1
|
Tsagkaris C, Moysidis DV, Papazoglou AS, Khan A, Papadakos S, Louka AM, Scordilis DM, Shkodina A, Varmpompiti K, Batiha GES, Alexiou A. Current Trends of Stem Cells in Neurodegenerative Diseases. NUTRITIONAL NEUROSCIENCES 2022:311-339. [DOI: 10.1007/978-981-15-9781-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
2
|
Raj K, Akundi RS. Mutant Ataxin-3-Containing Aggregates (MATAGGs) in Spinocerebellar Ataxia Type 3: Dynamics of the Disorder. Mol Neurobiol 2021; 58:3095-3118. [PMID: 33629274 DOI: 10.1007/s12035-021-02314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common type of SCA worldwide caused by abnormal polyglutamine expansion in the coding region of the ataxin-3 gene. Ataxin-3 is a multi-faceted protein involved in various cellular processes such as deubiquitination, cytoskeletal organisation, and transcriptional regulation. The presence of an expanded poly(Q) stretch leads to altered processing and misfolding of the protein culminating in the production of insoluble protein aggregates in the cell. Various post-translational modifications affect ataxin-3 fibrillation and aggregation. This review provides an exhaustive assessment of the various pathogenic mechanisms undertaken by the mutant ataxin-3-containing aggregates (MATAGGs) for disease induction and neurodegeneration. This includes in-depth discussion on MATAGG dynamics including their formation, role in neuronal pathogenesis, and the debate over the toxic v/s protective nature of the MATAGGs in disease progression. Additionally, the currently available therapeutic strategies against SCA3 have been reviewed. The shift in the focus of such strategies, from targeting the steps that lead to or reduce aggregate formation to targeting the expression of mutant ataxin-3 itself via RNA-based therapeutics, has also been presented. We also discuss the intriguing promise that various growth and neurotrophic factors, especially the insulin pathway, hold in the modulation of SCA3 progression. These emerging areas show the newer directions through which SCA3 can be targeted including various preclinical and clinical trials. All these advances made in the last three decades since the discovery of the ataxin-3 gene have been critically reviewed here.
Collapse
Affiliation(s)
- Kritika Raj
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India.
| |
Collapse
|
3
|
Lund TC, Miller WP, Eisengart JB, Simmons K, Pollard L, Renaud DL, Wenger DA, Patterson MC, Orchard PJ. Biochemical and clinical response after umbilical cord blood transplant in a boy with early childhood-onset beta-mannosidosis. Mol Genet Genomic Med 2019; 7:e00712. [PMID: 31115173 PMCID: PMC6625138 DOI: 10.1002/mgg3.712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/08/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Deficiency in the enzyme β-mannosidase was described over three decades ago. Although rare in occurrence, the presentation of childhood-onset β-mannosidase deficiency consists of hypotonia in the newborn period followed by global development delay, behavior problems, and intellectual disability. No effective pharmacologic treatments have been available. METHODS We report 2-year outcomes following the first umbilical cord blood transplant in a 4-year-old boy with early childhood-onset disease. RESULTS We show restoration of leukocyte β-mannosidase activity which remained normal at 2 years posttransplant, and a simultaneous increase in plasma β-mannosidase activity and dramatic decrease in urine-free oligosaccharides were also observed. MRI of the brain remained stable. Neurocognitive evaluation revealed test point gains, although the magnitude of improvement was less than expected for age, causing lower IQ scores that represent a wider developmental gap between the patient and unaffected peers. CONCLUSION Our findings suggest that hematopoietic cell transplant can correct the biochemical defect in β-mannosidosis, although preservation of the neurocognitive trajectory may be a challenge.
Collapse
Affiliation(s)
- Troy C Lund
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| | | | - Julie B Eisengart
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Katrina Simmons
- Sanofi, Rare Disease Division, Sanofi Genzyme US, Bridgewater, New Jersey
| | - Laura Pollard
- Biochemical Genetics Laboratory, Greenwood Genetic Center, Greenwood, South Carolina
| | - Deborah L Renaud
- Department of Neurology, Department of Clinical Genomics, Department of Pediatrics, Mayo Clinic, Rochester, Minnesota
| | - David A Wenger
- Lysosomal Diseases Testing Laboratory, Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marc C Patterson
- Division of Child and Adolescent Neurology, Mayo Clinic, Rochester, Minnesota
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019; 16:263-286. [PMID: 30607747 PMCID: PMC6554265 DOI: 10.1007/s13311-018-00696-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders characterized by degeneration of the cerebellum and its connections. All ADCAs have progressive ataxia as their main clinical feature, frequently accompanied by dysarthria and oculomotor deficits. The most common spinocerebellar ataxias (SCAs) are 6 polyglutamine (polyQ) SCAs. These diseases are all caused by a CAG repeat expansion in the coding region of a gene. Currently, no curative treatment is available for any of the polyQ SCAs, but increasing knowledge on the genetics and the pathological mechanisms of these polyQ SCAs has provided promising therapeutic targets to potentially slow disease progression. Potential treatments can be divided into pharmacological and gene therapies that target the toxic downstream effects, gene therapies that target the polyQ SCA genes, and stem cell replacement therapies. Here, we will provide a review on the genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Lodewijk J A Toonen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Neurology, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
5
|
Mahmoud EE, Kamei N, Kamei G, Nakasa T, Shimizu R, Harada Y, Adachi N, Misk NA, Ochi M. Role of Mesenchymal Stem Cells Densities When Injected as Suspension in Joints with Osteochondral Defects. Cartilage 2019; 10:61-69. [PMID: 28486813 PMCID: PMC6376564 DOI: 10.1177/1947603517708333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate an intraarticular injection of different doses of autologous mesenchymal stem cells (MSCs) for improving repair of midterm osteochondral defect. DESIGN At 4 weeks postoperative marrow stimulation model bilaterally (3 mm diameter; 4 mm depth) in the medial femoral condyle, autologous MSCs were injected into knee joint. Twenty-four Japanese rabbits aged 6 months were divided randomly into 4 groups ( n = 6 per group): the control group and and MSC groups including 0.125, 1.25, and 6.25 million MSCs. Repaired tissue was assessed macroscopically and histologically at 4 and 12 weeks after intraarticular injection of MSCs. RESULTS At 12 weeks, there was no repair tissue in the control group. The gross appearance of the 1.25 and 6.25 million MSC groups revealed complete repair of the defect with white to pink tissue at 12 weeks. An osteochondral repair was histologically significantly better in the 1.25 and 6.25 million MSC groups than in the control and 0.125 million MSC groups at 4 and 12 weeks, due to presence of hyaline-like tissue in the deep layer at 4 weeks, and at 12 weeks hyaline cartilage formation at the periphery and fibrous tissue containing some chondrocytes in the deep layer of the center of the defect. Subchondral bone was restructured in the 1.25 and 6.25 million MSC groups, although it did not resemble the normal bone. CONCLUSION An intraarticular injection of 1.25 or 6.25 million MSCs could promote the repair of subchondral bone, even in the case of midterm osteochondral defect.
