1
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
2
|
Chan WY, Meyers L, Rudd D, Topa SH, van Oppen MJH. Heat-evolved algal symbionts enhance bleaching tolerance of adult corals without trade-off against growth. GLOBAL CHANGE BIOLOGY 2023; 29:6945-6968. [PMID: 37913765 DOI: 10.1111/gcb.16987] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023]
Abstract
Ocean warming has caused coral mass bleaching and mortality worldwide and the persistence of symbiotic reef-building corals requires rapid acclimation or adaptation. Experimental evolution of the coral's microalgal symbionts followed by their introduction into coral is one potential method to enhance coral thermotolerance. Heat-evolved microalgal symbionts of the generalist species, Cladocopium proliferum (strain SS8), were exposed to elevated temperature (31°C) for ~10 years, and were introduced into four genotypes of chemically bleached adult fragments of the scleractinian coral, Galaxea fascicularis. Two of the four coral genotypes acquired SS8. The new symbionts persisted for the 5 months of the experiment and enhanced adult coral thermotolerance, compared with corals that were inoculated with the wild-type C. proliferum strain. Thermotolerance of SS8-corals was similar to that of coral fragments from the same colony hosting the homologous symbiont, Durusdinium sp., which is naturally heat tolerant. However, SS8-coral fragments exhibited faster growth and recovered cell density and photochemical efficiency more quickly following chemical bleaching and inoculation under ambient temperature relative to Durusdinium-corals. Mass spectrometry imaging suggests that algal pigments involved in photobiology and oxidative stress were the greatest contributors to the thermotolerance differences between coral hosting heat-evolved versus wild-type C. proliferum. These pigments may have increased photoprotection in the heat-evolved symbionts. This is the first laboratory study to show that thermotolerance of adult corals (G. fascicularis) can be enhanced via the uptake of exogenously supplied, heat-evolved symbionts, without a trade-off against growth under ambient temperature. Importantly, heat-evolved C. proliferum remained in the corals in moderate abundance 2 years after first inoculation, suggesting long-term stability of this novel symbiosis and potential long-term benefits to coral thermotolerance.
Collapse
Affiliation(s)
- Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Luka Meyers
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Clayton, Victoria, Australia
| | - Sanjida H Topa
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
3
|
Wang C, Zheng X, Kvitt H, Sheng H, Sun D, Niu G, Tchernov D, Shi T. Lineage-specific symbionts mediate differential coral responses to thermal stress. MICROBIOME 2023; 11:211. [PMID: 37752514 PMCID: PMC10521517 DOI: 10.1186/s40168-023-01653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Ocean warming is a leading cause of increasing episodes of coral bleaching, the dissociation between coral hosts and their dinoflagellate algal symbionts in the family Symbiodiniaceae. While the diversity and flexibility of Symbiodiniaceae is presumably responsible for variations in coral response to physical stressors such as elevated temperature, there is little data directly comparing physiological performance that accounts for symbiont identity associated with the same coral host species. Here, using Pocillopora damicornis harboring genotypically distinct Symbiodiniaceae strains, we examined the physiological responses of the coral holobiont and the dynamics of symbiont community change under thermal stress in a laboratory-controlled experiment. RESULTS We found that P. damicornis dominated with symbionts of metahaplotype D1-D4-D6 in the genus Durusdinium (i.e., PdD holobiont) was more robust to thermal stress than its counterpart with symbionts of metahaplotype C42-C1-C1b-C1c in the genus Cladocopium (i.e., PdC holobiont). Under ambient temperature, however, the thermally sensitive Cladocopium spp. exhibited higher photosynthetic efficiency and translocated more fixed carbon to the host, likely facilitating faster coral growth and calcification. Moreover, we observed a thermally induced increase in Durusdinium proportion in the PdC holobiont; however, this "symbiont shuffling" in the background was overwhelmed by the overall Cladocopium dominance, which coincided with faster coral bleaching and reduced calcification. CONCLUSIONS These findings support that lineage-specific symbiont dominance is a driver of distinct coral responses to thermal stress. In addition, we found that "symbiont shuffling" may begin with stress-forced, subtle changes in the rare biosphere to eventually trade off growth for increased resilience. Furthermore, the flexibility in corals' association with thermally tolerant symbiont lineages to adapt or acclimatize to future warming oceans should be viewed with conservative optimism as the current rate of environmental changes may outpace the evolutionary capabilities of corals. Video Abstract.
