1
|
Quirk ZJ, Smith SY, Paul Acosta R, Poulsen CJ. Where did they come from, where did they go? Niche conservatism in woody and herbaceous plants and implications for plant-based paleoclimatic reconstructions. AMERICAN JOURNAL OF BOTANY 2024:e16426. [PMID: 39449637 DOI: 10.1002/ajb2.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/26/2024]
Abstract
PREMISE The ecological conditions that constrain plants to an environmental niche are assumed to be constant through time. While the fossil record has been used previously to test for niche conservatism of woody flowering plants, additional studies are needed in other plant groups especially since they can provide insight with paleoclimatic reconstructions, high biodiversity in modern terrestrial ecosystems, and significant contributions to agriculture. METHODS We tested climatic niche conservatism across time by characterizing the climatic niches of living herbaceous ginger plants (Zingiberaceae) and woody dawn redwood (Metasequoia) against paleoniches reconstructed based on fossil distribution data and paleoclimatic models. RESULTS Despite few fossil Zingiberaceae occurrences in the latitudinal tropics, unlike living Zingiberaceae, extinct Zingiberaceae likely experienced paratropical conditions in the higher latitudes, especially in the Cretaceous and Paleogene. The living and fossil distributions of Metasequoia largely remain in the upper latitudes of the northern hemisphere. The Zingiberaceae shifted from an initial subtropical climatic paleoniche in the Cretaceous, toward a temperate regime in the late Cenozoic; Metasequoia occupied a more consistent climatic niche over the same time intervals. CONCLUSIONS Because of the inconsistent climatic niches of Zingiberaceae over geologic time, we are less confident of using them for taxonomic-based paleoclimatic reconstruction methods like nearest living relative, which assume a consistent climatic niche between extant and extinct relatives; we argue that the consistent climatic niche of Metasequoia is more appropriate for these reconstructions. Niche conservatism cannot be assumed between extant and extinct plants and should be tested further in groups used for paleoclimatic reconstructions.
Collapse
Affiliation(s)
- Zack J Quirk
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- U.S. Department of Energy, Forrestal Building, Washington, 20585, D.C, USA
| | - Selena Y Smith
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
| | - R Paul Acosta
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, 4400 University Dr., Fairfax, 22030, VA, USA
| | - Christopher J Poulsen
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- Department of Earth Sciences, University of Oregon, Eugene, 97403, OR, USA
| |
Collapse
|
2
|
Butrim MJ, Lowe AJ, Currano ED. Leaf mass per area: An investigation into the application of the ubiquitous functional trait from a paleobotanical perspective. AMERICAN JOURNAL OF BOTANY 2024; 111:e16419. [PMID: 39397294 DOI: 10.1002/ajb2.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 10/15/2024]
Abstract
PREMISE Leaf mass per area (LMA) is a widely used functional trait in both neobotanical and paleobotanical research that provides a window into how plants interact with their environment. Paleobotanists have used site-level measures of LMA as a proxy for climate, biome, deciduousness, and community-scale plant strategy, yet many of these relationships have not been grounded in modern data. In this study, we evaluated LMA from the paleobotanical perspective, seeking to add modern context to paleobotanical interpretations and discover what a combined modern and fossil data set can tell us about how LMA can be best applied toward interpreting plant communities. METHODS We built a modern data set by pulling plant trait data from the TRY database, and a fossil data set by compiling data from studies that have used the petiole-width proxy for LMA. We then investigated the relationships of species-mean, site-mean, and site-distribution LMA with different climatic, phylogenetic, and physiognomic variables. RESULTS We found that LMA distributions are correlated with climate, site taxonomic composition, and deciduousness. However, the relative contributions of these factors are not distinctive, and ultimately, LMA distributions cannot accurately reconstruct the biome or climate of an individual site. CONCLUSIONS The correlations that make up the leaf economics spectrum are stronger than the correlations between LMA and climate, phylogeny, morphospace, or depositional environment. Fossil LMA should be understood as the culmination of the influences of these variables rather than as a predictor.