Collapse
Affiliation(s)
- Elhussein Elbadry Mahmoud
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Department of Surgery, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Naosuke Kamei, Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Goki Kamei
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Shimizu
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Harada
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nabil Ahmed Misk
- Department of Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Wang Y, Ji X, Leak RK, Chen F, Cao G. Stem cell therapies in age-related neurodegenerative diseases and stroke. Ageing Res Rev 2017; 34:39-50. [PMID: 27876573 PMCID: PMC5250574 DOI: 10.1016/j.arr.2016.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
Abstract
Aging, a complex process associated with various structural, functional and metabolic changes in the brain, is an important risk factor for neurodegenerative diseases and stroke. These diseases share similar neuropathological changes, such as the formation of misfolded proteins, oxidative stress, loss of neurons and synapses, dysfunction of the neurovascular unit (NVU), reduction of self-repair capacity, and motor and/or cognitive deficiencies. In addition to gray matter dysfunction, the plasticity and repair capacity of white matter also decrease with aging and contribute to neurodegenerative diseases. Aging not only renders patients more susceptible to these disorders, but also attenuates their self-repair capabilities. In addition, low drug responsiveness and intolerable side effects are major challenges in the prevention and treatment of senile diseases. Thus, stem cell therapies-characterized by cellular plasticity and the ability to self-renew-may be a promising strategy for aging-related brain disorders. Here, we review the common pathophysiological changes, treatments, and the promises and limitations of stem cell therapies in age-related neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
- Yuan Wang
- Departments of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Xunming Ji
- Departments of Neurosurgery, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Geriatric Research Education and Clinical Centers, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
7
|
Transplantation of human mesenchymal stem cells into the cisterna magna and its neuroprotective effects in a parkinsonian animal model. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0038-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Verma V, Samanthapudi K, Raviprakash R. Classic Studies on the Potential of Stem Cell Neuroregeneration. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2015; 25:123-141. [PMID: 26308908 DOI: 10.1080/0964704x.2015.1039904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The 1990s and 2000s were the beginning of an exciting time period for developmental neuroscience and neural stem cell research. By better understanding brain plasticity and the birth of new neurons in the adult brain, contrary to established dogma, hope for therapy from devastating neurological diseases was generated. The potential for stem cells to provide functional recovery in humans remains to be further tested and to further move into the clinical trial realm. The future certainly has great promise on stem cells to assist in alleviation of difficult-to-treat neurologic disorders. This article reviews classic studies of the 1990s and 2000s that paved the way for the advances of today, which can in turn lead to tomorrow's therapies.
Collapse
Affiliation(s)
- Vivek Verma
- a Department of Neuroscience , University of Pittsburgh , Pittsburgh , PA , USA
| | | | - Ratujit Raviprakash
- a Department of Neuroscience , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
9
|
Lewis CM, Suzuki M. Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis. Stem Cell Res Ther 2015; 5:32. [PMID: 25157751 PMCID: PMC4035799 DOI: 10.1186/scrt421] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the neuromuscular system and does not have a known singular cause. Genetic mutations, extracellular factors, non-neuronal support cells, and the immune system have all been shown to play varied roles in clinical and pathological disease progression. The therapeutic plasticity of mesenchymal stem cells (MSCs) may be well matched to this complex disease pathology, making MSCs strong candidates for cellular therapy in ALS. In this review, we summarize a variety of explored mechanisms by which MSCs play a role in ALS progression, including neuronal and non-neuronal cell replacement, trophic factor delivery, and modulation of the immune system. Currently relevant techniques for applying MSC therapy in ALS are discussed, focusing in particular on delivery route and cell source. We include examples from in vitro, preclinical, and clinical investigations to elucidate the remaining progress that must be made to understand and apply MSCs as a treatment for ALS.
Collapse
|
10
|
Cordeiro MF, Horn AP. Stem cell therapy in intracerebral hemorrhage rat model. World J Stem Cells 2015; 7:618-629. [PMID: 25914768 PMCID: PMC4404396 DOI: 10.4252/wjsc.v7.i3.618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/03/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a very complex pathology, with many different not fully elucidated etiologies and prognostics. It is the most severe subtype of stroke, with high mortality and morbidity rates. Unfortunately, despite the numerous promising preclinical assays including neuroprotective, anti-hypertensive, and anti-inflammatory drugs, to this moment only symptomatic treatments are available, motivating the search for new alternatives. In this context, stem cell therapy emerged as a promising tool. However, more than a decade has passed, and there is still much to be learned not only about stem cells, but also about ICH itself, and how these two pieces come together. To date, rats have been the most widely used animal model in this research field, and there is much more to be learned from and about them. In this review, we first summarize ICH epidemiology, risk factors, and pathophysiology. We then present different methods utilized to induce ICH in rats, and examine how accurately they represent the human disease. Next, we discuss the different types of stem cells used in previous ICH studies, also taking into account the tested transplantation sites. Finally, we summarize what has been achieved in assays with stem cells in rat models of ICH, and point out some relevant issues where attention must be given in future efforts.
