1
|
Paietta EN, Kraberger S, Lund MC, Vargas KL, Custer JM, Ehmke E, Yoder AD, Varsani A. Diverse Circular DNA Viral Communities in Blood, Oral, and Fecal Samples of Captive Lemurs. Viruses 2024; 16:1099. [PMID: 39066262 PMCID: PMC11281440 DOI: 10.3390/v16071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Few studies have addressed viral diversity in lemurs despite their unique evolutionary history on the island of Madagascar and high risk of extinction. Further, while a large number of studies on animal viromes focus on fecal samples, understanding viral diversity across multiple sample types and seasons can reveal complex viral community structures within and across species. Groups of captive lemurs at the Duke Lemur Center (Durham, NC, USA), a conservation and research center, provide an opportunity to build foundational knowledge on lemur-associated viromes. We sampled individuals from seven lemur species, i.e., collared lemur (Eulemur collaris), crowned lemur (Eulemur coronatus), blue-eyed black lemur (Eulemur flavifrons), ring-tailed lemur (Lemur catta), Coquerel's sifaka (Propithecus coquereli), black-and-white ruffed lemur (Varecia variegata variegata), and red ruffed lemur (Varecia rubra), across two lemur families (Lemuridae, Indriidae). Fecal, blood, and saliva samples were collected from Coquerel's sifaka and black-and-white ruffed lemur individuals across two sampling seasons to diversify virome biogeography and temporal sampling. Using viral metagenomic workflows, the complete genomes of anelloviruses (n = 4), cressdnaviruses (n = 47), caudoviruses (n = 15), inoviruses (n = 34), and microviruses (n = 537) were determined from lemur blood, feces, and saliva. Many virus genomes, especially bacteriophages, identified in this study were present across multiple lemur species. Overall, the work presented here uses a viral metagenomics approach to investigate viral communities inhabiting the blood, oral cavity, and feces of healthy captive lemurs.
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27708, USA
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
2
|
Paietta EN, Kraberger S, Custer JM, Vargas KL, Espy C, Ehmke E, Yoder AD, Varsani A. Characterization of Diverse Anelloviruses, Cressdnaviruses, and Bacteriophages in the Human Oral DNA Virome from North Carolina (USA). Viruses 2023; 15:1821. [PMID: 37766228 PMCID: PMC10537320 DOI: 10.3390/v15091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The diversity of viruses identified from the various niches of the human oral cavity-from saliva to dental plaques to the surface of the tongue-has accelerated in the age of metagenomics. This rapid expansion demonstrates that our understanding of oral viral diversity is incomplete, with only a few studies utilizing passive drool collection in conjunction with metagenomic sequencing methods. For this pilot study, we obtained 14 samples from healthy staff members working at the Duke Lemur Center (Durham, NC, USA) to determine the viral diversity that can be identified in passive drool samples from humans. The complete genomes of 3 anelloviruses, 9 cressdnaviruses, 4 Caudoviricetes large bacteriophages, 29 microviruses, and 19 inoviruses were identified in this study using high-throughput sequencing and viral metagenomic workflows. The results presented here expand our understanding of the vertebrate-infecting and microbe-infecting viral diversity of the human oral virome in North Carolina (USA).
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Claudia Espy
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27705, USA;
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
3
|
Gao J, Liu C, Yi J, Shi Y, Li H, Liu H. Genomic Characteristics of Feline Anelloviruses Isolated from Domestic Cats in Shanghai, China. Vet Sci 2023; 10:444. [PMID: 37505849 PMCID: PMC10385657 DOI: 10.3390/vetsci10070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Viral metagenomics techniques allow the high-throughput discovery of possible pathogens carried by companion animals from their feces and other excreta. In this study, the viral metagenomics of 22 groups of fecal samples from domestic cats revealed a high prevalence of feline anelloviruses (FcTTV) infection in domestic cats in Shanghai, China. Serum samples from 30 cat individuals were further detected by polymerase chain reaction, and an average positive rate of 36.67% (11/30) of FcTTV infection was found. Next, the full-length sequences of five Shanghai FcTTV variants were obtained and submitted to GenBank with access numbers OP186140 to OP186144. Phylogenetic analysis indicates that the Shanghai FcTTV variants have relatively consistent genomic characteristics, with two variants from Zhejiang 2019 and one variant from the Czech Republic 2010. The recombination event analysis of the variants showed that one variant (OP186141_SH-02) had a primary parental sequence derived from a variant (KM229764) from the Czech Republic in 2010, while the secondary parental sequence was derived from OP186140_SH-01. The results revealed that FcTTV infection is prevalent in domestic cats and that the use of viral metagenomics to rapidly identify some infecting viruses whose hosts lack clinical features would be an effective approach.
Collapse
Affiliation(s)
- Jun Gao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Chengqian Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jianzhong Yi
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hong Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| |
Collapse
|
4
|
Butkovic A, Kraberger S, Smeele Z, Martin DP, Schmidlin K, Fontenele RS, Shero MR, Beltran RS, Kirkham AL, Aleamotu’a M, Burns JM, Koonin EV, Varsani A, Krupovic M. Evolution of anelloviruses from a circovirus-like ancestor through gradual augmentation of the jelly-roll capsid protein. Virus Evol 2023; 9:vead035. [PMID: 37325085 PMCID: PMC10266747 DOI: 10.1093/ve/vead035] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Anelloviruses are highly prevalent in diverse mammals, including humans, but so far have not been linked to any disease and are considered to be part of the 'healthy virome'. These viruses have small circular single-stranded DNA (ssDNA) genomes and encode several proteins with no detectable sequence similarity to proteins of other known viruses. Thus, anelloviruses are the only family of eukaryotic ssDNA viruses currently not included in the realm Monodnaviria. To gain insights into the provenance of these enigmatic viruses, we sequenced more than 250 complete genomes of anelloviruses from nasal and vaginal swab samples of Weddell seal (Leptonychotes weddellii) from Antarctica and a fecal sample of grizzly bear (Ursus arctos horribilis) from the USA and performed a comprehensive family-wide analysis of the signature anellovirus protein ORF1. Using state-of-the-art remote sequence similarity detection approaches and structural modeling with AlphaFold2, we show that ORF1 orthologs from all Anelloviridae genera adopt a jelly-roll fold typical of viral capsid proteins (CPs), establishing an evolutionary link to other eukaryotic ssDNA viruses, specifically, circoviruses. However, unlike CPs of other ssDNA viruses, ORF1 encoded by anelloviruses from different genera display remarkable variation in size, due to insertions into the jelly-roll domain. In particular, the insertion between β-strands H and I forms a projection domain predicted to face away from the capsid surface and function at the interface of virus-host interactions. Consistent with this prediction and supported by recent experimental evidence, the outermost region of the projection domain is a mutational hotspot, where rapid evolution was likely precipitated by the host immune system. Collectively, our findings further expand the known diversity of anelloviruses and explain how anellovirus ORF1 proteins likely diverged from canonical jelly-roll CPs through gradual augmentation of the projection domain. We suggest assigning Anelloviridae to a new phylum, 'Commensaviricota', and including it into the kingdom Shotokuvirae (realm Monodnaviria), alongside Cressdnaviricota and Cossaviricota.