Collapse
Affiliation(s)
- Matthew J Butrim
- Department of Geology and Geophysics, Program in Ecology, University of Wyoming, Laramie, 82071, Wyoming, USA
| | - Alexander J Lowe
- Department of Biology, University of Washington, Seattle, 98195, Washington, USA
| | - Ellen D Currano
- Department of Geology and Geophysics, Program in Ecology, University of Wyoming, Laramie, 82071, Wyoming, USA
| |
Collapse
|
3
|
Müller C, Toumoulin A, Böttcher H, Roth-Nebelsick A, Wappler T, Kunzmann L. An integrated leaf trait analysis of two Paleogene leaf floras. PeerJ 2023; 11:e15140. [PMID: 37065698 PMCID: PMC10100813 DOI: 10.7717/peerj.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Objectives This study presents the Integrated Leaf Trait Analysis (ILTA), a workflow for the combined application of methodologies in leaf trait and insect herbivory analyses on fossil dicot leaf assemblages. The objectives were (1) to record the leaf morphological variability, (2) to describe the herbivory pattern on fossil leaves, (3) to explore relations between leaf morphological trait combination types (TCTs), quantitative leaf traits, and other plant characteristics (e.g., phenology), and (4) to explore relations of leaf traits and insect herbivory. Material and Methods The leaves of the early Oligocene floras Seifhennersdorf (Saxony, Germany) and Suletice-Berand (Ústí nad Labem Region, Czech Republic) were analyzed. The TCT approach was used to record the leaf morphological patterns. Metrics based on damage types on leaves were used to describe the kind and extent of insect herbivory. The leaf assemblages were characterized quantitatively (e.g., leaf area and leaf mass per area (LMA)) based on subsamples of 400 leaves per site. Multivariate analyses were performed to explore trait variations. Results In Seifhennersdorf, toothed leaves of TCT F from deciduous fossil-species are most frequent. The flora of Suletice-Berand is dominated by evergreen fossil-species, which is reflected by the occurrence of toothed and untoothed leaves with closed secondary venation types (TCTs A or E). Significant differences are observed for mean leaf area and LMA, with larger leaves tending to lower LMA in Seifhennersdorf and smaller leaves tending to higher LMA in Suletice-Berand. The frequency and richness of damage types are significantly higher in Suletice-Berand than in Seifhennersdorf. In Seifhennersdorf, the evidence of damage types is highest on deciduous fossil-species, whereas it is highest on evergreen fossil-species in Suletice-Berand. Overall, insect herbivory tends to be more frequently to occur on toothed leaves (TCTs E, F, and P) that are of low LMA. The frequency, richness, and occurrence of damage types vary among fossil-species with similar phenology and TCT. In general, they are highest on leaves of abundant fossil-species. Discussion TCTs reflect the diversity and abundance of leaf architectural types of fossil floras. Differences in TCT proportions and quantitative leaf traits may be consistent with local variations in the proportion of broad-leaved deciduous and evergreen elements in the ecotonal vegetation of the early Oligocene. A correlation between leaf size, LMA, and fossil-species indicates that trait variations are partly dependent on the taxonomic composition. Leaf morphology or TCTs itself cannot explain the difference in insect herbivory on leaves. It is a more complex relationship where leaf morphology, LMA, phenology, and taxonomic affiliation are crucial.