Collapse
|
11
|
Wu AM, Ni WF, Huang ZY, Li QL, Wu JB, Xu HZ, Yin LH. Analysis of differentially expressed lncRNAs in differentiation of bone marrow stem cells into neural cells. J Neurol Sci 2015; 351:160-167. [PMID: 25820029 DOI: 10.1016/j.jns.2015.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 12/24/2022]
Abstract
Many studies have reported micro RNAs involved in the differentiation of bone marrow mesenchymal stem cells (BMSCs) into neural cells; however, the roles of long non-coding RNAs (lncRNAs) in the differentiation of BMSCs into neural cells remain poorly understood. We used microarray assays to compare the lncRNA and messenger RNA (mRNA) expression profiles in BMSCs and neural-induced BMSCs. We found a total of 24 lncRNAs and 738 mRNAs that were upregulated and 32 lncRNAs and 682 mRNAs that were downregulated in samples induced for 3h; 27 lncRNAs and 864 mRNAs that were upregulated and 37 lncRNAs and 968 mRNAs that were downregulated in 6h samples; and 23 lncRNAs and 1159 mRNAs that were upregulated or downregulated in both the 3h and 6h samples. For 23 differentially lncRNAs and 83 differentially mRNAs, 256 matched lncRNA-mRNA pairs were found. GO (Gene ontology) analysis showed that these lncRNAs were associated with biological processes, cellular components, and molecular functions. Twenty-five pathways were identified by pathway analysis. Then, RT-qPCR validation of the differentially expressed H19, Esco2, Pcdhb18, and RGD1560277 genes confirmed the microarray data. Our study revealed the expression patterns of lncRNAs in the differentiation of BMSCs into neural cells, and many lncRNAs were differentially expressed in induced BMSCs, suggesting that they may play key roles in processes of differentiation. Our findings may promote the use of BMSCs to treat neurodegenerative diseases and trauma.
Collapse
Affiliation(s)
- Ai-Min Wu
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 2# Fuxue Road, Wenzhou 325027, People's Republic of China; The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, 109# XueYuan Western Road, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Wen-Fei Ni
- The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, 109# XueYuan Western Road, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Zhe-Yu Huang
- The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, 109# XueYuan Western Road, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Qing-Long Li
- The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, 109# XueYuan Western Road, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Jian-Bo Wu
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 2# Fuxue Road, Wenzhou 325027, People's Republic of China
| | - Hua-Zi Xu
- The Department of Spinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang Spinal Research Center, 109# XueYuan Western Road, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Li-Hui Yin
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 2# Fuxue Road, Wenzhou 325027, People's Republic of China.
| |
Collapse
|
12
|
Nöth U, Rackwitz L, Steinert AF, Tuan RS. Principles of tissue engineering and cell- and gene-based therapy. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Sygnecka K, Heider A, Scherf N, Alt R, Franke H, Heine C. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model. Stem Cells Dev 2014; 24:824-35. [PMID: 25390472 DOI: 10.1089/scd.2014.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.
Collapse
Affiliation(s)
- Katja Sygnecka
- 1 Translational Centre for Regenerative Medicine (TRM), University of Leipzig , Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Shin YJ, Riew TR, Park JH, Pak HJ, Lee MY. Expression of vascular endothelial growth factor-C (VEGF-C) and its receptor (VEGFR-3) in the glial reaction elicited by human mesenchymal stem cell engraftment in the normal rat brain. J Histochem Cytochem 2014; 63:170-80. [PMID: 25473093 DOI: 10.1369/0022155414564218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To determine whether vascular endothelial growth factor-C (VEGF-C) and its receptor (VEGFR-3) are involved in the glial reaction elicited by transplanted mesenchymal stem cells (MSCs), we examined the cellular localization of VEGF-C and VEGFR-3 proteins in the striatum of adult normal rats that received bone marrow-derived human MSCs. The MSC grafts were infiltrated with activated microglia/macrophages and astrocytes over a 2-week period post-transplantation, which appeared to parallel the loss of transplanted MSCs. VEGF-C/VEGFR-3 was expressed in activated microglia/macrophages recruited to the graft site, where the induction of VEGF-C protein was rather late compared with that of its receptor. VEGF-C protein was absent or very weak on day 3, whereas VEGFR-3 immunoreactivity was evident within the first three days. Furthermore, within three days, VEGF-C could be detected in the brain macrophages localized immediately adjacent to the needle track. At the same time, almost all the brain macrophages in both regions expressed VEGFR-3. Reactive astrocytes at the graft site expressed VEGFR-3, but not VEGF-C. These data demonstrated the characteristic time- and cell-dependent expression patterns for VEGF-C and VEGFR-3 within the engrafted brain tissue, suggesting that they may contribute to neuroinflammation in MSC transplantation, possibly through the recruitment and/or activation of microglia/macrophages and astrogliosis.
Collapse
Affiliation(s)
- Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Joo-Hee Park
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Ha-Jin Pak
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| |
Collapse
|
15
|
Localization and Differentiation Pattern of Transplanted Human Multipotent Mesenchymal Stromal Cells in the Brain of Bulbectomized Mice. Bull Exp Biol Med 2014; 158:118-22. [DOI: 10.1007/s10517-014-2706-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Indexed: 12/21/2022]
|
16
|
Bobkova NV, Poltavtseva RA, Samokhin AN, Sukhikh GT. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration. Bull Exp Biol Med 2014; 156:119-21. [PMID: 24319707 DOI: 10.1007/s10517-013-2293-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Science; V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health Care of the Russian Federation, Moscow, Russia.