Collapse
Affiliation(s)
- Anamarija Butkovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, Paris 75015, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Zoe Smeele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Darren P Martin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Amy L Kirkham
- U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 E, Tudor Road, Anchorage, AK 99503, USA
| | - Maketalena Aleamotu’a
- School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Jennifer M Burns
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 1 Anzio Road, Cape Town 7925, South Africa
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
5
|
Identification and Genomic Characterization of Anelloviruses in Patients with Chronic Lymphocytic Leukemia. J Clin Pharm Ther 2023. [DOI: 10.1155/2023/4125745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Purpose. Metagenomics has revealed that, in addition to the digestive tract, certain viruses are also commonly found in human blood. In order to explore and monitor potential novel viruses, three serum samples of patients with chronic lymphocytic leukemia were collected at the No. 2 People’s Hospital of Changshu City, China. Materials and Methods. We sequenced the virome of serum samples from three patients with chronic lymphocytic leukemia using an unbiased viral metagenomic approach and subsequently performed maximum likelihood phylogenetic analysis using MrBayes v3.2. In addition, pairwise sequence comparison was produced with ORF1 amino acid sequences of anelloviruses within Bayesian consensus tree. Results. Partial genomes of eight different anelloviruses containing the complete ORF1 gene have been identified. BLASTp results showed that the amino acid sequence identity of these viruses with the best match in GenBank was between 56.22% and 95.43%. Phylogenetic analysis based on ORF1 indicated that seven sequences belong to the genus Alphatorquevirus and one sequence belongs to the genus Gammatorquevirus. Conclusions. This virological investigation has increased our understanding of the diversity of anelloviruses in human serum, but further study is needed to verify its potential correlation with disease.
Collapse
|
6
|
Shen T, Zhang Y, Mei L, Zhang XB, Zhu G. Single-stranded circular DNA theranostics. Theranostics 2022; 12:35-47. [PMID: 34987632 PMCID: PMC8690921 DOI: 10.7150/thno.66466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/10/2021] [Indexed: 02/04/2023] Open
Abstract
The past decade has witnessed the blossom of nucleic acid therapeutics and diagnostics (theranostics). Unlike conventional small molecule medicines or protein biologics, nucleic acid theranostics have characteristic features such as the intrinsic ability as “information drugs” to code and execute genetic and theranostic information, ready programmability for nucleic acid engineering, intrinsic stimulatory or regulatory immunomodulation, versatile functionalities, and easy conformational recovery upon thermal or chemical denaturation. Single-stranded circular DNA (circDNA) are a class of single-stranded DNAs (ssDNA) featured with their covalently-closed topology. In addition to the basic advantages of nucleic acids-based materials, such as low cost, biocompatibility, and simplicity of chemical modification, the lack of terminals in circDNA prevents exonuclease degradation, resulting in enhanced biostability relative to the corresponding linear ssDNA. circDNA has been explored for versatile theranostic applications. For instance, circDNA has been extensively studied as templates for bioanalytical signal amplification and the synthesis of nano-/micro-/macro- biomaterials via rolling circle amplification (RCA) and rolling circle transcription (RCT) technologies. circDNA has also been commonly used as the scaffolds for the self-assembly of versatile DNA origami. Finally, circDNA has been implemented as theranostic aptamers, miRNA inhibitors, as well as clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) gene editing donors. In this review article, we will discuss the chemistry, characteristic properties, and the theranostic applications of circDNA (excluding double-stranded circular DNA such as plasmids); we will also envision the challenges and opportunities in this research field.
Collapse
|
7
|
Altan E, Delaney MA, Colegrove KM, Spraker TR, Wheeler EA, Deng X, Li Y, Gulland FMD, Delwart E. Complex Virome in a Mesenteric Lymph Node from a Californian Sea Lion ( Zalophus Californianus) with Polyserositis and Steatitis. Viruses 2020; 12:v12080793. [PMID: 32718049 PMCID: PMC7472147 DOI: 10.3390/v12080793] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
An emaciated subadult free-ranging California sea lion (Csl or Zalophus californianus) died following stranding with lesions similar to 11 other stranded animals characterized by chronic disseminated granulomatous inflammation with necrotizing steatitis and vasculitis, involving visceral adipose tissues in the thoracic and peritoneal cavities. Histologically, affected tissues had extensive accumulations of macrophages with perivascular lymphocytes, plasma cells, and fewer neutrophils. Using viral metagenomics on a mesenteric lymph node six mammalian viruses were identified consisting of novel parvovirus, polyomavirus, rotavirus, anellovirus, and previously described Csl adenovirus 1 and Csl bocavirus 4. The causal or contributory role of these viruses to the gross and histologic lesions of this sea lion remains to be determined.
Collapse
Affiliation(s)
- Eda Altan
- Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA 94118, USA; (E.A.); (X.D.); (Y.L.)
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Martha A. Delaney
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 3300 Golf Road, Brookfield, IL 60513, USA; (M.A.D.); (K.M.C.)
| | - Kathleen M. Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 3300 Golf Road, Brookfield, IL 60513, USA; (M.A.D.); (K.M.C.)
| | - Terry R. Spraker
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80526, USA;
| | - Elizabeth A. Wheeler
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Bustad 471, Pullman, WA 99164, USA;
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA 94118, USA; (E.A.); (X.D.); (Y.L.)
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Yanpeng Li
- Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA 94118, USA; (E.A.); (X.D.); (Y.L.)
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Frances M. D. Gulland
- Karen C. Drayer Wildlife Heath Center, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA 94118, USA; (E.A.); (X.D.); (Y.L.)
