1
|
Kahng SE, Odle E, Wakeman KC. Coral geometry and why it matters. PeerJ 2024; 12:e17037. [PMID: 38436029 PMCID: PMC10909345 DOI: 10.7717/peerj.17037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Clonal organisms like reef building corals exhibit a wide variety of colony morphologies and geometric shapes which can have many physiological and ecological implications. Colony geometry can dictate the relationship between dimensions of volume, surface area, and length, and their associated growth parameters. For calcifying organisms, there is the added dimension of two distinct components of growth, biomass production and calcification. For reef building coral, basic geometric shapes can be used to model the inherent mathematical relationships between various growth parameters and how colony geometry determines which relationships are size-dependent or size-independent. Coral linear extension rates have traditionally been assumed to be size-independent. However, even with a constant calcification rate, extension rates can vary as a function of colony size by virtue of its geometry. Whether the ratio between mass and surface area remains constant or changes with colony size is the determining factor. For some geometric shapes, the coupling of biomass production (proportional to surface area productivity) and calcification (proportional to volume) can cause one aspect of growth to geometrically constrain the other. The nature of this relationship contributes to a species' life history strategy and has important ecological implications. At one extreme, thin diameter branching corals can maximize growth in surface area and resource acquisition potential, but this geometry requires high biomass production to cover the fast growth in surface area. At the other extreme, growth in large, hemispheroidal corals can be constrained by calcification. These corals grow surface area relatively slowly, thereby retaining a surplus capacity for biomass production which can be allocated towards other anabolic processes. For hemispheroidal corals, the rate of surface area growth rapidly decreases as colony size increases. This ontogenetic relationship underlies the success of microfragmentation used to accelerate restoration of coral cover. However, ontogenetic changes in surface area productivity only applies to certain coral geometries where surface area to volume ratios decrease with colony size.
Collapse
Affiliation(s)
- Samuel E. Kahng
- Oceanography, University of Hawaii, Honolulu, HI, United States of America
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
- Kikai Institute for Coral Reef Science, Kikai, Japan
| | - Eric Odle
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Kevin C. Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Tavakoli-Kolour P, Sinniger F, Morita M, Hazraty-Kari S, Nakamura T, Harii S. Plasticity of shallow reef corals across a depth gradient. MARINE POLLUTION BULLETIN 2023; 197:115792. [PMID: 37984089 DOI: 10.1016/j.marpolbul.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Global warming harms coral reefs. Mesophotic coral reef ecosystems (MCEs) have been suggested to serve as refugia for shallow reefs. Information on the adaptation potential of shallow corals at MCEs is a prerequisite for understanding the refuge potential of MCEs. In this study, we investigated the photoacclimation potential of four shallow coral species transplanted at different depths over 1 year. The results showed that the corals-Pocillopora damicornis, Porites cylindrica, and Turbinaria reniformis-survived and acclimated to a wide range of light regimes at the depths of 5, 20, and 40 m. However, Acropora tenuis survived only at 5 and 20 m depth and showed significant morphological alteration at 20 m depth. Our results indicate that shallow corals have substantial plasticity with respect to depth changes. Changes in photosynthetic performance and phenotypic plasticity within these coral species may act as a buffer for depth-related changes and as modulators of evolutionary responses.
Collapse
Affiliation(s)
- Parviz Tavakoli-Kolour
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| | - Frederic Sinniger
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Sanaz Hazraty-Kari
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Takashi Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan; Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Saki Harii
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
3
|
Bialik OM, Coletti G, Mariani L, Commissario L, Desbiolles F, Meroni AN. Availability and type of energy regulate the global distribution of neritic carbonates. Sci Rep 2023; 13:19687. [PMID: 37952059 PMCID: PMC10640608 DOI: 10.1038/s41598-023-47029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
The study of carbonate rocks is primarily reliant on microfacies analysis, which is strongly based on the comparison with modern allochem assemblages. Despite the existence of several models aimed at comprehensively explaining, on the bases of abiotic factors, the distribution of carbonate-producing organisms, a global, quantitative and standardized overview of the composition of shallow-water carbonate sediments is still missing. Aiming to address this gap in knowledge, the current study provides a global database of the available quantitative data on neritic carbonate sediments. This is paired with satellite-based observations for the abiotic parameters. The results highlight a non-linear, multi-variable, dependence in the distribution of allochems and suggest that depth, temperature, and trophic state are, to a certain extent, interchangeable. The implication of which is a level of non-uniqueness for paleoenvironmental interpretation. The resulting distribution is rather continuous and stretches along an energy gradient. A gradient extending from solar energy, with autotrophs and symbiont-bearing organisms to chemical energy with heterotrophs. Further, quantitative data from modern oceans are still required to disentangle the remaining elements of uncertainty.
Collapse
Affiliation(s)
- Or M Bialik
- Institute of Geology and Paleontology, University of Münster, Corrensstr. 24, 48149, Münster, Germany.