| | | | | | | |
Collapse
|
17
|
Harnessing neurogenesis for the possible treatment of Parkinson's disease. J Comp Neurol 2014; 522:2817-30. [DOI: 10.1002/cne.23607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/24/2014] [Accepted: 04/08/2014] [Indexed: 01/05/2023]
|
18
|
Pınarlı FA, Okten G, Beden U, Fışgın T, Kefeli M, Kara N, Duru F, Tomak L. Keratinocyte growth factor-2 and autologous serum potentiate the regenerative effect of mesenchymal stem cells in cornea damage in rats. Int J Ophthalmol 2014; 7:211-9. [PMID: 24790860 DOI: 10.3980/j.issn.2222-3959.2014.02.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/25/2013] [Indexed: 01/07/2023] Open
Abstract
AIM To investigate the healing process after severe corneal epithelial damage in rats treated with mesenchymal stem cells (MSCs) cultured with or without keratinocyte growth factor (KGF-2) and autologous serum (AS) on amniotic membrane (AM). Many patients are blind and devastated by severe ocular surface diseases due to limbal stem cell deficiency. Bone marrow-derived MSCs are potential sources for cell-based tissue engineering to repair or replace the corneal tissue, having the potential to differentiate to epithelial cells. METHODS The study included 5 groups each including 10 female "Sprague Dawley" rats in addition to 20 male rats used as bone marrow donors. Group I rats received AM+MSCs, Group II rats AM+MSCs cultured with KGF-2, Group III rats AM+MSCs cultured with KGF-2+AS, Group IV rats only AM and Group V rats, none. AS was derived from blood drawn from male rats and bone marrow was obtained from the femur and tibia bones of the same animals. Therapeutic effect was evaluated with clinical, histopathological and immunohistochemical assessment. MSC engraftment was demonstrated via detection of donor genotype (Y+) in the recipient tissue (X) with polymerase chain reaction. RESULTS Corneal healing was significantly better in Groups I-III rats treated with MSC transplantation compared to Group IV and Group V rats with supportive treatment only. The best results were obtained in Group III rats with 90% transparency, 70% lack of neovascularization, and 100% epithelium damage limited to less than 1/4 of cornea. CONCLUSION We suggest that culture of MSCs with KGF-2 and AS on AM is effective in corneal repair in case of irreversible damage to limbal stem cells.
Collapse
Affiliation(s)
- Ferda Alpaslan Pınarlı
- Department of Medical Biology and Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Gülsen Okten
- Department of Medical Biology and Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Umit Beden
- Department of Ophthalmology, Faculty of Medicine, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Tunç Fışgın
- Department of Pediatric Hematology, Faculty of Medicine, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Mehmet Kefeli
- Department of Pathology, Faculty of Medicine, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Nurten Kara
- Department of Medical Biology and Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Feride Duru
- Department of Pediatric Hematology, Faculty of Medicine, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Leman Tomak
- Department of Medical Biostatistics, Faculty of Medicine, Ondokuz Mayis University, Samsun 55270, Turkey
| |
Collapse
|
19
|
Wu SH, Yang HX, Jiang GH, Gong DR, Wang LX. Preliminary results of cord blood mononuclear cell therapy for multiple system atrophy: a report of three cases. Med Princ Pract 2014; 23:282-5. [PMID: 23948955 PMCID: PMC5586864 DOI: 10.1159/000354051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES This study was designed to evaluate the effects of cord blood mononuclear cell transplantation in multiple system atrophy (MSA). CLINICAL PRESENTATION AND INTERVENTION Cord blood mononuclear cells (1-2 × 10(8) cells/6 ml) were injected into the subarachnoid space using lumbar puncture in patients 1 and 2 and cisterna magna puncture in patient 3 in the 3 patients with MSA. The cord blood mononuclear cell transplantation was repeated 30 days after the first treatment in patients 1 and 2; it was repeated twice in patient 3. The clinical outcomes of treatment were used to assess the Unified Multiple System Atrophy Rating Scale (UMSARS) before, 90 and 180 days after the cell transplantation. There were no clinically noticeable side effects from the cord blood mononuclear cells. The UMSARS scores improved after 90 days of the cord blood mononuclear cell therapy in all 3 patients, the most significant improvement being that in urinary incontinence and ability to walk. CONCLUSIONS Cord blood mononuclear cell transplantation was safe and potentially effective in the treatment of MSA in the 3 patients.
Collapse
Affiliation(s)
- Shu-Hui Wu
- Department of Neurology, Liaocheng People's Hospital of Taishan Medical University, N.S.W., Australia
| | - Hai-Xin Yang
- Department of Neurology, Liaocheng People's Hospital of Taishan Medical University, N.S.W., Australia
| | - Gui-Hua Jiang
- Department of Laboratory Medicine, Guanxian People's Hospital, Liaocheng, PR China, N.S.W., Australia
| | - Dian-Rong Gong
- Department of Neurology, Liaocheng People's Hospital of Taishan Medical University, N.S.W., Australia
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, N.S.W., Australia
- *Prof. Le-Xin Wang, School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678 (Australia), E-Mail
| |
Collapse
|
20
|
Glavaski-Joksimovic A, Bohn MC. Mesenchymal stem cells and neuroregeneration in Parkinson's disease. Exp Neurol 2013; 247:25-38. [DOI: 10.1016/j.expneurol.2013.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 02/06/2023]
|
21
|
De Vocht N, Praet J, Reekmans K, Le Blon D, Hoornaert C, Daans J, Berneman Z, Van der Linden A, Ponsaerts P. Tackling the physiological barriers for successful mesenchymal stem cell transplantation into the central nervous system. Stem Cell Res Ther 2013; 4:101. [PMID: 23998480 PMCID: PMC3854758 DOI: 10.1186/scrt312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past decade a lot of research has been performed towards the therapeutic use of mesenchymal stem cells (MSCs) in neurodegenerative and neuroinflammatory diseases. MSCs have shown to be beneficial in different preclinical studies of central nervous system (CNS) disorders due to their immunomodulatory properties and their capacity to secrete various growth factors. Nevertheless, most of the transplanted cells die within the first hours after transplantation and induce a neuroinflammatory response. In order to increase the efficacy of MSC transplantation, it is thus imperative to completely characterise the mechanisms mediating neuroinflammation and cell death following MSC transplantation into the CNS. Consequently, different components of these cell death- and neuroinflammation-inducing pathways can be targeted in an attempt to improve the therapeutic potential of MSCs for CNS disorders.