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
- Correspondence:
| |
Collapse
|
8
|
Hameed M, Liu K, Anwar MN, Wahaab A, Li C, Di D, Wang X, Khan S, Xu J, Li B, Nawaz M, Shao D, Qiu Y, Wei J, Ma Z. A viral metagenomic analysis reveals rich viral abundance and diversity in mosquitoes from pig farms. Transbound Emerg Dis 2019; 67:328-343. [PMID: 31512812 DOI: 10.1111/tbed.13355] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Mosquitoes harbour a diversity of viruses and are responsible for several mosquito-borne viral diseases of humans and animals, thereby leading to major public health concerns, and significant economic losses across the globe. Viral metagenomics offers a great opportunity for bulk analysis of viral genomes retrieved directly from environmental samples. In this study, we performed a viral metagenomic analysis of five pools of mosquitoes belonging to Aedes, Anopheles and Culex species, collected from different pig farms in the vicinity of Shanghai, China, to explore the viral community carried by mosquitoes. The resulting metagenomic data revealed that viral community in the mosquitoes was highly diverse and varied in abundance among pig farms, which comprised of more than 48 viral taxonomic families, specific to vertebrates, invertebrates, plants, fungi, bacteria and protozoa. In addition, a considerable number of viral reads were related to viruses that are not classified by host. The read sequences related to animal viruses included parvoviruses, anelloviruses, circoviruses, flavivirus, rhabdovirus and seadornaviruses, which might be taken up by mosquitoes from viremic animal hosts during blood feeding. Notably, sample G1 contained the most abundant sequence related to Banna virus, which is of public health interest because it causes encephalitis in humans. Furthermore, non-classified viruses also shared considerable virus sequences in all the samples, presumably belonging to unexplored virus category. Overall, the present study provides a comprehensive knowledge of diverse viral populations carried by mosquitoes at pig farms, which is a potential source of diseases for mammals including humans and animals. These viral metagenomic data are valuable for assessment of emerging and re-emerging viral epidemics.
Collapse
Affiliation(s)
- Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Chenxi Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jinpeng Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Mohsin Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| |
Collapse
|
9
|
ENDEMIC INFECTION OF STRANDED SOUTHERN SEA OTTERS (ENHYDRA LUTRIS NEREIS) WITH NOVEL PARVOVIRUS, POLYOMAVIRUS, AND ADENOVIRUS. J Wildl Dis 2017; 53:532-542. [PMID: 28192039 DOI: 10.7589/2016-04-082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the past century, the southern sea otter (SSO; Enhydra lutris nereis) population has been slowly recovering from near extinction due to overharvest. The SSO is a threatened subspecies under federal law and a fully protected species under California law, US. Through a multiagency collaborative program, stranded animals are rehabilitated and released, while deceased animals are necropsied and tissues are cryopreserved to facilitate scientific study. Here, we processed archival tissues to enrich particle-associated viral nucleic acids, which we randomly amplified and deeply sequenced to identify viral genomes through sequence similarities. Anelloviruses and endogenous retroviral sequences made up over 50% of observed viral sequences. Polyomavirus, parvovirus, and adenovirus sequences made up most of the remaining reads. We characterized and phylogenetically analyzed the full genome of sea otter polyomavirus 1 and the complete coding sequence of sea otter parvovirus 1 and found that the closest known viruses infect primates and domestic pigs ( Sus scrofa domesticus), respectively. We tested archived tissues from 69 stranded SSO necropsied over 14 yr (2000-13) by PCR. Polyomavirus, parvovirus, and adenovirus infections were detected in 51, 61, and 29% of examined animals, respectively, with no significant increase in frequency over time, suggesting endemic infection. We found that 80% of tested SSO were infected with at least one of the three DNA viruses, whose tissue distribution we determined in 261 tissue samples. Parvovirus DNA was most frequently detected in mesenteric lymph node, polyomavirus DNA in spleen, and adenovirus DNA in multiple tissues (spleen, retropharyngeal and mesenteric lymph node, lung, and liver). This study describes the virome in tissues of a threatened species and shows that stranded SSO are frequently infected with multiple viruses, warranting future research to investigate associations between these infections and observed lesions.
Collapse
|
10
|
Identification of heterologous Torque Teno Viruses in humans and swine. Sci Rep 2016; 6:26655. [PMID: 27222164 PMCID: PMC4879562 DOI: 10.1038/srep26655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Torque Teno Viruses (TTVs) are ubiquitous viruses which are highly prevalent in several mammalian species. Human TTV’s are epidemiologically associated with several human disease conditions such as respiratory illnesses, auto-immune disorders and hepatitis. Recently it was found that swine TTV’s (TTSuVs) can act as primary pathogens. The common occurrence of TTVs as environmental contaminants and the increasing interest in the use of swine organs for xenotransplantation lend importance to the question of whether TTV’s can cross-infect across species. In this study, we examined human and swine sera by swine or human TTV-specific PCRs, to determine whether swine TTVs (TTSuV) DNA can be detected in humans and vice versa. Surprisingly, both human and TTSuV DNA were present in a majority of the samples tested. Transfection of human PBMC’s with TTSuV1 genomic DNA resulted in productive viral infection which was sustained for the three serial passages tested. Lymphoproliferative responses in infected human PBMCs were diminished when compared to the controls. Furthermore, mild to moderate antibody responses against the TTSuV1 ORF2 protein was detected in 16 of the 40 human sera by ELISA. Therefore, these study findings provide initial and fundamental evidence for possible cross-species transmission of TTVs.
Collapse
|
11
|
Lack of strong anti-viral immune gene stimulation in Torque Teno Sus Virus1 infected macrophage cells. Virology 2016; 495:63-70. [PMID: 27179346 DOI: 10.1016/j.virol.2016.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/06/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022]
Abstract
While recent findings suggest that swine TTVs (TTSuVs) can act as primary or co-infecting pathogens, very little is known about viral immunity. To determine whether TTSuVs downregulate key host immune responses to facilitate their own survival, a swine macrophage cell line, 3D4/31, was used to over-express recombinant TTSuV1 viral particles or the ORF3 protein. Immune gene expression profiles were assessed by a quantitative PCR panel consisting of 22 immune genes, in cell samples collected at 6, 12, 24 and 48h post-transfection. Despite the upregulation of IFN-β and TLR9, interferon stimulated innate genes and pro-inflammatory genes were not upregulated in virally infected cells. The adaptive immune genes, IL-4 and IL-13, were significantly downregulated at 6h post-transfection. The ORF3 protein did not appear do not have a major immuno-suppressive effect, nor did it stimulate anti-viral immunity. Data from this study warrants further investigation into the mechanisms of TTV related immuno-pathogenesis.