Collapse
Affiliation(s)
- Chenying Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai, 536015, China.
| | - Hagit Kvitt
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel
- Israel Oceanographic and Limnological Research, National Center for Mariculture, 88112, Eilat, Israel
| | - Huaxia Sheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Danye Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Gaofeng Niu
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| | - Tuo Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510000, China.
| |
Collapse
|
4
|
de Souza MR, Caruso C, Ruiz-Jones L, Drury C, Gates RD, Toonen RJ. Importance of depth and temperature variability as drivers of coral symbiont composition despite a mass bleaching event. Sci Rep 2023; 13:8957. [PMID: 37268692 DOI: 10.1038/s41598-023-35425-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/17/2023] [Indexed: 06/04/2023] Open
Abstract
Coral reefs are iconic examples of climate change impacts because climate-induced heat stress causes the breakdown of the coral-algal symbiosis leading to a spectacular loss of color, termed 'coral bleaching'. To examine the fine-scale dynamics of this process, we re-sampled 600 individually marked Montipora capitata colonies from across Kāne'ohe Bay, Hawai'i and compared the algal symbiont composition before and after the 2019 bleaching event. The relative proportion of the heat-tolerant symbiont Durusdinium in corals increased in most parts of the bay following the bleaching event. Despite this widespread increase in abundance of Durusdinium, the overall algal symbiont community composition was largely unchanged, and hydrodynamically defined regions of the bay retained their distinct pre-bleaching compositions. We explain ~ 21% of the total variation, of which depth and temperature variability were the most significant environmental drivers of Symbiodiniaceae community composition by site regardless of bleaching intensity or change in relative proportion of Durusdinium. We hypothesize that the plasticity of symbiont composition in corals may be constrained to adaptively match the long-term environmental conditions surrounding the holobiont, despite an individual coral's stress and bleaching response.
Collapse
Affiliation(s)
- Mariana Rocha de Souza
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA.
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Lupita Ruiz-Jones
- Chaminade University of Honolulu, 3140 Waialae Ave, Honolulu, HI, 96816, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
5
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Bove CB, Ingersoll MV, Davies SW. Help Me, Symbionts, You're My Only Hope: Approaches to Accelerate our Understanding of Coral Holobiont Interactions. Integr Comp Biol 2022; 62:1756-1769. [PMID: 36099871 DOI: 10.1093/icb/icac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont-the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome-that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian-Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.
Collapse
Affiliation(s)
- Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
7
|
de Souza MR, Caruso C, Ruiz-Jones L, Drury C, Gates R, Toonen RJ. Community composition of coral-associated Symbiodiniaceae differs across fine-scale environmental gradients in Kāne'ohe Bay. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212042. [PMID: 36117869 PMCID: PMC9459668 DOI: 10.1098/rsos.212042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/12/2022] [Indexed: 06/04/2023]
Abstract
The survival of most reef-building corals is dependent upon a symbiosis between the coral and the community of Symbiodiniaceae. Montipora capitata, one of the main reef-building coral species in Hawai'i, is known to host a diversity of symbionts, but it remains unclear how they change spatially and whether environmental factors drive those changes. Here, we surveyed the Symbiodiniaceae community in 600 M. capitata colonies from 30 sites across Kāne'ohe Bay and tested for host specificity and environmental gradients driving spatial patterns of algal symbiont distribution. We found that the Symbiodiniaceae community differed markedly across sites, with M. capitata in the most open-ocean (northern) site hosting few or none of the genus Durusdinium, whereas individuals at other sites had a mix of Durusdinium and Cladocopium. Our study shows that the algal symbiont community composition responds to fine-scale differences in environmental gradients; depth and temperature variability were the most significant predictor of Symbiodiniaceae community, although environmental factors measured in the study explained only about 20% of observed variation. Identifying and mapping Symbiodiniaceae community distribution at multiple scales is an important step in advancing our understanding of algal symbiont diversity, distribution and evolution and the potential responses of corals to future environmental change.