Collapse
|
22
|
Ma A, Jiang L, Song L, Hu Y, Dun H, Daloze P, Yu Y, Jiang J, Zafarullah M, Chen H. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates. Int Immunopharmacol 2013; 16:399-408. [PMID: 23499511 DOI: 10.1016/j.intimp.2013.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/01/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Articular cartilage defects are commonly associated with trauma, inflammation and osteoarthritis. Mesenchymal stem cell (MSC)-based therapy is a promising novel approach for repairing articular cartilage. Direct intra-articular injection of uncommitted MSCs does not regenerate high-quality cartilage. This study explored utilization of a new three-dimensional, selected chondrogenic clonal MSC-loaded monkey acellular dermal matrix (MSC-ADM) scaffold to repair damaged cartilage in an experimental model of knee joint cartilage defect in Cynomolgus monkeys. METHODS MSCs were characterized for cell size, cell yield, phenotypes, proliferation and chondrogenic differentiation capacity. Chondrogenic differentiation assays were performed at different MSC passages by sulfated glycosaminoglycans (sGAG), collagen, and fluorescence activated cell sorter (FACS) analysis. Selected chondrogenic clonal MSCs were seeded onto ADM scaffold with the sandwich model and MSC-loaded ADM grafts were analyzed by confocal microscopy and scanning electron microscopy. Cartilage defects were treated with normal saline, clonal MSCs and clonal MSC-ADM grafts, respectively. The clinical parameters, and histological and immunohistochemical examinations were evaluated at weeks 8, 16, 24 post-treatment, respectively. RESULTS Polyclonal and clonal MSCs could differentiate into the chondrogenic lineage after stimulation with suitable chondrogenic factors. They expressed mesenchymal markers and were negative for hematopoietic markers. Articular cartilage defects were considerably improved and repaired by selected chondrogenic clonal MSC-based treatment, particularly, in MSC-ADM-treated group. The histological scores in MSC-ADM-treated group were consistently higher than those of other groups. CONCLUSION Our results suggest that selected chondrogenic clonal MSC-loaded ADM grafts could improve the cartilage lesions in Cynomolgus monkey model, which may be applicable for repairing similar human cartilage defects.
Collapse
Affiliation(s)
- Anlun Ma
- Department of Surgery, Research Center, CHUM (CRCHUM), Notre-Dame Hospital, University of Montreal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
De Vocht N, Lin D, Praet J, Hoornaert C, Reekmans K, Le Blon D, Daans J, Pauwels P, Goossens H, Hens N, Berneman Z, Van der Linden A, Ponsaerts P. Quantitative and phenotypic analysis of mesenchymal stromal cell graft survival and recognition by microglia and astrocytes in mouse brain. Immunobiology 2012; 218:696-705. [PMID: 22944251 DOI: 10.1016/j.imbio.2012.08.266] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 08/02/2012] [Accepted: 08/05/2012] [Indexed: 01/18/2023]
Abstract
Although cell transplantation is increasingly suggested to be beneficial for the treatment of various neurodegenerative diseases, the therapeutic application of such intervention is currently hindered by the limited knowledge regarding central nervous system (CNS) transplantation immunology. In this study, we aimed to investigate the early post transplantation innate immune events following grafting of autologous mesenchymal stromal cells (MSC) in the CNS of immune competent mice. First, the survival of grafted Luciferase/eGFP-expressing MSC (MSC-Luc/eGFP) was demonstrated to be stable from on day 3 post implantation using in vivo bioluminescence imaging (BLI), which was further confirmed by quantitative histological analysis of MSC-Luc/eGFP graft survival. Additional histological analyses at week 1 and week 2 post grafting revealed the appearance of (i) graft-surrounding/-invading Iba1+ microglia and (ii) graft-surrounding GFAP+ astrocytes, as compared to day 0 post grafting. While the density of graft-surrounding astrocytes and microglia did not change between week 1 and week 2 post grafting, the density of graft-invading microglia significantly decreased between week 1 and week 2 post implantation. However, despite the observed decrease in microglial density within the graft site, additional phenotypic analysis of graft-invading microglia, based on CD11b- and MHCII-expression, revealed >50% of graft-invading microglia at week 2 post implantation to display an activated status. Although microglial expression of CD11b and MHCII is already suggestive for a pro-inflammatory M1-oriented phenotype, the latter was further confirmed by: (i) the expression of NOS2 by microglia within the graft site, and (ii) the absence of arginase 1-expression, an enzyme known to suppress NO activity in M2-oriented microglia, on graft-surrounding and -invading microglia. In summary, we here provide a detailed phenotypic analysis of post transplantation innate immune events in the CNS of mice, and warrant that such intervention is associated with an M1-oriented microglia response and severe astrogliosis.
Collapse
Affiliation(s)
- Nathalie De Vocht
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li H, Fu X. Mechanisms of action of mesenchymal stem cells in cutaneous wound repair and regeneration. Cell Tissue Res 2012; 348:371-7. [PMID: 22447168 DOI: 10.1007/s00441-012-1393-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/01/2012] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with the capacity for self-renewal and differentiation and have a broad tissue distribution. These characteristics make them candidate cells for wound healing and regeneration in a variety of disorders. Endogenous MSCs or exogenously delivered MSCs can traffic and migrate to injured tissue and participate in the healing of this tissue. The concentrated conditioned medium from MSCs can modulate wound repair without MSCs being present in the wound. The therapeutic effects of MSCs might be attributable to their ability to differentiate and transdifferentiate into tissue-specific cells, to fuse with the resident cells, to secrete a wide array of paracrine factors in order to stimulate the survival and functional recovery of the resident cells, or to regulate the local microenviroment or niche and immune response. These mechanisms are probably independent but not mutually exclusive. In many circumstances, a combination of these protective mechanisms might work together to affect cutaneous wound healing. This review gives a brief overview and discusses the mechanisms by which MSCs promote skin repair and regeneration, although the specific mechanisms in each type of cutaneous wound are still unclear and controversial. A comprehensive understanding of the mechanisms should allow us to find advanced and better treatment strategies for various skin diseases, even those that are currently incurable.