Collapse
|
12
|
Immune gene expression in swine macrophages expressing the Torque Teno Sus Virus1 (TTSuV1) ORF-1 and 2 proteins. Virus Res 2016; 220:33-8. [PMID: 27059616 DOI: 10.1016/j.virusres.2016.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022]
Abstract
Torque Teno viruses (TTVs) are small DNA viruses which are ubiquitous in nature. Recent reports indicate that swine torque teno viruses (TTSuVs) can act as primary pathogens or play a role in exacerbating co-infections. However, very little is known about the TTSuV host-viral interaction or how they so successfully establish chronic infections in the host. To determine whether the major viral proteins can modulate host immunity, recombinant TTSuV1 ORF1 and 2 proteins were expressed in a swine macrophage cell line (3D4/31). The differential expression of a panel of innate, adaptive, regulatory and inflammatory immune genes was studied by quantitative PCR; using cDNA samples collected at 6, 12, 24 and 48h post-transfection. The ORF1 protein induced an early anti-viral response. However, at 6h post-transfection it also upregulated IL-10, PD-1 and SOCS-1, the suppressors of T cell mediated immunity. An ensuing diminishment of the early protective response was noted. The TTSuV1 ORF2 protein suppressed IFN-β and IL-13 responses but did not significantly influence anti-viral immunity otherwise. These findings indicate that the TTSuV1 ORF1 protein plays a significant but dual role in viral immunity.
Collapse
|
13
|
Li L, Giannitti F, Low J, Keyes C, Ullmann LS, Deng X, Aleman M, Pesavento PA, Pusterla N, Delwart E. Exploring the virome of diseased horses. J Gen Virol 2015; 96:2721-2733. [PMID: 26044792 DOI: 10.1099/vir.0.000199] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Metagenomics was used to characterize viral genomes in clinical specimens of horses with various organ-specific diseases of unknown aetiology. A novel parvovirus as well as a previously described hepacivirus closely related to human hepatitis C virus and equid herpesvirus 2 were identified in the cerebrospinal fluid of horses with neurological signs. Four co-infecting picobirnaviruses, including an unusual genome with fused RNA segments, and a divergent anellovirus were found in the plasma of two febrile horses. A novel cyclovirus genome was characterized from the nasal secretion of another febrile animal. Lastly, a small circular DNA genome with a Rep gene, from a virus we called kirkovirus, was identified in the liver and spleen of a horse with fatal idiopathic hepatopathy. This study expands the number of viruses found in horses, and characterizes their genomes to assist future epidemiological studies of their transmission and potential association with various equine diseases.
Collapse
Affiliation(s)
- Linlin Li
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Federico Giannitti
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.,Instituto Nacional de Investigación Agropecuaria, La Estanzuela, Colonia, Uruguay
| | - Jason Low
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Casey Keyes
- Department of Biology, University of San Francisco, San Francisco, CA, USA
| | - Leila S Ullmann
- Department of Microbiology and Immunology, UNESP Sao Paulo State University, Sao Paulo, Brazil
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Monica Aleman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Patricia A Pesavento
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Idiopathic pneumonia syndrome after hematopoietic cell transplantation: evidence of occult infectious etiologies. Blood 2015; 125:3789-97. [PMID: 25918347 DOI: 10.1182/blood-2014-12-617035] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
Newer diagnostic methods may link more idiopathic pneumonia syndrome (IPS) cases to an infectious agent. Bronchoalveolar lavage (BAL) samples from 69 hematopoietic cell transplant (HCT) recipients with IPS diagnosed between 1992 and 2006 were tested for 28 pathogens (3 bacteria and 25 viruses) by quantitative polymerase chain reaction and for Aspergillus by galactomannan assay. Research BALs from 21 asymptomatic HCT patients served as controls. Among 69 HCT patients with IPS, 39 (56.5%) had a pathogen detected. The most frequent pathogens were human herpesvirus-6 (HHV-6) (N = 20 [29%]) followed by human rhinovirus (HRV), cytomegalovirus (CMV), and Aspergillus (N = 8 [12%] in each). HHV-6 and HRV were rarely detected in controls, whereas CMV and Aspergillus were occasionally detected with low pathogen load. Patients with pathogens had worse day-100 survival than those without (hazard ratio, 1.88; P = .03). Mortality in patients with only pathogens of "uncertain" significance in lung was similar to that in patients with pathogens of "established" significance. Metagenomic next-generation sequencing did not reveal additional significant pathogens. Our study demonstrated that approximately half of patients with IPS had pathogens detected in BAL, and pathogen detection was associated with increased mortality. Thus, an expanded infection detection panel can significantly increase the diagnostic precision for idiopathic pneumonia.
Collapse
|
15
|
Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015; 479-480:2-25. [PMID: 25771806 PMCID: PMC5898234 DOI: 10.1016/j.virol.2015.02.039] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/04/2023]
Abstract
Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015, France.