Collapse
Affiliation(s)
- Mariana Rocha de Souza
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Carlo Caruso
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Lupita Ruiz-Jones
- Chaminade University of Honolulu, 3140 Waialae Ave, Honolulu, HI 96816, USA
| | - Crawford Drury
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Ruth Gates
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Kāne'ohe, HI 96744, USA
| |
Collapse
|
8
|
terHorst CP, Coffroth MA. Individual variation in growth and physiology of symbionts in response to temperature. Ecol Evol 2022; 12:e9000. [PMID: 35784077 PMCID: PMC9173866 DOI: 10.1002/ece3.9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
In many cases, understanding species' responses to climate change requires understanding variation among individuals in response to such change. For species with strong symbiotic relationships, such as many coral reef species, genetic variation in symbiont responses to temperature may affect the response to increased ocean temperatures. To assess variation among symbiont genotypes, we examined the population dynamics and physiological responses of genotypes of Breviolum antillogorgium in response to increased temperature. We found broad temperature tolerance across genotypes, with all genotypes showing positive growth at 26, 30, and 32°C. Genotypes differed in the magnitude of the response of growth rate and carrying capacity to increasing temperature, suggesting that natural selection could favor different genotypes at different temperatures. However, the historical temperature at which genotypes were reared (26 or 30°C) was not a good predictor of contemporary temperature response. We found increased photosynthetic rates and decreased respiration rates with increasing contemporary temperature, and differences in physiology among genotypes, but found no significant differences in the response of these traits to temperature among genotypes. In species with such broad thermal tolerance, selection experiments on symbionts outside of the host may not yield results sufficient for evolutionary rescue from climate change.
Collapse
Affiliation(s)
- Casey P. terHorst
- Department of BiologyCalifornia State University, NorthridgeNorthridgeCaliforniaUSA
| | | |
Collapse
|
9
|
Rodriguez-Casariego JA, Cunning R, Baker AC, Eirin-Lopez JM. Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral Montastraea cavernosa. Mol Ecol 2021; 31:588-602. [PMID: 34689363 DOI: 10.1111/mec.16246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Algal symbiont shuffling in favour of more thermotolerant species has been shown to enhance coral resistance to heat-stress. Yet, the mechanistic underpinnings and long-term implications of these changes are poorly understood. This work studied the modifications in coral DNA methylation, an epigenetic mechanism involved in coral acclimatization, in response to symbiont manipulation and subsequent heat stress exposure. Symbiont composition was manipulated in the great star coral Montastraea cavernosa through controlled thermal bleaching and recovery, producing paired ramets of three genets dominated by either their native symbionts (genus Cladocopium) or the thermotolerant species (Durusdinium trenchi). Single-base genome-wide analyses showed significant modifications in DNA methylation concentrated in intergenic regions, introns and transposable elements. Remarkably, DNA methylation changes in response to heat stress were dependent on the dominant symbiont, with twice as many differentially methylated regions found in heat-stressed corals hosting different symbionts (Cladocopium vs. D. trenchii) compared to all other comparisons. Interestingly, while differential gene body methylation was not correlated with gene expression, an enrichment in differentially methylated regions was evident in repetitive genome regions. Overall, these results suggest that changes in algal symbionts favouring heat tolerant associations are accompanied by changes in DNA methylation in the coral host. The implications of these results for coral adaptation, along with future avenues of research based on current knowledge gaps, are discussed in the present work.