Collapse
Affiliation(s)
- Haihong Li
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, ShanTou, GuangDong Province, People's Republic of China.
| | | |
Collapse
|
25
|
Steiner B, Roch M, Holtkamp N, Kurtz A. Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAo-mouse model for cerebral ischemia. Neurosci Lett 2012; 513:25-30. [DOI: 10.1016/j.neulet.2012.01.078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/23/2012] [Accepted: 01/31/2012] [Indexed: 01/01/2023]
|
26
|
Kan I, Barhum Y, Melamed E, Offen D. Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice. Stem Cell Rev Rep 2011; 7:404-12. [PMID: 20830611 DOI: 10.1007/s12015-010-9190-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammalian neurogenesis has been demonstrated in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. However, the low rate and the restricted long term survival of newborn cells limit the restorative ability of this process. Adult bone marrow derived mesenchymal stem cells (MSCs) have been extensively studied due to their wide therapeutic potential. The aim of this study was to determine if MSC transplantation to the normally restrictive SVZ of mice housed in an enriched environment stimulates endogenous neurogenesis. In the presented study 30 C57BL/6 female mice were divided into 3 groups: standard environment injected with phosphate buffered saline (PBS) and enriched environment injected with either PBS or MSCs. Bromodeoxyuridine was injected for 6 days, and 3 weeks later the mice were sacrificed and the brain tissue analyzed immunohistochemically. PBS-treated mice housed in enriched cages showed augmented neurogenesis in the SGZ but not the SVZ. MSC transplantation was associated with increased proliferation and neuronal differentiation of neural progenitors within the SVZ and an increase in the proportion of the newborn neurons out of the total proliferating cells. Histological analysis confirmed the survival of a significant amount of the transplanted cells at least 3 weeks after transplantation, and the presence of brain-derived neurotrophic factor expression. To our knowledge, this is the first study to show that MSCs might interfere with the tight regulation of the SVZ, independent of the induced brain lesion.
Collapse
Affiliation(s)
- Inna Kan
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Beilinson Campus and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
27
|
Chung R, Foster BK, Xian CJ. Preclinical studies on mesenchymal stem cell-based therapy for growth plate cartilage injury repair. Stem Cells Int 2011; 2011:570125. [PMID: 21808649 PMCID: PMC3144692 DOI: 10.4061/2011/570125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/07/2011] [Indexed: 12/20/2022] Open
Abstract
In the last two decades, there has been a strong interest in searching for biological treatments for regeneration of injured growth plate cartilage and prevention of its bony repair. Various means have been tried, including implantation of chondrocytes, mesenchymal stem cell (MSC), together with exogenous growth factor and scaffolds, and gene therapy. However, with the lack of success with chondrocytes, more research has focussed on MSC-based treatments. In addition to circumvent limitations with MSC-based treatments (including cell harvest-associated morbidity, difficulties/time/cost involved in MSC isolation and ex vivo expansion, and potential disease transmission), mobilising endogenous MSCs to the growth plate injury site and enhancing in situ regeneration mechanisms would represent an alternative attractive approach. Further studies are required to investigate the potential particularly in large animal models or clinical setting of the ex vivo MSC approach and the feasibility of the endogenous MSC in situ approach in growth plate regeneration.
Collapse
Affiliation(s)
- Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, City East Campus, G.P.O Box 2471, Adelaide, SA 5001, Australia
| | | | | |
Collapse
|
28
|
Horn AP, Bernardi A, Luiz Frozza R, Grudzinski PB, Hoppe JB, de Souza LF, Chagastelles P, de Souza Wyse AT, Bernard EA, Battastini AMO, Campos MM, Lenz G, Nardi NB, Salbego C. Mesenchymal Stem Cell-Conditioned Medium Triggers Neuroinflammation and Reactive Species Generation in Organotypic Cultures of Rat Hippocampus. Stem Cells Dev 2011; 20:1171-81. [DOI: 10.1089/scd.2010.0157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ana Paula Horn
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
- Laboratório de Histologia, Instituto de Ciências Biológicas, FURG, Avenida Itália, Carreiros, Rio Grande, RS, Brazil
| | - Andressa Bernardi
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Rudimar Luiz Frozza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Patrícia Bencke Grudzinski
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Juliana Bender Hoppe
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Luiz Fernando de Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Pedro Chagastelles
- Departamento de Genética, Instituto de Biociências, UFRGS, Porto Alegre, RS, Brazil
| | - Angela Terezinha de Souza Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Elena Aida Bernard
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Maria Martha Campos
- Faculdade de Odontologia e Instituto de Toxicologia, PUCRS, Porto Alegre, RS, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Instituto de Biociências, UFRGS, Porto Alegre, RS, Brazil
| | - Nance Beyer Nardi
- Departamento de Genética, Instituto de Biociências, UFRGS, Porto Alegre, RS, Brazil
| | - Christianne Salbego
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
29
|
Deng J, Zou ZM, Zhou TL, Su YP, Ai GP, Wang JP, Xu H, Dong SW. Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue. Neurol Sci 2011; 32:641-51. [DOI: 10.1007/s10072-011-0608-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 04/23/2011] [Indexed: 12/21/2022]
|
30
|
Dongmei H, Jing L, Mei X, Ling Z, Hongmin Y, Zhidong W, Li D, Zikuan G, Hengxiang W. Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy 2011; 13:913-7. [PMID: 21545234 DOI: 10.3109/14653249.2011.579958] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS The aims of this study were to observe the safety and effectiveness of umbilical cord mesenchymal stromal cells (UC-MSC) in the treatment of spinocerebellar ataxia (SCA) and multiple system atrophy-cerebellar type (MSA-C). METHODS From October 2009 to September 2010, 14 cases of SCA and 10 cases of MSA-C were given UC-MSC by weekly intrathecal injection, at a dose of 1 × 10(6)/kg four times as one course. All the patients received one course of treatment, except three patients who received two courses. The movement ability and quality of daily life were evaluated with the International Cooperative Ataxia Rating Scale (ICARS) and Activity of Daily Living Scale (ADL) and the scores compared with those before cell therapy. A follow-up of 6-15 months was carried out for all of the patients. RESULTS The results showed that the ICARS and ADL scores were significantly decreased 1 month after treatment (P < 0.01). The symptoms, including unstable walking and standing, slow movement, fine motor disorders of the upper limbs, writing difficulties and dysarthria, were greatly improved except for one patient, who had no response. The observed side-effects included dizziness (four patients), back pain (two cases) and headache (one case), which disappeared within 1-3 days. During the follow-up, 10 cases remained stable for half a year or longer, while 14 cases had regressed to the status prior to the treatment within 1-14 months (an average of 3 months). CONCLUSIONS Intrathecal injection of UC-MSC is safe and can delay the progression of neurologic deficits for SCA and MSA-C patients.