| |
Collapse
|
16
|
Lee AY, Akileswaran L, Tibbetts MD, Garg SJ, Van Gelder RN. Identification of torque teno virus in culture-negative endophthalmitis by representational deep DNA sequencing. Ophthalmology 2014; 122:524-30. [PMID: 25439613 DOI: 10.1016/j.ophtha.2014.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/02/2014] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To test the hypothesis that uncultured organisms may be present in cases of culture-negative endophthalmitis by use of deep DNA sequencing of vitreous biopsies. DESIGN Single-center, consecutive, prospective, observational study. PARTICIPANTS Aqueous or vitreous biopsies from 21 consecutive patients presenting with presumed infectious endophthalmitis and 7 vitreous samples from patients undergoing surgery for noninfectious retinal disorders. METHODS Traditional bacterial and fungal culture, 16S quantitative polymerase chain reaction (qPCR), and a representational deep-sequencing method (biome representational in silico karyotyping [BRiSK]) were applied in parallel to samples to identify DNA sequences corresponding to potential pathogens. MAIN OUTCOME MEASURES Presence of potential pathogen DNA in ocular samples. RESULTS Zero of 7 control eyes undergoing routine vitreous surgery yielded positive results for bacteria or virus by culture or 16S polymerase chain reaction (PCR). A total of 14 of the 21 samples (66.7%) from eyes harboring suspected infectious endophthalmitis were culture-positive, the most common being Staphylococcal and Streptococcal species. There was good agreement among culture, 16S bacterial PCR, and BRiSK methodologies for culture-positive cases (Fleiss' kappa of 0.621). 16S PCR did not yield a recognizable pathogen sequence in any culture-negative sample, whereas BRiSK suggested the presence of Streptococcus in 1 culture-negative sample. With the use of BRiSK, 57.1% of culture-positive and 100% of culture-negative samples demonstrated the presence of torque teno virus (TTV) sequences, compared with none in the controls (P=0.0005, Fisher exact test). The presence of TTV viral DNA was confirmed in 7 cases by qPCR. No other known viruses or potential pathogens were identified in these samples. CONCLUSIONS Culture, 16S qPCR, and BRiSK provide complementary information in presumed infectious endophthalmitis. The majority of culture-negative endophthalmitis samples did not contain significant levels of bacterial DNA. "Culture negativity" does not seem to be due to failure of growth of fastidious bacteria. The small DNA virus TTV was unexpectedly found in all culture-negative samples and some culture-positive samples. This study cannot distinguish whether TTV is a direct intraocular pathogen, an adjuvant for inflammation, a general marker of inflammation, or a commensal virus but provides a testable hypothesis for a pathogenic mechanism in culture-negative endophthalmitis.
Collapse
Affiliation(s)
- Aaron Y Lee
- Department of Ophthalmology and Visual Science, Washington University, St. Louis, Missouri
| | | | - Michael D Tibbetts
- The Retina Service of Wills Eye Hospital, MidAtlantic Retina, Philadelphia, Pennsylvania
| | - Sunir J Garg
- The Retina Service of Wills Eye Hospital, MidAtlantic Retina, Philadelphia, Pennsylvania
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, Washington; Department of Biological Structure, University of Washington, Seattle, Washington; Department of Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
17
|
Blois S, Mallus F, Liciardi M, Pilo C, Camboni T, Macera L, Maggi F, Manzin A. High prevalence of co-infection with multiple Torque teno sus virus species in Italian pig herds. PLoS One 2014; 9:e113720. [PMID: 25411972 PMCID: PMC4239083 DOI: 10.1371/journal.pone.0113720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
Torque teno viruses (TTVs) are a large group of vertebrate-infecting small viruses with circular single-stranded DNA, classified in the Anelloviridae family. In swine, two genetically distinct species, Torque teno sus virus 1a (TTSuV1a) and 1b (TTSuV1b) are currently grouped into the genus Iotatorquevirus. More recently, a novel Torque teno sus virus species, named Torque teno sus virus k2b (TTSuVk2b), has been included with Torque teno sus virus k2a (TTSuVk2a) into the genus Kappatorquevirus. In the present study, TTSuV1 (TTSuV1a and TTSuV1b), TTSuVk2a and TTSuVk2b prevalence was evaluated in 721 serum samples of healthy pigs from Sardinian farms, insular Italy. This is the largest study to date on the presence of TTSuV in healthy pigs in Italy. The global prevalence of infection was 83.2% (600/721), being 62.3% (449/721), 60.6% (437/721), and 11.5% (83/721) the prevalence of TTSuV1, TTSuVk2a and TTSuVk2b, respectively. The rate of co-infection with two and/or three species was also calculated, and data show that co-infections were significantly more frequent than infections with single species, and that TTSuV1+TTSuVk2a double infection was the prevalent combination (35.4%). Quantitative results obtained using species-specific real time-qPCR evidenced the highest mean levels of viremia in the TTSuV1 subgroup, and the lowest in the TTSuVk2b subgroup. Interestingly, multiple infections with distinct TTSuV species seemed to significantly affect the DNA load and specifically, data highlighted that double infection with TTSuVk2a increased the viral titers of TTSuV1, likewise the co-infection with TTSuVk2b increased the titers of TTSuVk2a.
Collapse
Affiliation(s)
- Sylvain Blois
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| | - Francesca Mallus
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| | - Manuele Liciardi
- Istituto Zooprofilattico Sperimentale Sardegna, Department of Cagliari, Cagliari, Italy
| | - Cristian Pilo
- Istituto Zooprofilattico Sperimentale Sardegna, Department of Cagliari, Cagliari, Italy
| | - Tania Camboni
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| | - Lisa Macera
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Aldo Manzin
- Department of Biomedical Sciences, Clinical Microbiology and Virology Unit, University of Cagliari Medical School, Cagliari, Italy
| |
Collapse
|
18
|
Phan TG, Luchsinger V, Avendaño LF, Deng X, Delwart E. Cyclovirus in nasopharyngeal aspirates of Chilean children with respiratory infections. J Gen Virol 2014; 95:922-927. [PMID: 24421114 DOI: 10.1099/vir.0.061143-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Some respiratory tract infections remain unexplained despite extensive testing for common pathogens. Nasopharyngeal aspirates (NPAs) from 120 Chilean infants from Santiago with acute lower respiratory tract infections were analysed by viral metagenomics, revealing the presence of nucleic acids from anelloviruses, adenovirus-associated virus and 12 known respiratory viral pathogens. A single sequence read showed translated protein similarity to cycloviruses. We used inverse PCR to amplify the complete circular ssDNA genome of a novel cyclovirus we named CyCV-ChileNPA1. Closely related variants were detected using PCR in the NPAs of three other affected children that also contained anelloviruses. This report increases the current knowledge of the genetic diversity of cycloviruses whose detection in multiple NPAs may reflect a tropism for human respiratory tissues.