- Dr. Moses Strauss Department of Marine Geosciences, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Carmel, Israel.
| | - Giovanni Coletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy.
| | - Luca Mariani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Lucrezi Commissario
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Fabien Desbiolles
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
- CIMA Research Foundation, Savona, Italy
| | | |
Collapse
|
4
|
Pinheiro HT, MacDonald C, Santos RG, Ali R, Bobat A, Cresswell BJ, Francini-Filho R, Freitas R, Galbraith GF, Musembi P, Phelps TA, Quimbayo JP, Quiros TEAL, Shepherd B, Stefanoudis PV, Talma S, Teixeira JB, Woodall LC, Rocha LA. Plastic pollution on the world's coral reefs. Nature 2023; 619:311-316. [PMID: 37438592 DOI: 10.1038/s41586-023-06113-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/21/2023] [Indexed: 07/14/2023]
Abstract
Coral reefs are losing the capacity to sustain their biological functions1. In addition to other well-known stressors, such as climatic change and overfishing1, plastic pollution is an emerging threat to coral reefs, spreading throughout reef food webs2, and increasing disease transmission and structural damage to reef organisms3. Although recognized as a global concern4, the distribution and quantity of plastics trapped in the world's coral reefs remains uncertain3. Here we survey 84 shallow and deep coral ecosystems at 25 locations across the Pacific, Atlantic and Indian ocean basins for anthropogenic macrodebris (pollution by human-generated objects larger than 5 centimetres, including plastics), performing 1,231 transects. Our results show anthropogenic debris in 77 out of the 84 reefs surveyed, including in some of Earth's most remote and near-pristine reefs, such as in uninhabited central Pacific atolls. Macroplastics represent 88% of the anthropogenic debris, and, like other debris types, peak in deeper reefs (mesophotic zones at 30-150 metres depth), with fishing activities as the main source of plastics in most areas. These findings contrast with the global pattern observed in other nearshore marine ecosystems, where macroplastic densities decrease with depth and are dominated by consumer items5. As the world moves towards a global treaty to tackle plastic pollution6, understanding its distribution and drivers provides key information to help to design the strategies needed to address this ubiquitous threat.
Collapse
Affiliation(s)
- Hudson T Pinheiro
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA, USA.
- Center for Marine Biology, University of São Paulo, São Sebastião, Brazil.
| | - Chancey MacDonald
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA, USA
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Robson G Santos
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Cidade Universitária, Maceió, Brazil
| | - Ramadhoine Ali
- Faculté des Sciences Techniques, Université des Comores, Mvouni, Comoros
| | - Ayesha Bobat
- Wildlands Conservation Trust, Pietermaritzburg, South Africa
| | - Benjamin J Cresswell
- Australian Research Council Centre of Excellence for Coral Reef Studies and College of Science and Engineering James Cook University, Townsville, Queensland, Australia
| | | | - Rui Freitas
- Instituto de Engenharia e Ciências do Mar, Universidade Técnica do Atlântico, Mindelo, Cabo Verde
| | - Gemma F Galbraith
- Australian Research Council Centre of Excellence for Coral Reef Studies and College of Science and Engineering James Cook University, Townsville, Queensland, Australia
| | - Peter Musembi
- CORDIO East Africa, Mombasa, Kenya
- Wildlife Conservation Society, Kenya Marine Program, Mombasa, Kenya
| | - Tyler A Phelps
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA, USA
| | - Juan P Quimbayo
- Center for Marine Biology, University of São Paulo, São Sebastião, Brazil
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - T E Angela L Quiros
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Bart Shepherd
- Steinhart Aquarium, California Academy of Sciences, San Francisco, CA, USA
| | - Paris V Stefanoudis
- Department of Biology, University of Oxford, Oxford, UK
- Nekton Foundation, Oxford, UK
- Museum of Natural History, Oxford University, Oxford, UK
| | | | - João B Teixeira
- Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Lucy C Woodall
- Department of Biology, University of Oxford, Oxford, UK
- Nekton Foundation, Oxford, UK
- Center of Ecology and Conservation, University of Exeter, Exeter, UK
| | - Luiz A Rocha
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
5
|
Yao L, Lin W, Aretz M, Bottjer DJ, Wang X. Colonial coral resilience by decreasing size: reaction to increased detrital influx during onset of the late Palaeozoic Ice Age. Proc Biol Sci 2023; 290:20230220. [PMID: 37221847 PMCID: PMC10206454 DOI: 10.1098/rspb.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
Modern coral reefs and associated biodiversity are severely threatened by increasing terrestrial runoff. Similar scenarios could be suspected for geological times, but reef coral resilience is still an enigma. In late Visean-Serpukhovian (Mississippian foraminiferal zones/MFZ 14-16) times, a major glaciation phase of the late Palaeozoic Ice Age (LPIA) associated with enhanced terrestrial weathering and runoff coincides with a biodiversity crisis and coral reef decline. In this study, the impact of enhanced terrestrial runoff is tested on size variations of colonial corals Aulina rotiformis and Lithostrotion decipiens along a gradient of contemporaneous (Serpukhovian) open marine carbonate to near-shore siliciclastic facies in South China. Along this gradient, their sizes decrease from carbonate, through intermediate carbonate-siliciclastic, to siliciclastic facies. This is consistent with increasing abundance of terrestrial materials of high silicon, aluminium and phosphorus values. On a larger million-year-long interval (MFZ14-16) and for several palaeocontinents, size data of Lithostrotion decipiens and Siphonodendron pauciradiale show a distinct decline in late Visean, when enhanced terrestrial weathering occurred commonly with palaeosols developed during regression. This suggests that terrestrial sediment and nutrient input may have mainly controlled phenotypic plasticity in Mississippian reef corals, with a decrease in size as a component of resilience across the LPIA onset.