Collapse
Affiliation(s)
- Christian Müller
- Museum of Mineralogy and Geology, Senckenberg Natural History Collections Dresden, Dresden, Saxony, Germany
| | - Agathe Toumoulin
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Helen Böttcher
- Institute for Geology, Technical University Bergakademie Freiberg, Freiberg, Saxony, Germany
| | - Anita Roth-Nebelsick
- Department of Palaeontology, State Museum of Natural History, Stuttgart, Baden-Württemberg, Germany
| | - Torsten Wappler
- Hessisches Landesmuseum Darmstadt, Hessen, Germany
- Institute of Geoscience, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Nordrhein-Wesfalen, Germany
| | - Lutz Kunzmann
- Museum of Mineralogy and Geology, Senckenberg Natural History Collections Dresden, Dresden, Saxony, Germany
| |
Collapse
|
4
|
Toumoulin A, Kunzmann L, Moraweck K, Sack L. Reconstructing leaf area from fragments: testing three methods using a fossil paleogene species. AMERICAN JOURNAL OF BOTANY 2020; 107:1786-1797. [PMID: 33315244 DOI: 10.1002/ajb2.1574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Fossil leaf traits can enable reconstruction of ancient environments and climates. Among these, leaf size has been particularly studied because it reflects several climatic forcings (e.g., precipitation and surface temperature) and, potentially, environment characteristics (e.g., nutrient availability, local topography, and openness of vegetation). However, imperfect preservation and fragmentation can corrupt its utilization. We provide improved methodology to estimate leaf size from fossil fragments. METHODS We apply three methods: (1) visually reconstructing leaf area based on taxon-specific gross morphology; (2) estimating intact leaf area from vein density based on a vein scaling relationship; and (3) a novel complementary method, determining intact leaf length based on the tapering of the midvein in the fragment. We test the three methods for fossils of extinct Eotrigonobalanus furcinervis (Fagaceae) from two lignite horizons of the middle and late Eocene of central Germany respectively (~45/46 and 35/36 Ma). RESULTS The three methods, including the new one, yield consistent leaf size reconstructions. The vein scaling method showed a shift to larger leaf size, from the middle to the late Eocene. CONCLUSIONS These methods constitute a toolbox with different solutions to reconstruct leaf size from fossil fragments depending on fossil preservation. Fossil leaf size reconstruction has great potential to improve physiognomy-based paleoenvironmental reconstructions and the interpretation of the fossil record.
Collapse
Affiliation(s)
- Agathe Toumoulin
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstrasse 159, Dresden, 01109, Germany
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Technopole Arbois, 13545 Cedex 04, Aix-en-Provence, BP80, France
| | - Lutz Kunzmann
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstrasse 159, Dresden, 01109, Germany
| | - Karolin Moraweck
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstrasse 159, Dresden, 01109, Germany
| | - Lawren Sack
- UCLA Ecology and Evolutionary Biology, 621 Charles E. Young Drive South, Box 951606, Los Angeles, CA, 90095-1606, USA
| |
Collapse
|
5
|
Marcisz K, Jassey VEJ, Kosakyan A, Krashevska V, Lahr DJG, Lara E, Lamentowicz Ł, Lamentowicz M, Macumber A, Mazei Y, Mitchell EAD, Nasser NA, Patterson RT, Roe HM, Singer D, Tsyganov AN, Fournier B. Testate Amoeba Functional Traits and Their Use in Paleoecology. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.575966] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
6
|
Birks HJB. Reflections on the Use of Ecological Attributes and Traits in Quaternary Botany. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
7
|
Frye HA, Mocko K, Moore TE, Schlichting CD, Jones CS. Leaf margins in a deciduous lineage from the Greater Cape Floristic Region track climate in unexpected directions. AMERICAN JOURNAL OF BOTANY 2020; 107:735-748. [PMID: 32399959 DOI: 10.1002/ajb2.1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The functional significance of leaf margins has long been debated. In this study, we explore influences of climate, leaf lobing, woodiness, and shared evolutionary history on two leaf margin traits within the genus Pelargonium. METHODS Leaves from 454 populations of Pelargonium (161 species) were collected in the Greater Cape Floristic Region and scored for tooth presence/absence and degree of lobing. Tooth density (number of teeth per interior perimeter distance) was calculated for a subset of these. We compared five hypotheses to explain tooth presence and density using mixed effect models. RESULTS Tooth presence/absence was best predicted by the interaction of leaf lobing and mean annual temperature (MAT), but often in patterns opposite those previously reported: species were more likely to be toothed with warmer temperatures, particularly for unlobed and highly lobed leaves. In contrast, tooth density was best predicted by the interaction of MAT and the season of most rain; density declines with temperature as consistent with expectations, but only in winter-rain dominated areas. Woody and nonwoody species within Pelargonium have similar associations between tooth presence/absence and MAT, contrary to the expectation that patterns within nonwoody species would be insignificant. CONCLUSIONS We conclude Pelargonium leaf margins show predictable responses to climate, but these responses are complex and can contradict those found for global patterns across plant communities.