Collapse
Affiliation(s)
- Tung Gia Phan
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Vivian Luchsinger
- Programa de Virología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis F Avendaño
- Programa de Virología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Eric Delwart
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, San Francisco, CA 94118, USA
| |
Collapse
|
19
|
Liu J, Guo L, Zhang L, Wei Y, Huang L, Wu H, Liu C. Three new emerging subgroups of Torque teno sus viruses (TTSuVs) and co-infection of TTSuVs with porcine circovirus type 2 in China. Virol J 2013; 10:189. [PMID: 23758726 PMCID: PMC3691836 DOI: 10.1186/1743-422x-10-189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 06/04/2013] [Indexed: 12/23/2022] Open
Abstract
Background Torque teno sus viruses (TTSuVs) are non-enveloped viruses and have single-stranded, negative sense circular DNA genomes and are widely distributed in pigs. But till now, the prevalence of TTSuVs with porcine circovirus type 2 (PCV2) in pig herds of China is not very clear; and the genetic variation among different TTSuVs isolate is very large and need to divide the subgroups. In this study, the co-infection with TTSuVs and porcine circovrius (PCV) in the pig population of China was investigated and the subgroups of all TTSuVs genomes in Genbank were divided. Results Results showed that the rate of co-infection with TTSuV1 and TTSuV2 reached 75% in PCV2-positive samples. Also Two TTSuV1 and four TTSuV2 isolates genome sequences were obtained, and the similarity of all TTSuV1 and TTSuV2 genomic sequences in GenBank were compared. Phylogenetic trees indicated that both the TTSuV1 and TTSuV2 sequences could be divided into four genotypes. Interestingly, the sub-genotypes TTSuV1d, TTSuV2c and TTSuV2d exist only in the pig population of China. Conclusions This study demonstrates that co-infection with TTSuVs and PCVs is very common in the pig population of China, in which the viruses maybe contribute to clinical diseases cooperatively. In addition, three new subgroups of TTSuVs emerged in China for the first time and a high level of variation among different isolates of TTSuV1 and TTSuV2 was indicated by their genetic diversity.
Collapse
Affiliation(s)
- Jianbo Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Mei M, Zhu L, Xu Z, Zhao L, Zhou Y, Wu Y, Li S, Wei H, Guo W. Molecular investigation of Torque teno sus virus in geographically distinct porcine breeding herds of Sichuan, China. Virol J 2013; 10:161. [PMID: 23705989 PMCID: PMC3679838 DOI: 10.1186/1743-422x-10-161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/18/2013] [Indexed: 01/10/2023] Open
Abstract
Background Torque teno sus virus (TTSuV), infecting domestic swine and wild boar, is a non-enveloped virus with a circular, single-stranded DNA genome. which has been classified into the genera Iotatorquevirus (TTSuV1) and Kappatorquevirus (TTSuV2) of the family Anelloviridae. A molecular study was conducted to detect evidence of a phylogenic relationship between these two porcine TTSuV genogroups from the sera of 244 infected pigs located in 21 subordinate prefectures and/or cities of Sichuan. Results Both genogroups of TTSuV were detected in pig sera collected from all 21 regions examined. Of the 244 samples, virus from either genogroup was detected in 203 (83.2%), while 44 animals (18.0%) were co-infected with viruses of both genogroups. Moreover, TTSuV2 (186/244, 76.2%) was more prevalent than TTSuV1 (61/244, 25%). There was statistically significant difference between the prevalence of genogroups 1 infection alone (9.4%, 23/244) and 2 alone (64.8%, 158/244), and between the prevalence of genogroups 2 (76.2%, 186/244) and both genogroups co-infection (18.0%, 44/244). The untranslated region of the swine TTSuV genome was found to be an adequate molecular marker of the virus for detection and surveillance. Phylogenetic analysis indicated that both genogroups 1 and 2 could be further divided into two subtypes, subtype a and b. TTSuV1 subtype b and the two TTSuV2 subtypes are more prevalent in Sichuan Province. Conclusions Our study presents detailed geographical evidence of TTSuV infection in China.
Collapse
Affiliation(s)
- Miao Mei
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Karimi G, Gharehbaghian A, Tafti MF, Vafaiyan V. Emerging infectious threats to the blood supply: seroepidemiological studies in iran - a review. ACTA ACUST UNITED AC 2013; 40:210-7. [PMID: 23922546 DOI: 10.1159/000351540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/07/2012] [Indexed: 12/28/2022]
Abstract
SUMMARY The risk of transfusion-transmitted infections has been greatly reduced by improvements in donor screening and testing. However, newly recognized blood-borne infectious agents can be threats to blood safety. In order to evaluate the prevalence some of these agents in blood donors, a systematic review was conducted. Data were obtained from published papers related to HGV, Torque Teno virus (TTV), HTLV, West Nile virus (WNV) and SEN virus (SEN-V). Based on these studies, the prevalence of HGV varied from 1 to 8.6% for anti-E2 and from 0 to 4.8% for HGV RNA. The prevalence of TTV DNA and HTLV-I varied from 2.7 to 79.5% and from 0.013 to 2.3%, respectively. The WNV-specific IgM antibody and WNV RNA are negative in blood donors. Prevalence rates of SEN-V in Iranian blood donors range from 23 to 90.8%. Consequences of these infectious agents for blood safety are different. Thus, the need to perform laboratory screening as well as effectiveness and efficiency of laboratory tests depend on pathogenicity level and epidemiological conditions of emerging infections. However, being prepared based on the current level of risk and interventions to reduce the risk can be effective in reducing the potential threat for blood supply.
Collapse
Affiliation(s)
- Gharib Karimi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
22
|
Blomström AL, Ståhl K, Masembe C, Okoth E, Okurut AR, Atmnedi P, Kemp S, Bishop R, Belák S, Berg M. Viral metagenomic analysis of bushpigs (Potamochoerus larvatus) in Uganda identifies novel variants of Porcine parvovirus 4 and Torque teno sus virus 1 and 2. Virol J 2012; 9:192. [PMID: 22967311 PMCID: PMC3478234 DOI: 10.1186/1743-422x-9-192] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 09/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background As a result of rapidly growing human populations, intensification of livestock production and increasing exploitation of wildlife habitats for animal agriculture, the interface between wildlife, livestock and humans is expanding, with potential impacts on both domestic animal and human health. Wild animals serve as reservoirs for many viruses, which may occasionally result in novel infections of domestic animals and/or the human population. Given this background, we used metagenomics to investigate the presence of viral pathogens in sera collected from bushpigs (Potamochoerus larvatus), a nocturnal species of wild Suid known to move between national parks and farmland, in Uganda. Results Application of 454 pyrosequencing demonstrated the presence of Torque teno sus virus (TTSuV), porcine parvovirus 4 (PPV4), porcine endogenous retrovirus (PERV), a GB Hepatitis C–like virus, and a Sclerotinia hypovirulence-associated-like virus in sera from the bushpigs. PCR assays for each specific virus combined with Sanger sequencing revealed two TTSuV-1 variants, one TTSuV-2 variant as well as PPV4 in the serum samples and thereby confirming the findings from the 454 sequencing. Conclusions Using a viral metagenomic approach we have made an initial analysis of viruses present in bushpig sera and demonstrated for the first time the presence of PPV4 in a wild African Suid. In addition we identified novel variants of TTSuV-1 and 2 in bushpigs.
