
- Gene Therapy Lab, Biomedical Research Foundation of the Academy of Athens, Division of Genetics and Gene Therapy, Basic Research II, 11527 Athens, Greece; (E.S.); (I.T.)
- Division of Hematology, University of Thessaly Medical School, 41500 Larissa, Greece
| |
Collapse
|
28
|
Baptista LS. Adipose stromal/stem cells in regenerative medicine: Potentials and limitations. World J Stem Cells 2020; 12:1-7. [PMID: 32110271 PMCID: PMC7031762 DOI: 10.4252/wjsc.v12.i1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
This article presents the stem and progenitor cells from subcutaneous adipose tissue, briefly comparing them with their bone marrow counterparts, and discussing their potential for use in regenerative medicine. Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells (MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels. Pre-adipocytes are present both in the stromal-vascular fraction (SVF; freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells (ASCs; in vitro expanded cells), and have an active role on the chronic inflammation environment established in obesity, likely due their monocytic-macrophage lineage identity. The SVF and ASCs have been explored in cell therapy protocols with relative success, given their paracrine and immunomodulatory effects. Importantly, the widely explored multipotentiality of ASCs has direct application in bone, cartilage and adipose tissue engineering. The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue, revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering. Innovative cell culture techniques, in particular 3D scaffold-free cultures such as spheroids, are now available to increase the potential for regeneration and differentiation of mesenchymal lineages. Spheroids are being explored not only as a model for cell differentiation, but also as powerful 3D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.
Collapse
Affiliation(s)
- Leandra Santos Baptista
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, Duque de Caxias, RJ 25250-020, Brazil
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
| |
Collapse
|
29
|
Cheng L, Liu Z, Yan S, Chen Z, Zou L, Shi Z. The role of osteoclasts in osteoinduction triggered by calcium phosphate biomaterials in mice. Biomed Mater Eng 2019; 30:287-296. [DOI: 10.3233/bme-191052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Lucas D. Leukocyte Trafficking and Regulation of Murine Hematopoietic Stem Cells and Their Niches. Front Immunol 2019; 10:387. [PMID: 30891044 PMCID: PMC6412148 DOI: 10.3389/fimmu.2019.00387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/14/2019] [Indexed: 12/28/2022] Open
Abstract
Hematopoietic stem cells (HSC) are the most powerful type of adult stem cell found in the body. Hematopoietic stem cells are multipotent and capable of giving rise to all other types of hematopoietic cells found in the organism. A single HSC is capable of regenerating a functional hematopoietic system when transplanted into a recipient. Hematopoietic stem cells reside in the bone marrow in specific multicellular structures called niches. These niches are indispensable for maintaining and regulating HSC numbers and function. It has become increasingly clearer that HSC and their niches can also be regulated by migrating leukocytes. Here we will discuss the composition of murine bone marrow niches and how HSC and their niches are regulated by different types of leukocytes that traffic between the periphery and the niche. Unless otherwise indicated all the studies discussed below were performed in mouse models.
Collapse
Affiliation(s)
- Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
31
|
Guerra DAP, Paiva AE, Sena IFG, Azevedo PO, Silva WN, Mintz A, Birbrair A. Targeting glioblastoma-derived pericytes improves chemotherapeutic outcome. Angiogenesis 2018; 21:667-675. [PMID: 29761249 PMCID: PMC6238207 DOI: 10.1007/s10456-018-9621-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
Glioblastoma is the most common malignant brain cancer in adults, with poor prognosis. The blood-brain barrier limits the arrival of several promising anti-glioblastoma drugs, and restricts the design of efficient therapies. Recently, by using state-of-the-art technologies, including thymidine kinase targeting system in combination with glioblastoma xenograft mouse models, it was revealed that targeting glioblastoma-derived pericytes improves chemotherapy efficiency. Strikingly, ibrutinib treatment enhances chemotherapeutic effectiveness, by targeting pericytes, improving blood-brain barrier permeability, and prolonging survival. This study identifies glioblastoma-derived pericyte as a novel target in the brain tumor microenvironment during carcinogenesis. Here, we summarize and evaluate recent advances in the understanding of pericyte's role in the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Daniel A P Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
32
|
Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:15-40. [PMID: 29882209 DOI: 10.1007/5584_2018_217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Silva WN, Prazeres PHDM, Paiva AE, Lousado L, Turquetti AOM, Barreto RSN, de Alvarenga EC, Miglino MA, Gonçalves R, Mintz A, Birbrair A. Macrophage-derived GPNMB accelerates skin healing. Exp Dermatol 2018; 27:630-635. [PMID: 29505115 PMCID: PMC6013359 DOI: 10.1111/exd.13524] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
Abstract
Healing is a vital response important for the re-establishment of the skin integrity following injury. Delayed or aberrant dermal wound healing leads to morbidity in patients. The development of therapies to improve dermal healing would be useful. Currently, the design of efficient treatments is stalled by the lack of detailed knowledge about the cellular and molecular mechanisms involved in wound healing. Recently, using state-of-the-art technologies, it was revealed that macrophages signal via GPNMB to mesenchymal stem cells, accelerating skin healing. Strikingly, transplantation of macrophages expressing GPNMB improves skin healing in GPNMB-mutant mice. Additionally, topical treatment with recombinant GPNMB restored mesenchymal stem cells recruitment and accelerated wound closure in the diabetic skin. From a drug development perspective, this GPNMB is a new candidate for skin healing.
Collapse
Affiliation(s)
- Walison N. Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana E. Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anaelise O. M. Turquetti
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo S. N. Barreto
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Erika Costa de Alvarenga
- Department of Natural Sciences, Federal University of São João del Rei, São João Del Rey, MG, Brazil
| | - Maria A. Miglino
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
34
|
Paiva AE, Lousado L, Guerra DAP, Azevedo PO, Sena IFG, Andreotti JP, Santos GSP, Gonçalves R, Mintz A, Birbrair A. Pericytes in the Premetastatic Niche. Cancer Res 2018; 78:2779-2786. [PMID: 29789421 PMCID: PMC6044472 DOI: 10.1158/0008-5472.can-17-3883] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Accepted: 03/09/2018] [Indexed: 12/20/2022]
Abstract
The premetastatic niche formed by primary tumor-derived molecules contributes to fixation of cancer metastasis. The design of efficient therapies is limited by the current lack of knowledge about the details of cellular and molecular mechanisms involved in the premetastatic niche formation. Recently, the role of pericytes in the premetastatic niche formation and lung metastatic tropism was explored by using state-of-the-art techniques, including in vivo lineage-tracing and mice with pericyte-specific KLF4 deletion. Strikingly, genetic inactivation of KLF4 in pericytes inhibits pulmonary pericyte expansion and decreases metastasis in the lung. Here, we summarize and evaluate recent advances in the understanding of pericyte contribution to premetastatic niche formation. Cancer Res; 78(11); 2779-86. ©2018 AACR.
Collapse
Affiliation(s)
- Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel A P Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, New York
| |
Collapse
|