Collapse
Affiliation(s)
- Javier A Rodriguez-Casariego
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, Illinois, USA.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Andrew C Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
| |
Collapse
|
10
|
A Phylogeny-Informed Analysis of the Global Coral-Symbiodiniaceae Interaction Network Reveals that Traits Correlated with Thermal Bleaching Are Specific to Symbiont Transmission Mode. mSystems 2021; 6:6/3/e00266-21. [PMID: 33947806 PMCID: PMC8269218 DOI: 10.1128/msystems.00266-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The complex network of associations between corals and their dinoflagellates (family Symbiodiniaceae) are the basis of coral reef ecosystems but are sensitive to increasing global temperatures. Coral-symbiont interactions are restricted by ecological and evolutionary determinants that constrain partner choice and influence holobiont response to environmental stress; however, little is known about how these processes shape thermal resilience of the holobiont. Here, we built a network of global coral-Symbiodiniaceae associations, mapped species traits (e.g., symbiont transmission mode and biogeography) and phylogenetic relationships of both partners onto the network, and assigned thermotolerance to both host and symbiont nodes. Using network analysis and phylogenetic comparative methods, we determined the contribution of species traits to thermal resilience of the holobiont, while accounting for evolutionary patterns among species. We found that the network shows nonrandom interactions among species, which are shaped by evolutionary history, symbiont transmission mode (horizontally transmitted [HT] or vertically transmitted [VT] corals) and biogeography. Coral phylogeny, but not Symbiodiniaceae phylogeny, symbiont transmission mode, or biogeography, was a good predictor of thermal resilience. Closely related corals have similar Symbiodiniaceae interaction patterns and bleaching susceptibilities. Nevertheless, the association patterns that explain increased host thermal resilience are not generalizable across the entire network but are instead unique to HT and VT corals. Under nonstress conditions, thermally resilient VT coral species associate with thermotolerant phylotypes and limit their number of unique symbionts and overall symbiont thermotolerance diversity, while thermally resilient HT coral species associate with a few host-specific symbiont phylotypes. IMPORTANCE Recent advances have revealed a complex network of interactions between coral and Symbiodiniaceae. Specifically, nonrandom association patterns, which are determined in part by restrictions imposed by symbiont transmission mode, increase the sensitivity of the overall network to thermal stress. However, little is known about the extent to which coral-Symbiodiniaceae network resistance to thermal stress is shaped by host and symbiont species phylogenetic relationships and host and symbiont species traits, such as symbiont transmission mode. We built a frequency-weighted global coral-Symbiodiniaceae network and used network analysis and phylogenetic comparative methods to show that evolutionary relatedness, but not transmission mode, predicts thermal resilience of the coral-Symbiodiniaceae holobiont. Consequently, thermal stress events could result in nonrandom pruning of susceptible lineages and loss of taxonomic diversity with catastrophic effects on community resilience to future events. Our results show that inclusion of the contribution of evolutionary and ecological processes will further our understanding of the fate of coral assemblages under climate change.