Collapse
Affiliation(s)
- Anne-Lie Blomström
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Serological profile of torque teno sus virus species 1 (TTSuV1) in pigs and antigenic relationships between two TTSuV1 genotypes (1a and 1b), between two species (TTSuV1 and -2), and between porcine and human anelloviruses. J Virol 2012; 86:10628-39. [PMID: 22811540 DOI: 10.1128/jvi.00176-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The family Anelloviridae includes human and animal torque teno viruses (TTVs) with extensive genetic diversity. The antigenic diversity among anelloviruses has never been assessed. Using torque teno sus virus (TTSuV) as a model, we describe here the first investigation of the antigenic relationships among different anelloviruses. Using a TTSuV genotype 1a (TTSuV1a) or TTSuV1b enzyme-linked immunosorbent assay (ELISA) based on the respective putative ORF1 capsid antigen and TTSuV1-specific real-time PCR, the combined serological and virological profile of TTSuV1 infection in pigs was determined and compared with that of TTSuV2. TTSuV1 is likely not associated with porcine circovirus-associated disease (PCVAD), because both the viral loads and antibody levels were not different between affected and unaffected pigs and because there was no synergistic effect of concurrent PCV2/TTSuV1 infections. We did observe a higher correlation of IgG antibody levels between anti-TTSuV1a and -TTSuV1b than between anti-TTSuV1a or -1b and anti-TTSuV2 antibodies in these sera, implying potential antigenic cross-reactivity. To confirm this, rabbit antisera against the putative capsid proteins of TTSuV1a, TTSuV1b, or TTSuV2 were generated, and the antigenic relationships among these TTSuVs were analyzed by an ELISA and by an immunofluorescence assay (IFA) using PK-15 cells transfected with one of the three TTSuV ORF1 constructs. The results demonstrate antigenic cross-reactivity between the two genotypes TTSuV1a and TTSuV1b but not between the two species TTSuV1a or -1b and TTSuV2. Furthermore, an anti-genogroup 1 human TTV antiserum did not react with any of the three TTSuV antigens. These results have important implications for an understanding of the diversity of anelloviruses as well as for the classification and vaccine development of TTSuVs.
Collapse
|
24
|
Xiao CT, Giménez-Lirola L, Huang YW, Meng XJ, Halbur PG, Opriessnig T. The prevalence of Torque teno sus virus (TTSuV) is common and increases with the age of growing pigs in the United States. J Virol Methods 2012; 183:40-4. [DOI: 10.1016/j.jviromet.2012.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/17/2012] [Accepted: 03/21/2012] [Indexed: 11/25/2022]
|
25
|
Nieto D, Aramouni M, Sibila M, Fraile L, Kekarainen T, Segalés J. Lack of effect of piglet vaccination against Porcine circovirus type 2 (PCV2) on serum viral loads of Torque teno sus virus 2 (TTSuV2). Vet Microbiol 2012; 157:8-12. [DOI: 10.1016/j.vetmic.2011.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/21/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
|
26
|
Rescue of a porcine anellovirus (torque teno sus virus 2) from cloned genomic DNA in pigs. J Virol 2012; 86:6042-54. [PMID: 22491450 DOI: 10.1128/jvi.00175-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Anelloviruses are a group of single-stranded circular DNA viruses infecting humans and other animal species. Animal models combined with reverse genetic systems of anellovirus have not been developed. We report here the construction and initial characterization of full-length DNA clones of a porcine anellovirus, torque teno sus virus 2 (TTSuV2), in vitro and in vivo. We first demonstrated that five cell lines, including PK-15 cells, are free of TTSuV1 or TTSuV2 contamination, as determined by a real-time PCR and an immunofluorescence assay (IFA) using anti-TTSuV antibodies. Recombinant plasmids harboring monomeric or tandem-dimerized genomic DNA of TTSuV2 from the United States and Germany were constructed. Circular TTSuV2 genomic DNA with or without introduced genetic markers and tandem-dimerized TTSuV2 plasmids were transfected into PK-15 cells, respectively. Splicing of viral mRNAs was identified in transfected cells. Expression of TTSuV2-specific open reading frame 1 (ORF1) in cell nuclei, especially in nucleoli, was detected by IFA. However, evidence of productive TTSuV2 infection was not observed in 12 different cell lines transfected with the TTSuV2 DNA clones. Transfection with circular DNA from a TTSuV2 deletion mutant did not produce ORF1 protein, suggesting that the observed ORF1 expression is driven by TTSuV2 DNA replication in cells. Pigs inoculated with either the tandem-dimerized clones or circular genomic DNA of U.S. TTSuV2 developed viremia, and the introduced genetic markers were retained in viral DNA recovered from the sera of infected pigs. The availability of an infectious DNA clone of TTSuV2 will facilitate future study of porcine anellovirus pathogenesis and biology.
Collapse
|
27
|
Kim HK, Park SJ, Nguyen VG, Song DS, Moon HJ, Kang BK, Park BK. Identification of a novel single-stranded, circular DNA virus from bovine stool. J Gen Virol 2012; 93:635-639. [DOI: 10.1099/vir.0.037838-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We report the identification of a novel single-stranded, circular DNA virus isolated from bovine stool. The virus, named bovine stool-associated circular DNA virus (BoSCV), has a genome comprising 2600 bases of circular ssDNA, with two putative ORFs encoding replicase and capsid proteins, arranged inversely. The stem–loop structure was located between the 3′ ends of the two putative ORFs, as in chimpanzee stool-associated circular virus (ChimpSCV) and unlike other circular DNA viruses, including members of the families Circoviridae, Nanoviridae and Geminiviridae. BoSCV was also genetically similar to ChimpSCV, with approximately 30 % identity in the replicase and capsid proteins. A phylogenetic analysis based on the replicase protein showed that BoSCV and ChimpSCV are in the same clade. A field survey using BoSCV-specific PCRs targeting ORF1 detected BoSCV and BoSCV-like sequences in bovine and porcine stool samples. BoSCV appears to belong to a new genus of circular DNA viruses.