Collapse
Affiliation(s)
- Le Yao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Lin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Markus Aretz
- Géosciences Environment Toulouse, CNRS, IRD, UPS, Université de Toulouse, Toulouse F-31400, France
| | - David J. Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiangdong Wang
- State Key Laboratory for Mineral Deposits Research and School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
6
|
Ramos NI, DeLeo DM, Horowitz J, McFadden CS, Quattrini AM. Selection in coral mitogenomes, with insights into adaptations in the deep sea. Sci Rep 2023; 13:6016. [PMID: 37045882 PMCID: PMC10097804 DOI: 10.1038/s41598-023-31243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Corals are a dominant benthic fauna that occur across a vast range of depths from just below the ocean's surface to the abyssopelagic zone. However, little is known about the evolutionary mechanisms that enable them to inhabit such a wide range of environments. The mitochondrial (mt) genome, which is involved in energetic pathways, may be subject to selection pressures at greater depths to meet the metabolic demands of that environment. Here, we use a phylogenomic framework combined with codon-based models to evaluate whether mt protein-coding genes (PCGs) associated with cellular energy functions are under positive selection across depth in three groups of corals: Octocorallia, Scleractinia, and Antipatharia. The results demonstrated that mt PCGs of deep- and shallow-water species of all three groups were primarily under strong purifying selection (0.0474 < ω < 0.3123), with the exception of positive selection in atp6 (ω = 1.3263) of deep-sea antipatharians. We also found evidence for positive selection at fifteen sites across cox1, mtMutS, and nad1 in deep-sea octocorals and nad3 of deep-sea antipatharians. These results contribute to our limited understanding of mt adaptations as a function of depth and provide insight into the molecular response of corals to the extreme deep-sea environment.
Collapse
Affiliation(s)
- Nina I Ramos
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Danielle M DeLeo
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Jeremy Horowitz
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | | | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA.
| |
Collapse
|
7
|
Liberman R, Benayahu Y, Huchon D. Octocorals in the Gulf of Aqaba exhibit high photosymbiont fidelity. Front Microbiol 2022; 13:1005471. [PMID: 36504779 PMCID: PMC9732034 DOI: 10.3389/fmicb.2022.1005471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Symbiotic associations, widespread in terrestrial and marine ecosystems, are of considerable ecological importance. Many tropical coral species are holobionts, formed by the obligate association between a cnidarian host and endosymbiotic dinoflagellates of the family Symbiodiniaceae. The latter are abundant on coral reefs from very shallow water down to the upper mesophotic zone (30-70 m). The research on scleractinians has revealed that the photosymbiont lineages present in the cnidarian host play an important role in the coral's ability to thrive under different environmental conditions, such as light regime and temperature. However, little is known regarding octocoral photosymbionts, and in particular regarding those found deeper than 30 m. Here, we used ribosomal (ITS2) and chloroplast (23S) markers to uncover, for the first time, the dominant Symbiodiniaceae taxa present in 19 mesophotic octocoral species (30-70 m depth) from the Gulf of Aqaba/Eilat (northern Red Sea). In addition, using high-throughput sequencing of the ITS2 region we characterized both the dominant and the rare Symbiodiniaceae lineages found in several species across depth. The phylogenetic analyses of both markers were in agreement and revealed that most of the studied mesophotic octocorals host the genus Cladocopium. Litophyton spp. and Klyxum utinomii were exceptions, as they harbored Symbiodinium and Durusdinium photosymbionts, respectively. While the dominant algal lineage of each coral species did not vary across depth, the endosymbiont community structure significantly differed between host species, as well as between different depths for some host species. The findings from this study contribute to the growing global-catalogue of Cnidaria-Symbiodiniaceae associations. Unravelling the Symbiodiniaceae composition in octocoral holobionts across environmental gradients, depth in particular, may enable a better understanding of how specialized those associations are, and to what extent coral holobionts are able to modify their photosymbionts.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Dorothée Huchon
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Kitchel ZJ, Conrad HM, Selden RL, Pinsky ML. The role of continental shelf bathymetry in shaping marine range shifts in the face of climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5185-5199. [PMID: 35698263 PMCID: PMC9540106 DOI: 10.1111/gcb.16276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 05/26/2023]
Abstract
As a consequence of anthropogenic climate change, marine species on continental shelves around the world are rapidly shifting deeper and poleward. However, whether these shifts deeper and poleward will allow species to access more, less, or equivalent amounts of continental shelf area and associated critical habitats remains unclear. By examining the proportion of seabed area at a range of depths for each large marine ecosystem (LME), we found that shelf area declined monotonically for 19% of LMEs examined. However, the majority exhibited a greater proportion of shelf area in mid-depths or across several depth ranges. By comparing continental shelf area across 2° latitudinal bands, we found that all coastlines exhibit multiple instances of shelf area expansion and contraction, which have the potential to promote or restrict poleward movement of marine species. Along most coastlines, overall shelf habitat increases or exhibits no significant change moving towards the poles. The exception is the Southern West Pacific, which experiences an overall loss of area with increasing latitude. Changes in continental shelf area availability across latitudes and depths are likely to affect the number of species local ecosystems can support. These geometric analyses help identify regions of conservation priority and ecological communities most likely to face attrition or expansion due to variations in available area.