Collapse
Affiliation(s)
- Henry A Frye
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Kerri Mocko
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Timothy E Moore
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Carl D Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Cynthia S Jones
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
8
|
Baumgartner A, Donahoo M, Chitwood DH, Peppe DJ. The influences of environmental change and development on leaf shape in Vitis. AMERICAN JOURNAL OF BOTANY 2020; 107:676-688. [PMID: 32270876 PMCID: PMC7217169 DOI: 10.1002/ajb2.1460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/23/2020] [Indexed: 05/02/2023]
Abstract
PREMISE The size and shape (physiognomy) of woody, dicotyledonous angiosperm leaves are correlated with climate. These relationships are the basis for multiple paleoclimate proxies. Here we test whether Vitis exhibits phenotypic plasticity and whether physiognomy varies along the vine. METHODS We used Digital Leaf Physiognomy (DiLP) to measure leaf characters of four Vitis species from the USDA Germplasm Repository (Geneva, New York) from the 2012-2013 and 2014-2015 leaf-growing seasons, which had different environmental conditions. RESULTS Leaf shape changed allometrically through developmental stages; early stages were more linear than later stages. There were significant differences in physiognomy in the same developmental stage between the growing seasons, and species had significant differences in mean physiognomy between growing seasons. Phenotypic plasticity was defined as changes between growing seasons after controlling for developmental stage or after averaging all developmental stages. Vitis amurensis and V. riparia had the greatest phenotypic plasticity. North American species exhibited significant differences in tooth area:blade area. Intermediate developmental stages were most likely to exhibit phenotypic plasticity, and only V. amurensis exhibited phenotypic plasticity in later developmental stages. CONCLUSIONS Leaves have variable phenotypic plasticity along the vine. Environmental signal was strongest in intermediate developmental stages. This is significant for leaf physiognomic-paleoclimate proxies because these leaves are likely the most common in leaf litter and reflect leaves primarily included in paleoclimate reconstructions. Early season and early developmental stages have the potential to be confounding factors but are unlikely to exert significant influence because of differential preservation potential.
Collapse
Affiliation(s)
- Aly Baumgartner
- Terrestrial Paleoclimate Research GroupDepartment of GeosciencesBaylor UniversityWacoTXUSA
| | - Michaela Donahoo
- Terrestrial Paleoclimate Research GroupDepartment of GeosciencesBaylor UniversityWacoTXUSA
- Department of Geological SciencesTexas Christian UniversityFort WorthTXUSA
| | - Daniel H. Chitwood
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
- Department of Computational Mathematics, Science, and EngineeringMichigan State UniversityEast LansingMIUSA
| | - Daniel J. Peppe
- Terrestrial Paleoclimate Research GroupDepartment of GeosciencesBaylor UniversityWacoTXUSA
| |
Collapse
|
9
|
Herrera F, Shi G, Mays C, Ichinnorov N, Takahashi M, Bevitt JJ, Herendeen PS, Crane PR. Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers. PLoS One 2020; 15:e0226779. [PMID: 31940374 PMCID: PMC6961850 DOI: 10.1371/journal.pone.0226779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022] Open
Abstract
Previously unrecognized anatomical features of the cone scales of the enigmatic Early Cretaceous conifer Krassilovia mongolica include the presence of transversely oriented paracytic stomata, which is unusual for all other extinct and extant conifers. Identical stomata are present on co-occurring broad, linear, multiveined leaves assigned to Podozamites harrisii, providing evidence that K. mongolica and P. harrisii are the seed cones and leaves of the same extinct plant. Phylogenetic analyses of the relationships of the reconstructed Krassilovia plant place it in an informal clade that we name the Krassilovia Clade, which also includes Swedenborgia cryptomerioides-Podozamites schenkii, and Cycadocarpidium erdmanni-Podozamites schenkii. All three of these plants have linear leaves that are relatively broad compared to most living conifers, and that are also multiveined with transversely oriented paracytic stomata. We propose that these may be general features of the Krassilovia Clade. Paracytic stomata, and other features of this new group, recall features of extant and fossil Gnetales, raising questions about the phylogenetic homogeneity of the conifer clade similar to those raised by phylogenetic analyses of molecular data.