Collapse
|
11
|
Quigley KM, Alvarez Roa C, Beltran VH, Leggat B, Willis BL. Experimental evolution of the coral algal endosymbiont,
Cladocopium goreaui
: lessons learnt across a decade of stress experiments to enhance coral heat tolerance. Restor Ecol 2021. [DOI: 10.1111/rec.13342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kate M. Quigley
- Australian Institute of Marine Science PMB3, Townsville Queensland Australia
| | - Carlos Alvarez Roa
- Australian Institute of Marine Science PMB3, Townsville Queensland Australia
| | - Victor H. Beltran
- Faculty of Natural Sciences Autonomous University of Carmen (UNACAR) Campeche Mexico
| | - Bill Leggat
- School of Environmental and Life Sciences The University of Newcastle Callaghan, New Castle Australia
| | - Bette L. Willis
- ARC Centre of Excellence for Coral Reef Studies, and College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
12
|
A breakthrough in understanding the molecular basis of coral heat tolerance. Proc Natl Acad Sci U S A 2020; 117:28546-28548. [PMID: 33168724 DOI: 10.1073/pnas.2020201117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
van Oppen MJH, Medina M. Coral evolutionary responses to microbial symbioses. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190591. [PMID: 32772672 PMCID: PMC7435167 DOI: 10.1098/rstb.2019.0591] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
This review explores how microbial symbioses may have influenced and continue to influence the evolution of reef-building corals (Cnidaria; Scleractinia). The coral holobiont comprises a diverse microbiome including dinoflagellate algae (Dinophyceae; Symbiodiniaceae), bacteria, archaea, fungi and viruses, but here we focus on the Symbiodiniaceae as knowledge of the impact of other microbial symbionts on coral evolution is scant. Symbiosis with Symbiodiniaceae has extended the coral's metabolic capacity through metabolic handoffs and horizontal gene transfer (HGT) and has contributed to the ecological success of these iconic organisms. It necessitated the prior existence or the evolution of a series of adaptations of the host to attract and select the right symbionts, to provide them with a suitable environment and to remove disfunctional symbionts. Signatures of microbial symbiosis in the coral genome include HGT from Symbiodiniaceae and bacteria, gene family expansions, and a broad repertoire of oxidative stress response and innate immunity genes. Symbiosis with Symbiodiniaceae has permitted corals to occupy oligotrophic waters as the algae provide most corals with the majority of their nutrition. However, the coral-Symbiodiniaceae symbiosis is sensitive to climate warming, which disrupts this intimate relationship, causing coral bleaching, mortality and a worldwide decline of coral reefs. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, 3010 Victoria, Australia
- Australian Institute of Marine Science, PMB No. 3, Townsville MC, 4810 Queensland, Australia
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, PA 16802, USA
| |
Collapse
|
14
|
Quigley KM, Bay LK, van Oppen MJH. Genome-wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol Ecol 2020; 29:2176-2188. [PMID: 32453867 DOI: 10.1111/mec.15482] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
Marine heat waves are increasing in magnitude, duration, and frequency as a result of climate change and are the principal global driver of mortality in reef-building corals. Resilience-based genetic management may increase coral heat tolerance, but it is unclear how temperature responses are regulated at the genome level and thus how corals may adapt to warming naturally or through selective breeding. Here we combine phenotypic, pedigree, and genomic marker data from colonies sourced from a warm reef on the Great Barrier Reef reproductively crossed with conspecific colonies from a cooler reef to produce combinations of warm purebreds and warm-cool hybrid larvae and juveniles. Interpopulation breeding created significantly greater genetic diversity across the coral genome compared to breeding between populations and maintained diversity in key regions associated with heat tolerance and fitness. High-density genome-wide scans of single nucleotide polymorphisms (SNPs) identified alleles significantly associated with larval families reared at 27.5°C (87-2,224 loci), including loci putatively associated with proteins involved in responses to heat stress (cell membrane formation, metabolism, and immune responses). Underlying genetics of these families explained 43% of PCoA multilocus variation in survival, growth, and bleaching responses at 27.5°C and 31°C at the juvenile stage. Genetic marker contribution to total variation in fitness traits (narrow-sense heritability) was high for survival but not for growth and bleaching in juveniles, with heritability of these traits being higher at 31°C relative to 27.5°C. While based on only a limited number of crosses, the mechanistic understanding presented here demonstrates that allele frequencies are affected by one generation of selective breeding, key information for the assessments of genetic intervention feasibility and modelling of reef futures.