Collapse
Affiliation(s)
- Zoë J. Kitchel
- Ecology and Evolution Graduate ProgramRutgers UniversityNew BrunswickNew JerseyUSA
| | - Hailey M. Conrad
- Department of Fish and Wildlife ConservationBlacksburgVirginiaUSA
| | | | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
9
|
Kramer N, Guan J, Chen S, Wangpraseurt D, Loya Y. Morpho-functional traits of the coral Stylophora pistillata enhance light capture for photosynthesis at mesophotic depths. Commun Biol 2022; 5:861. [PMID: 36002592 PMCID: PMC9402581 DOI: 10.1038/s42003-022-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
The morphological architecture of photosynthetic corals modulates the light capture and functioning of the coral-algal symbiosis on shallow-water corals. Since corals can thrive on mesophotic reefs under extreme light-limited conditions, we hypothesized that microskeletal coral features enhance light capture under low-light environments. Utilizing micro-computed tomography scanning, we conducted a novel comprehensive three-dimensional (3D) assessment of the small-scale skeleton morphology of the depth-generalist coral Stylophora pistillata collected from shallow (4-5 m) and mesophotic (45-50 m) depths. We detected a high phenotypic diversity between depths, resulting in two distinct morphotypes, with calyx diameter, theca height, and corallite marginal spacing contributing to most of the variation between depths. To determine whether such depth-specific morphotypes affect coral light capture and photosynthesis on the corallite scale, we developed 3D simulations of light propagation and photosynthesis. We found that microstructural features of corallites from mesophotic corals provide a greater ability to use solar energy under light-limited conditions; while corals associated with shallow morphotypes avoided excess light through self-shading skeletal architectures. The results from our study suggest that skeleton morphology plays a key role in coral photoadaptation to light-limited environments.
Collapse
Affiliation(s)
- Netanel Kramer
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, USA
| | - Shaochen Chen
- Department of Nanoengineering, University of California San Diego, San Diego, USA
| | - Daniel Wangpraseurt
- Department of Nanoengineering, University of California San Diego, San Diego, USA
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Yossi Loya
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Bollati E, Lyndby NH, D'Angelo C, Kühl M, Wiedenmann J, Wangpraseurt D. Green fluorescent protein-like pigments optimize the internal light environment in symbiotic reef building corals. eLife 2022; 11:73521. [PMID: 35801683 PMCID: PMC9342951 DOI: 10.7554/elife.73521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Pigments homologous to the green fluorescent protein (GFP) have been proposed to fine-tune the internal light microclimate of corals, facilitating photoacclimation of photosynthetic coral symbionts (Symbiodiniaceae) to life in different reef habitats and environmental conditions. However, direct measurements of the in vivo light conditions inside the coral tissue supporting this conclusion are lacking. Here, we quantified the intra-tissue spectral light environment of corals expressing GFP-like proteins from widely different light regimes. We focus on: (1) photoconvertible red fluorescent proteins (pcRFPs), thought to enhance photosynthesis in mesophotic habitats via wavelength conversion, and (2) chromoproteins (CPs), which provide photoprotection to the symbionts in shallow water via light absorption. Optical microsensor measurements indicated that both pigment groups strongly alter the coral intra-tissue light environment. Estimates derived from light spectra measured in pcRFP-containing corals showed that fluorescence emission can contribute to >50% of orange-red light available to the photosynthetic symbionts at mesophotic depths. We further show that upregulation of pink CPs in shallow-water corals during bleaching leads to a reduction of orange light by 10–20% compared to low-CP tissue. Thus, screening by CPs has an important role in mitigating the light-enhancing effect of coral tissue scattering and skeletal reflection during bleaching. Our results provide the first experimental quantification of the importance of GFP-like proteins in fine-tuning the light microclimate of corals during photoacclimation.
Collapse
Affiliation(s)
- Elena Bollati
- Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Niclas H Lyndby
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cecilia D'Angelo
- Coral Reef Laboratory, University of Southampton, Southampton, United Kingdom
| | - Michael Kühl
- Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jörg Wiedenmann
- Coral Reef Laboratory, University of Southampton, Southampton, United Kingdom
| | - Daniel Wangpraseurt
- Department of NanoEngineering, University of California, San Diego, San Diego, United States
| |
Collapse
|
11
|
van Woesik R, Shlesinger T, Grottoli AG, Toonen RJ, Vega Thurber R, Warner ME, Marie Hulver A, Chapron L, McLachlan RH, Albright R, Crandall E, DeCarlo TM, Donovan MK, Eirin‐Lopez J, Harrison HB, Heron SF, Huang D, Humanes A, Krueger T, Madin JS, Manzello D, McManus LC, Matz M, Muller EM, Rodriguez‐Lanetty M, Vega‐Rodriguez M, Voolstra CR, Zaneveld J. Coral-bleaching responses to climate change across biological scales. GLOBAL CHANGE BIOLOGY 2022; 28:4229-4250. [PMID: 35475552 PMCID: PMC9545801 DOI: 10.1111/gcb.16192] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/26/2023]
Abstract
The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.
