Blanco-Orta MF, García-de la Cruz RF, Paz-Maldonado LMT, Pedraza-González DA, Morales-Avila MM, Balderas-Hernández VE, González-Ortega O, Pérez-Martínez AS. Assessing three industrially produced fungi for the bioremediation of diclofenac.
JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023:1-10. [PMID:
37128145 DOI:
10.1080/10934529.2023.2206353]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diclofenac is an emerging pollutant: toxic, persistent, and bioaccumulative, present in several environmental niches in a concentration of parts per million. This pharmaceutical's biological removal was reported with various fungal species, showing promissory results. This work aimed at diclofenac removal by individually challenging the fungal species Pleurotus ostreatus, Aspergillus niger, and Penicillium roquefortii but triying to lower the biosorption nature of cell walls by NaCl addition. P. ostreatus removed 100% of the initial diclofenac concentration, whereas A. niger and P. roqueforti removed 74% and 32%, respectively. In all three cases, biosorption by polar interactions was negligible. We demonstrated that stressful environments, such as mineral media, force the fungus to take advantage of its metabolic tools to survive, hence showing higher removal capacity when limiting growth conditions. Bioremediation is an excellent alternative to give residual fungal biomass a secondary use.
Collapse