Collapse
Affiliation(s)
- Kate M Quigley
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, Qld, Australia.,School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
15
|
Swain TD, Lax S, Backman V, Marcelino LA. Uncovering the role of Symbiodiniaceae assemblage composition and abundance in coral bleaching response by minimizing sampling and evolutionary biases. BMC Microbiol 2020; 20:124. [PMID: 32429833 PMCID: PMC7236918 DOI: 10.1186/s12866-020-01765-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/26/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Biodiversity and productivity of coral-reef ecosystems depend upon reef-building corals and their associations with endosymbiotic Symbiodiniaceae, which offer diverse functional capabilities to their hosts. The number of unique symbiotic partners (richness) and relative abundances (evenness) have been hypothesized to affect host response to climate change induced thermal stress. Symbiodiniaceae assemblages with many unique phylotypes may provide greater physiological flexibility or form less stable symbioses; assemblages with low abundance phylotypes may allow corals to retain thermotolerant symbionts or represent associations with less-suitable symbionts. RESULTS Here we demonstrate that true richness of Symbiodiniaceae phylotype assemblages is generally not discoverable from direct enumeration of unique phylotypes in association records and that cross host-species comparisons are biased by sampling and evolutionary patterns among species. These biases can be minimized through rarefaction of richness (rarefied-richness) and evenness (Probability of Interspecific Encounter, PIE), and analyses that account for phylogenetic patterns. These standardized metrics were calculated for individual Symbiodiniaceae assemblages composed of 377 unique ITS2 phylotypes associated with 123 coral species. Rarefied-richness minimized correlations with sampling effort, while maintaining important underlying characteristics across host bathymetry and geography. Phylogenetic comparative methods reveal significant increases in coral bleaching and mortality associated with increasing Symbiodiniaceae assemblage richness and evenness at the level of host species. CONCLUSIONS These results indicate that the potential flexibility afforded by assemblages characterized by many phylotypes present at similar relative abundances does not result in decreased bleaching risk and point to the need to characterize the overall functional and genetic diversity of Symbiodiniaceae assemblages to quantify their effect on host fitness under climate change.
Collapse
Affiliation(s)
- Timothy D Swain
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
- Integrative Research Center, Field Museum of Natural History, Chicago, IL, 60605, USA
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, 33004, USA
| | - Simon Lax
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Luisa A Marcelino
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Integrative Research Center, Field Museum of Natural History, Chicago, IL, 60605, USA.
| |
Collapse
|
16
|
Morgans CA, Hung JY, Bourne DG, Quigley KM. Symbiodiniaceae probiotics for use in bleaching recovery. Restor Ecol 2020. [DOI: 10.1111/rec.13069] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Carys A. Morgans
- College of Science and EngineeringJames Cook University Townsville Queensland 4814 Australia
| | - Julia Y. Hung
- College of Science and EngineeringJames Cook University Townsville Queensland 4814 Australia
| | - David G. Bourne
- College of Science and EngineeringJames Cook University Townsville Queensland 4814 Australia
- Australian Institute of Marine Science Townsville Queensland 4816 Australia
| | - Kate M. Quigley
- College of Science and EngineeringJames Cook University Townsville Queensland 4814 Australia
- Australian Institute of Marine Science Townsville Queensland 4816 Australia
| |
Collapse
|
17
|
Howells EJ, Bauman AG, Vaughan GO, Hume BCC, Voolstra CR, Burt JA. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol Ecol 2020; 29:899-911. [DOI: 10.1111/mec.15372] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Emily J. Howells
- Center for Genomics and Systems Biology New York University Abu Dhabi Abu Dhabi United Arab Emirates
- Centre for Sustainable Ecosystem Solutions and School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong NSW Australia
| | - Andrew G. Bauman
- Experimental Marine Ecology Laboratory Department of Biological Sciences National University of Singapore Singapore City Singapore
| | - Grace O. Vaughan
- Center for Genomics and Systems Biology New York University Abu Dhabi Abu Dhabi United Arab Emirates
| | - Benjamin C. C. Hume
- Red Sea Research Center Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center Division of Biological and Environmental Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
- Department of Biology University of Konstanz Konstanz Germany
| | - John A. Burt
- Center for Genomics and Systems Biology New York University Abu Dhabi Abu Dhabi United Arab Emirates