Collapse
Affiliation(s)
- Robert van Woesik
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | - Tom Shlesinger
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | | | - Rob J. Toonen
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | | | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesDelawareUSA
| | - Ann Marie Hulver
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Leila Chapron
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Rowan H. McLachlan
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
- Department of MicrobiologyOregon State UniversityCorvallisOregonUSA
| | | | - Eric Crandall
- Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Mary K. Donovan
- Center for Global Discovery and Conservation Science and School of Geographical Sciences and Urban PlanningArizona State UniversityTempeArizonaUSA
| | - Jose Eirin‐Lopez
- Institute of EnvironmentFlorida International UniversityMiamiFloridaUSA
| | - Hugo B. Harrison
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Scott F. Heron
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Physics and Marine Geophysical LaboratoryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Adriana Humanes
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Thomas Krueger
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Joshua S. Madin
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Derek Manzello
- Center for Satellite Applications and ResearchSatellite Oceanography & Climate DivisionNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Lisa C. McManus
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Mikhail Matz
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | | | | | | | - Jesse Zaneveld
- Division of Biological SciencesUniversity of WashingtonBothellWashingtonUSA
| |
Collapse
|
12
|
Ben-Zvi O, Lindemann Y, Eyal G, Loya Y. Coral fluorescence: a prey-lure in deep habitats. Commun Biol 2022; 5:537. [PMID: 35654953 PMCID: PMC9163160 DOI: 10.1038/s42003-022-03460-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractFluorescence is highly prevalent in reef-building corals, nevertheless its biological role is still under ongoing debate. This feature of corals was previously suggested to primarily screen harmful radiation or facilitate coral photosynthesis. In mesophotic coral ecosystems (MCEs; 30-150 m depth) corals experience a limited, blue-shifted light environment. Consequently, in contrast to their shallow conspecifics, they might not be able to rely on photosynthates from their photosymbionts as their main energy source. Here, we experimentally test an alternative hypothesis for coral fluorescence: a prey-lure mechanism for plankton. We show that plankton exhibit preferential swimming towards green fluorescent cues and that compared to other morphs, higher predation rates are recorded in a green fluorescing morph of the mesophotic coral Euphyllia paradivisa. The evidence provided here - that plankton are actively attracted to fluorescent signals - indicates the significant role of fluorescence in amplifying the nutritional sink adjacent to coral reefs.
Collapse
|
13
|
Pérez‐Rosales G, Pichon M, Rouzé H, Villeger S, Torda G, Bongaerts P, Carlot J, Parravicini V, Hédouin L, Bardout G, Fauchet J, Ferucci A, Gazzola F, Lagarrigue G, Leblond J, Marivint E, Mittau A, Mollon N, Paulme N, Périé‐Bardout E, Pete R, Pujolle S, Siu G. Mesophotic coral ecosystems of French Polynesia are hotspots of alpha and beta generic diversity for scleractinian assemblages. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Gonzalo Pérez‐Rosales
- PSL Research University EPHE‐UPVD‐CNRS USR 3278 CRIOBE Moorea French Polynesia
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan Cedex France
| | - Michel Pichon
- Biodiversity Section Queensland Museum Townsville Queensland Australia
| | - Héloïse Rouzé
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan Cedex France
- Marine Laboratory University of Guam Mangilao Guam USA
| | | | - Gergely Torda
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia
| | - Pim Bongaerts
- California Academy of Sciences San Francisco California USA
| | - Jeremey Carlot
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan Cedex France
| | - Valeriano Parravicini
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan Cedex France
| | - Laetitia Hédouin
- PSL Research University EPHE‐UPVD‐CNRS USR 3278 CRIOBE Moorea French Polynesia
- PSL Université Paris: EPHE‐UPVD‐CNRS USR 3278 CRIOBE Université de Perpignan Perpignan Cedex France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liberman R, Shlesinger T, Loya Y, Benayahu Y. Soft coral reproductive phenology along a depth gradient: Can "going deeper" provide a viable refuge? Ecology 2022; 103:e3760. [PMID: 35582927 PMCID: PMC9540190 DOI: 10.1002/ecy.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022]
Abstract
Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide‐scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral‐reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long‐term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0–45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1–2‐day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long‐term and viable refuge for corals in the face of global environmental changes.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Tom Shlesinger
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Current address: Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Drawing the borders of the mesophotic zone of the Mediterranean Sea using satellite data. Sci Rep 2022; 12:5585. [PMID: 35379864 PMCID: PMC8979996 DOI: 10.1038/s41598-022-09413-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
The 30–150 m bathymetric range is commonly adopted in the literature to constrain the mesophotic zone. However, such depth interval varies depending on sunlight penetration, which is primarily a function of solar radiation incidence and water clarity. This is especially obvious in the Mediterranean Sea with its peculiar biophysical properties. Integrating information on light regime in the estimation of the bathymetric range of the mesophotic zone would provide a more robust definition, orienting conservation actions targeting its ecosystems. We present a first assessment of the spatial and vertical extension of the mesophotic zone in the Mediterranean Sea based upon light penetration, comparing our prediction with literature data. Our study also represents a baseline to monitor future variations in the bathymetric interval associated with the mesophotic zone in the Mediterranean Sea in relation to global changes.