Collapse
Affiliation(s)
- Fabiany Herrera
- Chicago Botanic Garden, Glencoe, Illinois, United States of America
| | - Gongle Shi
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, People’s Republic of China
| | - Chris Mays
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
| | - Niiden Ichinnorov
- Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Masamichi Takahashi
- Department of Environmental Sciences, Faculty of Science, Niigata University, Nishi-ku, Niigata, Japan
| | - Joseph J. Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New South Wales, Australia
| | | | - Peter R. Crane
- Oak Spring Garden Foundation, Upperville, Virginia, United States of America
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
10
|
Lyson TR, Miller IM, Bercovici AD, Weissenburger K, Fuentes AJ, Clyde WC, Hagadorn JW, Butrim MJ, Johnson KR, Fleming RF, Barclay RS, Maccracken SA, Lloyd B, Wilson GP, Krause DW, Chester SGB. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 2019; 366:977-983. [DOI: 10.1126/science.aay2268] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/15/2019] [Indexed: 11/02/2022]
Abstract
We report a time-calibrated stratigraphic section in Colorado that contains unusually complete fossils of mammals, reptiles, and plants and elucidates the drivers and tempo of biotic recovery during the poorly known first million years after the Cretaceous–Paleogene mass extinction (KPgE). Within ~100 thousand years (ka) post-KPgE, mammalian taxonomic richness doubled, and maximum mammalian body mass increased to near pre-KPgE levels. A threefold increase in maximum mammalian body mass and dietary niche specialization occurred at ~300 ka post-KPgE, concomitant with increased megafloral standing species richness. The appearance of additional large mammals occurred by ~700 ka post-KPgE, coincident with the first appearance of Leguminosae (the bean family). These concurrent plant and mammal originations and body-mass shifts coincide with warming intervals, suggesting that climate influenced post-KPgE biotic recovery.
Collapse
|
11
|
Reichgelt T, D'Andrea WJ. Plant carbon assimilation rates in atmospheric CO 2 reconstructions. THE NEW PHYTOLOGIST 2019; 223:1844-1855. [PMID: 31081929 DOI: 10.1111/nph.15914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Fossil plant gas-exchange-based CO2 reconstructions use carbon (C) assimilation rates of extant plant species as substitutes for assimilation rates of fossil plants. However, assumptions in model species adoption can lead to systematic error propagation. We used a dataset of c. 2500 extant species to investigate the role of phylogenetic relatedness and ecology in determining C assimilation, an essential variable in gas-exchange-based CO2 models. We evaluated the effect on random and systematic error propagation in atmospheric CO2 caused by adopting different model species. Phylogenetic relatedness, growth form, and solar exposure are important predictors of C assimilation rate. CO2 reconstructions that apply C assimilation rates from modern species based solely on phylogenetic relatedness to fossil species can result in CO2 estimates that are systematically biased by a factor of > 2. C assimilation rates used in CO2 reconstructions should be determined by averaging assimilation rates of modern plant species that are (1) in the same family and (2) have a similar habit and habitat as the fossil plant. In addition, systematic bias potential and random error propagation are greatly reduced when CO2 is reconstructed from multiple fossil plant species with different modern relatives at the same site.
Collapse
Affiliation(s)
- Tammo Reichgelt
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, 10964, USA
| | - William J D'Andrea
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, 10964, USA
| |
Collapse
|