| |
Collapse
|
18
|
Quigley KM, Randall CJ, van Oppen MJH, Bay LK. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol Open 2020; 9:bio047316. [PMID: 31915210 PMCID: PMC6994947 DOI: 10.1242/bio.047316] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
The rate of coral reef degradation from climate change is accelerating and, as a consequence, a number of interventions to increase coral resilience and accelerate recovery are under consideration. Acropora spathulata coral colonies that survived mass bleaching in 2016 and 2017 were sourced from a bleaching-impacted and warmer northern reef on the Great Barrier Reef (GBR). These individuals were reproductively crossed with colonies collected from a recently bleached but historically cooler central GBR reef to produce pure and crossbred offspring groups (warm-warm, warm-cool and cool-warm). We tested whether corals from the warmer reef produced more thermally tolerant hybrid and purebred offspring compared with crosses produced with colonies sourced from the cooler reef and whether different symbiont taxa affect heat tolerance. Juveniles were infected with Symbiodinium tridacnidorum, Cladocopium goreaui and Durusdinium trenchii and survival, bleaching and growth were assessed at 27.5°C and 31°C. The contribution of host genetic background and symbiont identity varied across fitness traits. Offspring with either both or one parent from the northern population exhibited a 13- to 26-fold increase in survival odds relative to all other treatments where survival probability was significantly influenced by familial cross identity at 31°C but not 27.5°C (Kaplan-Meier P=0.001 versus 0.2). If in symbiosis with D. trenchii, a warm sire and cool dam provided the best odds of juvenile survival. Bleaching was predominantly driven by Symbiodiniaceae treatment, where juveniles hosting D. trenchii bleached significantly less than the other treatments at 31°C. The greatest overall fold-benefits in growth and survival at 31°C occurred in having at least one warm dam and in symbiosis with D. trenchii Juveniles associated with D. trenchii grew the most at 31°C, but at 27.5°C, growth was fastest in juveniles associated with C. goreaui In conclusion, selective breeding with warmer GBR corals in combination with algal symbiont manipulation can assist in increasing thermal tolerance on cooler but warming reefs. Such interventions have the potential to improve coral fitness in warming oceans.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- K M Quigley
- Australian Institute of Marine Science, Townsville 4810, Australia
| | - C J Randall
- Australian Institute of Marine Science, Townsville 4810, Australia
| | - M J H van Oppen
- Australian Institute of Marine Science, Townsville 4810, Australia
- Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - L K Bay
- Australian Institute of Marine Science, Townsville 4810, Australia
| |
Collapse
|
19
|
Quigley KM, Alvarez Roa C, Torda G, Bourne DG, Willis BL. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiologyopen 2019; 9:e959. [PMID: 31670480 PMCID: PMC7002099 DOI: 10.1002/mbo3.959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 02/04/2023] Open
Abstract
Interactions between corals and their associated microbial communities (Symbiodiniaceae and prokaryotes) are key to understanding corals' potential for and rate of acclimatory and adaptive responses. However, the establishment of microalgal and bacterial communities is poorly understood during coral ontogeny in the wild. We examined the establishment and co-occurrence between multiple microbial communities using 16S rRNA (bacterial) and ITS2 rDNA (Symbiodiniaceae) gene amplicon sequencing in juveniles of the common coral, Acropora tenuis, across the first year of development. Symbiodiniaceae communities in juveniles were dominated by Durusdinium trenchii and glynnii (D1 and D1a), with lower abundances of Cladocopium (C1, C1d, C50, and Cspc). Bacterial communities were more diverse and dominated by taxa within Proteobacteria, Cyanobacteria, and Planctomycetes. Both communities were characterized by significant changes in relative abundance and diversity of taxa throughout the year. D1, D1a, and C1 were significantly correlated with multiple bacterial taxa, including Alpha-, Deltra-, and Gammaproteobacteria, Planctomycetacia, Oxyphotobacteria, Phycisphaerae, and Rhizobiales. Specifically, D1a tended to associate with Oxyphotobacteria and D1 with Alphaproteobacteria, although these associations may represent correlational and not causal relationships. Bioenergetic modeling combined with physiological measurements of coral juveniles (surface area and Symbiodiniaceae cell densities) identified key periods of carbon limitation and nitrogen assimilation, potentially coinciding with shifts in microbial community composition. These results demonstrate that Symbiodiniaceae and bacterial communities are dynamic throughout the first year of ontology and may vary in tandem, with important fitness effects on host juveniles.