Collapse
|
16
|
Kramer N, Tamir R, Ben‐Zvi O, Jacques SL, Loya Y, Wangpraseurt D. Efficient light‐harvesting of mesophotic corals is facilitated by coral optical traits. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Raz Tamir
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Or Ben‐Zvi
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Steven L. Jacques
- Department of Bioengineering University of Washington Seattle WA USA
| | - Yossi Loya
- School of Zoology Tel‐Aviv University Tel Aviv Israel
| | - Daniel Wangpraseurt
- Department of Nanoengineering University of California San Diego San Diego CA USA
- Department of Chemistry University of Cambridge Cambridge UK
| |
Collapse
|
17
|
Soto D, De Palmas S, Ho M, Denis V, Allen Chen C. A molecular census of early-life stage scleractinian corals in shallow and mesophotic zones. Ecol Evol 2021; 11:14573-14584. [PMID: 34765126 PMCID: PMC8571570 DOI: 10.1002/ece3.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/06/2022] Open
Abstract
The decline of coral reefs has fueled interest in determining whether mesophotic reefs can shield against disturbances and help replenish deteriorated shallower reefs. In this study, we characterized spatial (horizontal and vertical) and seasonal patterns of diversity in coral recruits from Dabaisha and Guiwan reefs at Ludao, Taiwan. Concrete blocks supporting terra-cotta tiles were placed at shallow (15m) and mesophotic (40m) depths, during 2016-2018. Half of the tiles were retrieved and replaced biannually over three 6-month surveys (short-term); the remainder retrieved at the end of the 18-month (long-term) survey. 451 recruits were located using fluorescent censusing and identified by DNA barcoding. Barcoding the mitochondrial cytochrome oxidase I (COI) gene resulted in 17 molecular operational taxonomic units (MOTUs). To obtain taxonomic resolution to the generic level, Pocillopora were phylotyped using the mitochondrial open reading frame (ORF), resolving eight MOTUs. Acropora, Isopora, and Montipora recruits were identified by the nuclear PaxC intron, yielding ten MOTUs. Overall, 35 MOTUs were generated and were comprised primarily of Pocillopora and, in fewer numbers, Acropora, Isopora, Pavona, Montipora, Stylophora, among others. 40% of MOTUs recruited solely within mesophotic reefs while 20% were shared by both depth zones. MOTUs recruiting across a broad depth distribution appear consistent with the hypothesis of mesophotic reefs acting as a refuge for shallow-water coral reefs. In contrast, Acropora and Isopora MOTUs were structured across depth zones representing an exception to this hypothesis. This research provides an imperative assessment of coral recruitment in understudied mesophotic reefs and imparts insight into the refuge hypothesis.
Collapse
Affiliation(s)
- Derek Soto
- Biodiversity ProgramTaiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Stéphane De Palmas
- Biodiversity ProgramTaiwan International Graduate ProgramAcademia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Ming‐Jay Ho
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Green Island Marine Research StationAcademia SinicaLudao, Taitung CountyTaiwan
| | - Vianney Denis
- Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan
| | - Chaolun Allen Chen
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Department of Life ScienceTung Hai UniversityTaichungTaiwan
| |
Collapse
|
18
|
Jones R, Wakeford M, Currey-Randall L, Miller K, Tonin H. Drill cuttings and drilling fluids (muds) transport, fate and effects near a coral reef mesophotic zone. MARINE POLLUTION BULLETIN 2021; 172:112717. [PMID: 34385023 DOI: 10.1016/j.marpolbul.2021.112717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The study was conducted to improve knowledge and provide guidance on reducing uncertainty with impact predictions when drilling near sensitive environments. Near/Far-field hindcast modelling of cuttings/drilling fluid (mud) discharges from a floating platform was conducted, based on measured discharge amounts and durations and validated by ROV-based plume and seabed sampling. The high volume, concentration, and discharge rate water-based drilling mud discharges (mud pit dumps) were identified as the most significant dispersal risk, but longer-range movement was limited by the generation of jet-like plumes on release, which rapidly delivered muds to the seabed (80 m). Effects to the sparse benthic filter feeder communities close to the wells were observed, but no effects were seen on the epibenthic or demersal fish assemblages across the nearby mesophotic reef. For future drilling near sensitive environments, the study emphasized the need to better characterise drilling fluid discharges (volumes/discharge rates) to reduce uncertainty in modelling outputs.
Collapse
Affiliation(s)
- Ross Jones
- Australian Institute of Marine Science Perth (Western Australia), Townsville, Queensland, Australia.
| | - Mary Wakeford
- Australian Institute of Marine Science Perth (Western Australia), Townsville, Queensland, Australia
| | - Leanne Currey-Randall
- Australian Institute of Marine Science Perth (Western Australia), Townsville, Queensland, Australia
| | - Karen Miller
- Australian Institute of Marine Science Perth (Western Australia), Townsville, Queensland, Australia
| | - Hemerson Tonin
- Australian Institute of Marine Science Perth (Western Australia), Townsville, Queensland, Australia
| |
Collapse
|
19
|
Pupier CA, Grover R, Fine M, Rottier C, van de Water JAJM, Ferrier-Pagès C. Dissolved Nitrogen Acquisition in the Symbioses of Soft and Hard Corals With Symbiodiniaceae: A Key to Understanding Their Different Nutritional Strategies? Front Microbiol 2021; 12:657759. [PMID: 34149646 PMCID: PMC8211778 DOI: 10.3389/fmicb.2021.657759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrogen is one of the limiting nutrients for coral growth and primary productivity. Therefore, the capacity of different associations between corals and their algal symbionts (Symbiodiniaceae) to efficiently exploit the available nitrogen sources will influence their distribution and abundance. Recent studies have advanced our understanding of nitrogen assimilation in reef-building scleractinian (hard) coral-Symbiodiniaceae symbioses. However, the nutrient metabolism of other coral taxa, such as Alcyoniina (soft corals), remains underexplored. Using stable isotope labeling, we investigated the assimilation of dissolved nitrogen (i.e., ammonium, nitrate, and free amino acids) by multiple species of soft and hard corals sampled in the Gulf of Aqaba in shallow (8-10 m) and mesophotic (40-50 m) reefs. Our results show that dissolved nitrogen assimilation rates per tissue biomass were up to 10-fold higher in hard than in soft coral symbioses for all sources of nitrogen. Although such differences in assimilation rates could be linked to the Symbiodiniaceae density, Symbiodiniaceae species, or the C:N ratio of the host and algal symbiont fractions, none of these parameters were different between the two coral taxa. Instead, the lower assimilation rates in soft coral symbioses might be explained by their different nutritional strategy: whereas soft corals may obtain most of their nitrogen via the capture of planktonic prey by the coral host (heterotrophic feeding), hard corals may rely more on dissolved nitrogen assimilation by their algal symbionts to fulfill their needs. This study highlights different nutritional strategies in soft and hard coral symbioses. A higher reliance on heterotrophy may help soft corals to grow in reefs with higher turbidity, which have a high concentration of particles in suspension in seawater. Further, soft corals may benefit from lower dissolved nitrogen assimilation rates in areas with low water quality.