Collapse
Affiliation(s)
- Han Dongmei
- Department of Hematology, General Hospital of the Air Force, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Toghraie FS, Chenari N, Gholipour MA, Faghih Z, Torabinejad S, Dehghani S, Ghaderi A. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. Knee 2011; 18:71-5. [PMID: 20591677 DOI: 10.1016/j.knee.2010.03.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 02/20/2010] [Accepted: 03/07/2010] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a progressively debilitating disease that affects mostly cartilage, with associated changes in the bone. Increasing incidence of OA and the aging population coupled with insufficient therapeutic choices has led to focus on the potential of stem cells as a novel strategy for cartilage repair. In this study, we used scaffold free mesenchymal stem cells obtained from infrapatellar fat pad in an experimental animal model of OA by direct intraarticular injection. Mesenchymal stem cells isolated from a 2.8kg White New Zealand rabbit. The cells were expanded and grown in vitro. OA was induced by unilaterally anterior cruciate ligament transection of knee joints. Twelve weeks after operation, a single dose of 1 million cells suspended in 1ml of medium was delivered to the injured knee by direct intraarticular injection. Control group received 1ml of medium without cells. The knees were examined after sixteen and twenty weeks from the surgery. Repairing was investigated radiologically, grossly and histologically using haematoxylin and eosin, Safranin-O and toluidine blue staining. Radiological assessment confirmed development of OA changes after 12 weeks. Rabbits receiving mesenchymal stem cells showed lower degree of cartilage degeneration, osteophyte formation, and Subchondral sclerosis than control group at 20 week after surgery. The quality of cartilage was significantly better in cell-treated group compared with control group after 20 weeks. In conclusion, infrapatellar fat pad derived mesenchymal stem cells could be the promising cell sources for the treatment of OA.
Collapse
Affiliation(s)
- F S Toghraie
- Faculty of Vet Medicine, Shiraz University, Iran
| | | | | | | | | | | | | |
Collapse
|
32
|
Principles of tissue engineering and cell- and gene-based therapy. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
In vitro interactions between bone marrow stromal cells and hippocampal slice cultures. C R Biol 2010; 333:582-90. [PMID: 20688278 DOI: 10.1016/j.crvi.2010.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 12/11/2022]
Abstract
Bone marrow stromal cells (BMSCs) are capable of differentiating into various cell types including brain cells. Several groups have also demonstrated trophic effects of MSC grafts in experimental ischemia models. However, the underlying molecular mechanisms of these effects are not fully understood. We developed an "in vitro graft model" which consisted in a coculture of GFP-expressing BMSCs and hippocampal organotypic slice cultures. Total marrow cells (MCs) or BMSCs after one (BMSC(1P)) or five passages (BMSC(5P)) were transplanted on hippocampal slices. During the 10 days of our experiments, MCs and BMSC(1P) migrated toward the tissue, but their total number remained constant. Conversely, the number of BMSC(5P) decreased over the 10 days of the experiment, and no migration could be detected. Using immunohistochemistry, we observed that the hippocampal slices induced the expression of neural antigens in very few grafted cells, but MCs and BMSC(1P) improved the conservation of the hippocampal slice culture. Similar experiments using BMSC(5P) did not produce any significant change. We conclude that the number of passages greatly influence BMSCs survival rate, migration and neuroprotective capacities.
Collapse
|
34
|
Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 2010; 15:1164-75. [PMID: 19859069 DOI: 10.1038/mp.2009.110] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adult bone marrow-derived mesenchymal stem cells (MSCs) are regarded as potential candidates for treatment of neurodegenerative disorders, because of their ability to promote neurogenesis. MSCs promote neurogenesis by differentiating into neural lineages as well as by expressing neurotrophic factors that enhance the survival and differentiation of neural progenitor cells. Depression has been associated with impaired neurogenesis in the hippocampus and dentate gyrus. Therefore, the aim of this study was to analyze the therapeutic potential of MSCs in the Flinders sensitive line (FSL), a rat animal model for depression. Rats received an intracerebroventricular injection of culture-expanded and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled bone marrow-derived MSCs (10⁵ cells). MSC-transplanted FSL rats showed significant improvement in their behavioral performance, as measured by the forced swim test and the dominant-submissive relationship (DSR) paradigm. After transplantation, MSCs migrated mainly to the ipsilateral dentate gyrus, CA1 and CA3 regions of the hippocampus, and to a lesser extent to the thalamus, hypothalamus, cortex and contralateral hippocampus. Neurogenesis was increased in the ipsilateral dentate gyrus and hippocampus of engrafted rats (granular cell layer) and was correlated with MSC engraftment and behavioral performance. We therefore postulate that MSCs may serve as a novel modality for treating depressive disorders.
Collapse
|
35
|
Globerson A, Reznick AZ. Biogerontology research in Israel. Biogerontology 2010; 12:17-30. [PMID: 20549354 DOI: 10.1007/s10522-010-9277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
Studies on biogerontology in Israel are reviewed in relation to the academic and medical research setup, as well as to a variety of gerontological bodies that contribute to promotion of the research. Studies on the biology of aging are outlined with a view also on the relevance and possible applications to medicine. The various topics encompass longevity-associated genes, effects of calorie restriction, including studies on the experimental model of the alpha-MUPA mutant mouse, as well as basic issues regarding the central nervous system and skeletal tissues. Attention is paid also to stem cell biology as related to tissue repair in a variety of systems, and experiments performed on plants. Finally, a new insight into the theories on aging is viewed, as currently being pursued.
Collapse
Affiliation(s)
- Amiela Globerson
- The Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
36
|
Deschaseaux F, Pontikoglou C, Sensébé L. Bone regeneration: the stem/progenitor cells point of view. J Cell Mol Med 2010; 14:103-15. [PMID: 19840188 PMCID: PMC3837599 DOI: 10.1111/j.1582-4934.2009.00878.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/04/2009] [Indexed: 02/06/2023] Open
Abstract
After bone injuries, several molecular mechanisms establish bone repair from stem/progenitor cells. Inflammation factors attract regenerative cells which expand and differentiate in order to build up a bone highly similar to that before injury. Bone marrow (BM) mesenchymal stem cells (MSCs) as skeletal stem cells and endothelial progenitors (EPCs) are at the origin of such reparation mechanisms. However, discrepancies exist about their identities. Although cultured MSCs are extensively described, their in vivo native forms are poorly known. In addition, recent experiments show that several types of EPC exist. We therefore review up-to-date data on the characterization of such stem/progenitor cells and propose a new point of view of their function in bone regeneration.