Collapse
Affiliation(s)
- Kate M Quigley
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Greg Torda
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - David G Bourne
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bette L Willis
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
20
|
Chan WY, Peplow LM, Menéndez P, Hoffmann AA, Oppen MJH. The roles of age, parentage and environment on bacterial and algal endosymbiont communities in
Acropora
corals. Mol Ecol 2019; 28:3830-3843. [DOI: 10.1111/mec.15187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Wing Yan Chan
- Australian Institute of Marine Science Townsville Qld Australia
- School of BioSciences University of Melbourne Parkville Vic. Australia
| | - Lesa M. Peplow
- Australian Institute of Marine Science Townsville Qld Australia
| | - Patricia Menéndez
- Australian Institute of Marine Science Townsville Qld Australia
- Department of Econometrics and Business Statistics, School of Mathematics and Physics Monash University Clayton Vic. Australia
| | - Ary A. Hoffmann
- Bio21 Institute University of Melbourne Parkville Vic. Australia
| | - Madeleine J. H. Oppen
- Australian Institute of Marine Science Townsville Qld Australia
- School of BioSciences University of Melbourne Parkville Vic. Australia
| |
Collapse
|
21
|
Bayliss SLJ, Scott ZR, Coffroth MA, terHorst CP. Genetic variation in Breviolum antillogorgium, a coral reef symbiont, in response to temperature and nutrients. Ecol Evol 2019; 9:2803-2813. [PMID: 30891218 PMCID: PMC6406013 DOI: 10.1002/ece3.4959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023] Open
Abstract
Symbionts within the family Symbiodiniaceae are important on coral reefs because they provide significant amounts of carbon to many different reef species. The breakdown of this mutualism that occurs as a result of increasingly warmer ocean temperatures is a major threat to coral reef ecosystems globally. Recombination during sexual reproduction and high rates of somatic mutation can lead to increased genetic variation within symbiont species, which may provide the fuel for natural selection and adaptation. However, few studies have asked whether such variation in functional traits exists within these symbionts. We used several genotypes of two closely related species, Breviolum antillogorgium and B. minutum, to examine variation of traits related to symbiosis in response to increases in temperature or nitrogen availability in laboratory cultures. We found significant genetic variation within and among symbiont species in chlorophyll content, photosynthetic efficiency, and growth rate. Two genotypes showed decreases in traits in response to increased temperatures predicted by climate change, but one genotype responded positively. Similarly, some genotypes within a species responded positively to high-nitrogen environments, such as those expected within hosts or eutrophication associated with global change, while other genotypes in the same species responded negatively, suggesting context-dependency in the strength of mutualism. Such variation in traits implies that there is potential for natural selection on symbionts in response to temperature and nutrients, which could confer an adaptive advantage to the holobiont.
Collapse
Affiliation(s)
- Shannon L. J. Bayliss
- Biology DepartmentCalifornia State UniversityNorthridgeCalifornia
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee
| | - Zoë R. Scott
- Biology DepartmentCalifornia State UniversityNorthridgeCalifornia
| | - Mary Alice Coffroth
- Department of Geology and Graduate Program in Evolution, Ecology and BehaviorUniversity at BuffaloBuffaloNew York
| | | |
Collapse
|