Collapse
Affiliation(s)
- Chloé A. Pupier
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Renaud Grover
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Interuniversity Institute for Marine Science in Eilat, Eilat, Israel
| | - Cécile Rottier
- Marine Department, Centre Scientifique de Monaco, Monaco, Monaco
| | | | | |
Collapse
|
20
|
Depth-dependent parental effects create invisible barriers to coral dispersal. Commun Biol 2021; 4:202. [PMID: 33589736 PMCID: PMC7884412 DOI: 10.1038/s42003-021-01727-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Historically, marine populations were considered to be interconnected across large geographic regions due to the lack of apparent physical barriers to dispersal, coupled with a potentially widely dispersive pelagic larval stage. Recent studies, however, are providing increasing evidence of small-scale genetic segregation of populations across habitats and depths, separated in some cases by only a few dozen meters. Here, we performed a series of ex-situ and in-situ experiments using coral larvae of three brooding species from contrasting shallow- and deep-water reef habitats, and show that their settlement success, habitat choices, and subsequent survival are substantially influenced by parental effects in a habitat-dependent manner. Generally, larvae originating from deep-water corals, which experience less variable conditions, expressed more specific responses than shallow-water larvae, with a higher settlement success in simulated parental-habitat conditions. Survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. We conclude that local adaptations and parental effects alongside larval selectivity and phenotype-environment mismatches combine to create invisible semipermeable barriers to coral dispersal and connectivity, leading to habitat-dependent population segregation. Tom Shlesinger and Yossi Loya use ex-situ and in-situ experiments with coral larvae of three brooding species from contrasting shallow- and deep-water habitats and show that larvae originating from deep-water corals have narrower tolerances and higher habitat-specificity in simulated parental-habitat conditions. They also show that survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. Together these results demonstrate that local adaptations and parental effects interact with larval selectivity and phenotype-environment mismatches to create semipermeable barriers to coral dispersal and connectivity.
Collapse
|
21
|
Martinez S, Kolodny Y, Shemesh E, Scucchia F, Nevo R, Levin-Zaidman S, Paltiel Y, Keren N, Tchernov D, Mass T. Energy Sources of the Depth-Generalist Mixotrophic Coral Stylophora pistillata. FRONTIERS IN MARINE SCIENCE 2020; 7:988. [PMID: 33409285 PMCID: PMC7116548 DOI: 10.3389/fmars.2020.566663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Energy sources of corals, ultimately sunlight and plankton availability, change dramatically from shallow to mesophotic (30-150 m) reefs. Depth-generalist corals, those that occupy both of these two distinct ecosystems, are adapted to cope with such extremely diverse conditions. In this study, we investigated the trophic strategy of the depth-generalist hermatypic coral Stylophora pistillata and the ability of mesophotic colonies to adapt to shallow reefs. We compared symbiont genera composition, photosynthetic traits and the holobiont trophic position and carbon sources, calculated from amino acids compound-specific stable isotope analysis (AA-CSIA), of shallow, mesophotic and translocated corals. This species harbors different Symbiodiniaceae genera at the two depths: Cladocopium goreaui (dominant in mesophotic colonies) and Symbiodinium microadriaticum (dominant in shallow colonies) with a limited change after transplantation. This allowed us to determine which traits stem from hosting different symbiont species compositions across the depth gradient. Calculation of holobiont trophic position based on amino acid δ15N revealed that heterotrophy represents the same portion of the total energy budget in both depths, in contrast to the dogma that predation is higher in corals growing in low light conditions. Photosynthesis is the major carbon source to corals growing at both depths, but the photosynthetic rate is higher in the shallow reef corals, implicating both higher energy consumption and higher predation rate in the shallow habitat. In the corals transplanted from deep to shallow reef, we observed extensive photo-acclimation by the Symbiodiniaceae cells, including substantial cellular morphological modifications, increased cellular chlorophyll a, lower antennae to photosystems ratios and carbon signature similar to the local shallow colonies. In contrast, non-photochemical quenching remains low and does not increase to cope with the high light regime of the shallow reef. Furthermore, host acclimation is much slower in these deep-to-shallow transplanted corals as evident from the lower trophic position and tissue density compared to the shallow-water corals, even after long-term transplantation (18 months). Our results suggest that while mesophotic reefs could serve as a potential refuge for shallow corals, the transition is complex, as even after a year and a half the acclimation is only partial.