Collapse
Affiliation(s)
- Frédéric Deschaseaux
- Etablissement Français du Sang Centre-Atlantique, Groupe de Recherche sur les Cellules Souches Mésenchymateuses (GECSoM), Tours, France.
| | | | | |
Collapse
|
37
|
Lavdas AA, Matsas R. Towards personalized cell-replacement therapies for brain repair. Per Med 2009; 6:293-313. [DOI: 10.2217/pme.09.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inability of the CNS to efficiently repair damage caused by trauma and neurodegenerative or demyelinating diseases has underlined the necessity for developing novel therapeutic strategies. Cell transplantation to replace lost neurons and the grafting of myelinating cells to repair demyelinating lesions are promising approaches for treating CNS injuries and demyelination. In this review, we will address the prospects of using stem cells or myelinating glial cells of the PNS, as well as olfactory ensheathing cells, in cell-replacement therapies. The recent generation of induced pluripotent stem cells from adult somatic cells by introduction of three or four genes controlling ‘stemness’ and their subsequent differentiation to desired phenotypes, constitutes a significant advancement towards personalized cell-replacement therapies.
Collapse
Affiliation(s)
- Alexandros A Lavdas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
38
|
Nehlin JO, Barington T. Strategies for future histocompatible stem cell therapy. Biogerontology 2009; 10:339-76. [PMID: 19219637 DOI: 10.1007/s10522-009-9213-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 01/19/2009] [Indexed: 02/07/2023]
Abstract
Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within a developmental lineage, would facilitate the transplantation of organ/tissue-specific adult stem cells or terminally differentiated somatic cells to improve the function of diseased organs or tissues in an individual. Here, we present an overview of various experimental cell therapy technologies based on the use of patient-histocompatible stem cells, the pending issues needed to be dealt with before clinical trials can be initiated, evidence for the loss and/or aging of the stem cell pool and some of the possible uses of human pluripotent stem cell-derivatives aimed at curing disease and improving health.
Collapse
Affiliation(s)
- Jan O Nehlin
- Center for Stem Cell Treatment, Department of Clinical Immunology, University of Southern Denmark, Denmark.
| | | |
Collapse
|
39
|
Soto C, Martin Z. Therapeutic strategies against protein misfolding in neurodegenerative diseases. Expert Opin Drug Discov 2008; 4:71-84. [DOI: 10.1517/13543770802630455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Kelley MJ, Rose AY, Keller KE, Hessle H, Samples JR, Acott TS. Stem cells in the trabecular meshwork: present and future promises. Exp Eye Res 2008; 88:747-51. [PMID: 19061887 DOI: 10.1016/j.exer.2008.10.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 10/25/2008] [Accepted: 10/28/2008] [Indexed: 12/25/2022]
Abstract
Primary open-angle glaucoma is recognized as a disease of aging, and studies show a relationship between aging and trabecular meshwork (TM) cell density. Human TM cell division occurs primarily in the anterior, non-filtering region. A commonly used glaucoma treatment, laser trabeculoplasty (LTP), triggers and increases cell division, as well as cell migration of these anterior TM cells. These freshly-divided migrating cells repopulate the burned laser sites, suggesting that they are stem cells. Several studies concerning this putative TM stem cell will be discussed.
Collapse
Affiliation(s)
- M J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Jin JD, Wang HX, Xiao FJ, Wang JS, Lou X, Hu LD, Wang LS, Guo ZK. A novel rich source of human mesenchymal stem cells from the debris of bone marrow samples. Biochem Biophys Res Commun 2008; 376:191-5. [PMID: 18774774 DOI: 10.1016/j.bbrc.2008.08.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 08/22/2008] [Indexed: 02/07/2023]
Abstract
The debris from human bone marrow (BM) samples is generally filtered out and discarded prior to isolation of mesenchymal stem cells (MSCs). The purpose of this study is to develop a method to harvest MSCs from the debris and investigate their biological characteristics compared with the marrow counterparts. The BM tissue fragments were digested with collagenase and this treatment yielded mononuclear cells half to those from the corresponding filtered BM. The frequencies of colony-forming unit-fibroblast in these two cell populations were not significantly different. MSCs of two origins exhibited similar morphological and phenotypic features. Fluorescent dye-dilution assay showed that they grew at comparable rates both in the primary and passaging cultures. Further, they could be induced into osteoblasts, chondroblasts and adipocytes, as revealed by histological and molecular examinations. Thus, BM tissue fragments may serve as a new source of MSCs in the settings of bench experiments and clinical trials.
Collapse
Affiliation(s)
- Ji-De Jin
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Migration of Neurotrophic Factors-Secreting Mesenchymal Stem Cells Toward a Quinolinic Acid Lesion as Viewed by Magnetic Resonance Imaging. Stem Cells 2008; 26:2542-51. [DOI: 10.1634/stemcells.2008-0240] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. ACTA ACUST UNITED AC 2008; 4:371-80. [PMID: 18477997 DOI: 10.1038/ncprheum0816] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 03/03/2008] [Indexed: 12/13/2022]
Abstract
Despite the high prevalence and morbidity of osteoarthritis (OA), an effective treatment for this disease is currently lacking. Restoration of the diseased articular cartilage in patients with OA is, therefore, a challenge of considerable appeal to researchers and clinicians. Techniques that cause multipotent adult mesenchymal stem cells (MSCs) to differentiate into cells of the chondrogenic lineage have led to a variety of experimental strategies to investigate whether MSCs instead of chondrocytes can be used for the regeneration and maintenance of articular cartilage. MSC-based strategies should provide practical advantages for the patient with OA. These strategies include use of MSCs as progenitor cells to engineer cartilage implants that can be used to repair chondral and osteochondral lesions, or as trophic producers of bioactive factors to initiate endogenous regenerative activities in the OA joint. Targeted gene therapy might further enhance these activities of MSCs. Delivery of MSCs might be attained by direct intra-articular injection or by graft of engineered constructs derived from cell-seeded scaffolds; this latter approach could provide a three-dimensional construct with mechanical properties that are congruous with the weight-bearing function of the joint. Promising experimental and clinical data are beginning to emerge in support of the use of MSCs for regenerative applications.
Collapse
|