Collapse
Affiliation(s)
- Stephane Martinez
- Department of Marine Biology, The Leon H. Charney School of Marine
Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of
Marine Sciences, University of Haifa, Sdot Yam, Israel
| | - Yuval Kolodny
- Applied Physics Department, The Hebrew University of Jerusalem,
Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University
of Jerusalem, Jerusalem, Israel
| | - Eli Shemesh
- Department of Marine Biology, The Leon H. Charney School of Marine
Sciences, University of Haifa, Haifa, Israel
| | - Federica Scucchia
- Department of Marine Biology, The Leon H. Charney School of Marine
Sciences, University of Haifa, Haifa, Israel
- The Interuniversity Institute of Marine Sciences, Eilat,
Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science,
Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of
Science, Rehovot, Israel
| | - Yossi Paltiel
- Applied Physics Department, The Hebrew University of Jerusalem,
Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University
of Jerusalem, Jerusalem, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Alexander
Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem,
Israel
| | - Dan Tchernov
- Department of Marine Biology, The Leon H. Charney School of Marine
Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of
Marine Sciences, University of Haifa, Sdot Yam, Israel
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine
Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of
Marine Sciences, University of Haifa, Sdot Yam, Israel
- Correspondence: Tali Mass,
| |
Collapse
|
22
|
Drury C, Pérez Portela R, Serrano XM, Oleksiak M, Baker AC. Fine-scale structure among mesophotic populations of the great star coral Montastraea cavernosa revealed by SNP genotyping. Ecol Evol 2020; 10:6009-6019. [PMID: 32607208 PMCID: PMC7319168 DOI: 10.1002/ece3.6340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/28/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Mesophotic reefs (30-150 m) have been proposed as potential refugia that facilitate the recovery of degraded shallow reefs following acute disturbances such as coral bleaching and disease. However, because of the technical difficulty of collecting samples, the connectivity of adjacent mesophotic reefs is relatively unknown compared with shallower counterparts. We used genotyping by sequencing to assess fine-scale genetic structure of Montastraea cavernosa at two sites at Pulley Ridge, a mesophotic coral reef ecosystem in the Gulf of Mexico, and downstream sites along the Florida Reef Tract. We found differentiation between reefs at Pulley Ridge (~68 m) and corals at downstream upper mesophotic depths in the Dry Tortugas (28-36 m) and shallow reefs in the northern Florida Keys (Key Biscayne, ~5 m). The spatial endpoints of our study were distinct, with the Dry Tortugas as a genetic intermediate. Most striking were differences in population structure among northern and southern sites at Pulley Ridge that were separated by just 12km. Unique patterns of clonality and outlier loci allele frequency support these sites as different populations and suggest that the long-distance horizontal connectivity typical of shallow-water corals may not be typical for mesophotic systems in Florida and the Gulf of Mexico. We hypothesize that this may be due to the spawning of buoyant gametes, which commits propagules to the surface, resulting in greater dispersal and lower connectivity than typically found between nearby shallow sites. Differences in population structure over small spatial scales suggest that demographic constraints and/or environmental disturbances may be more variable in space and time on mesophotic reefs compared with their shallow-water counterparts.
Collapse
Affiliation(s)
- Crawford Drury
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
- Present address:
Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'i
| | - Rocío Pérez Portela
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
- Present address:
University of BarcelonaBarcelonaSpain
| | - Xaymara M. Serrano
- Atlantic Oceanographic and Meteorological LaboratoryNational Oceanographic and Atmospheric AdministrationMiamiFlordia
- Cooperative Institute for Marine and Atmospheric StudiesUniversity of MiamiMiamiFlorida
| | - Marjorie Oleksiak
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
| | - Andrew C. Baker
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
| |
Collapse
|
23
|
Scucchia F, Nativ H, Neder M, Goodbody-Gringley G, Mass T. Physiological characteristics of Stylophora pistillata larvae across a depth gradient. FRONTIERS IN MARINE SCIENCE 2020; 7:00013. [PMID: 31993434 PMCID: PMC6986922 DOI: 10.3389/fmars.2020.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Depth related parameters, specifically light, affect different aspects of corals physiology, including fluorescence. GFP-like pigments found in many coral species have been suggested to serve a variety of functions, including photo-protection and photo-enhancement. Using fluorescence imaging and molecular analysis, we further investigated the role of these proteins on the physiology of the coral Stylophora pistillata and its algal partners. Fluorescence was found to differ significantly between depths for larvae and adult colonies. Larvae from the shallow reef presented a higher GFP expression and a greater fluorescence intensity compared to the larvae from the mesophotic reef, reflecting the elevated need for photo-protection against high light levels characteristic of the shallow reef, thus supporting the "sunscreen" hypothesis. Additionally, given the lower but still occurring protein expression under non-damaging low light conditions, our results suggest that GFP-like proteins might act to regulate the amount of photosynthetically usable light for the benefit of the symbiotic algae. Moreover, we propose that the differences in GFP expression and green fluorescence between shallow and deep larvae indicate that the GFPs within coral larvae might serve to attract and retain different symbiont clades, increasing the chances of survival when encountering new environments.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel
- The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel
| | - Hagai Nativ
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel
| | - Maayan Neder
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel
- The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel
| | | | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel
| |
Collapse
|
24
|
Tamir R, Eyal G, Kramer N, Laverick JH, Loya Y. Light environment drives the shallow‐to‐mesophotic coral community transition. Ecosphere 2019. [DOI: 10.1002/ecs2.2839] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Raz Tamir
- School of Zoology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences in Eilat Eilat Israel
| | - Gal Eyal
- ARC Centre of Excellence for Coral Reef Studies School of Biological Sciences The University of Queensland St. Lucia Queensland 4072 Australia
- The Mina & Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Netanel Kramer
- School of Zoology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Jack H. Laverick
- Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS UK
| | - Yossi Loya
- School of Zoology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| |
Collapse
|
25
|
Disturbance in Mesophotic Coral Ecosystems and Linkages to Conservation and Management. CORAL REEFS OF THE WORLD 2019. [DOI: 10.1007/978-3-319-92735-0_47] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Sexual Reproduction of Scleractinian Corals in Mesophotic Coral Ecosystems vs. Shallow Reefs. CORAL REEFS OF THE WORLD 2019. [DOI: 10.1007/978-3-319-92735-0_35] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|