Collapse
Affiliation(s)
- Hye Kwon Kim
- Department of Veterinary Virology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seong Jun Park
- Department of Veterinary Virology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Van Giap Nguyen
- Department of Veterinary Virology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Sub Song
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Hyoung Joon Moon
- Research Unit, Green Cross Veterinary Products, Yong-in 449-903, Republic of Korea
| | - Bo Kyu Kang
- Research Unit, Green Cross Veterinary Products, Yong-in 449-903, Republic of Korea
| | - Bong Kyun Park
- Department of Veterinary Virology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
28
|
Brink M, Ståhl K, Masembe C, Okurut AR, Berg M, Blomström AL. First time molecular detection and phylogenetic relationships of torque teno sus virus 1 and 2 in domestic pigs in Uganda: further evidence for a global distribution. Virol J 2012; 9:39. [PMID: 22336096 PMCID: PMC3298808 DOI: 10.1186/1743-422x-9-39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 02/15/2012] [Indexed: 12/23/2022] Open
Abstract
Background Torque teno sus virus 1 (TTSuV1) and 2 (TTSuV2) are small, single-stranded circular DNA viruses belonging to the Anelloviridae family. Available studies clearly show that both viruses are widely distributed in the pig populations in America, Europe and Asia, although the impact of the infection is still unclear. Currently, the situation in domestic pig populations on the African continent is not known. Therefore, the aim of this study was to investigate the possible presence of the two viruses in domestic pigs in Uganda, and describe the phylogenetic relationships to those in the rest of the world. Results Ninety-five serum samples from six districts in Uganda were used, and PCR using TTSuV1 and 2 specific primers for the UTR region was run for viral nucleic acid detection. The positive samples were sequenced, and phylogenetic analyses performed in order to compare the Ugandan sequences with sequences from other parts of the world. The prevalence of TTSuV1 and 2 in the selected domestic pigs were estimated at 16.8% and 48.4% respectively, with co-infection found in 13.7%. The sequence identity was 90-100% between the Ugandan TTSuV1; and 63-100% between the Ugandan TTSuV2 sequences. Conclusion This is the first report on the presence of TTSuV1 and 2 in domestic pigs in Uganda. These results highlight the importance of screening for emerging viruses given the globalisation of human activities.
Collapse
Affiliation(s)
- Matilda Brink
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
TSHERING C, TAKAGI M, DEGUCHI E. Seroprevalence of Torque Teno Sus Virus Types 1 and 2 in Postweaning Multisystemic Wasting Syndrome-Suspected Pigs and Porcine Circovirus Type 2-Vaccinated Normal Pigs in Southern Japan. J Vet Med Sci 2012; 74:107-10. [DOI: 10.1292/jvms.11-0233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Chenga TSHERING
- United Graduate School of Veterinary Medicine, Yamaguchi University
- Laboratory of Farm Animal Production Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| | - Mitsuhiro TAKAGI
- Laboratory of Farm Animal Production Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| | - Eisaburo DEGUCHI
- Laboratory of Farm Animal Production Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
- Transboundary Animal Disease Research Center, Faculty of Agriculture, Kagoshima University
| |
Collapse
|
30
|
TSHERING C, TAKAGI M, DEGUCHI E. Detection of Torque Teno Sus Virus Types 1 and 2 by Nested Polymerase Chain Reaction in Sera of Sows at Parturition and of Their Newborn Piglets Immediately after Birth Without Suckling Colostrum and at 24 hr after Suckling Colostrum. J Vet Med Sci 2012; 74:315-9. [DOI: 10.1292/jvms.11-0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Chenga TSHERING
- United Graduate School of Veterinary Medicine, Yamaguchi University
- Laboratory of Farm Animal Production Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| | - Mitsuhiro TAKAGI
- Laboratory of Farm Animal Production Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
| | - Eisaburo DEGUCHI
- Laboratory of Farm Animal Production Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University
- Transboundary Animal Disease Control and Research Center, Faculty of Agriculture, Kagoshima University
| |
Collapse
|
31
|
Histopathological investigation in porcine infected with torque teno sus virus type 2 by inoculation. Virol J 2011; 8:545. [PMID: 22171963 PMCID: PMC3275549 DOI: 10.1186/1743-422x-8-545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/15/2011] [Indexed: 11/29/2022] Open
Abstract
Background Porcine torque teno sus virus (TTSuV) is a small icosahedral and non-enveloped virus which contains a single-stranded (ssDNA), circular and negative DNA genome and infects mainly vertebrates and is currently classified into the 'floating' genus Anellovirus of Circoviridae with two species. Viral DNA of both porcine TTSuV species has a high prevalence in both healthy and diseased pigs worldwide and multiple infections of TTSuV with distinct genotypes or subtypes of the same species has been documented in the United States, Europe and Asia. However, there exists no information about histopathological lesions caused by infection with porcine TTSuV2. Methods Porcine liver tissue homogenate with 1 ml of 6.91 × 107genomic copies viral loads of porcine TTSuV2 that had positive result for torque teno sus virus type 2 and negative result for torque teno sus virus type 1 and porcine pseudorabies virus type 2 were used to inoculate specific pathogen-free piglets by intramuscular route and humanely killed at 3,7,10,14,17,21 and 24 days post inoculation (dpi), the control pigs were injected intramuscularly with 1 ml of sterile DMEM and humanely killed the end of the study for histopathological examination routinely processed, respectively. Results All porcine TTSuV2 inoculated piglets were clinic asymptomatic but developed myocardial fibroklasts and endocardium, interstitial pneumonia, membranous glomerular nephropathy, and modest inflammatory cells infiltration in portal areas in the liver, foci of hemorrhage in some pancreas islet, a tiny amount red blood cells in venule of muscularis mucosae and outer longitudinal muscle, rarely red blood cells in the microvasculation and infiltration of inflammatory cells (lymphocytes and eosinophils) of tonsil and hilar lymph nodes, infiltration of inflammatory lymphocytes and necrosis or degeneration and focal gliosis of lymphocytes in the paracortical zone after inoculation with porcine TTSuV2-containing tissue homogenate. Conclusions Analysis of these presentations revealed that porcine TTSuV2 was readily transmitted to TTSuV-negative swine and that infection was associated with characteristic pathologic changes in specific pathogen-free piglets inoculated with porcine TTSuV2. Those results indicated no markedly histopathological changes happened in those parenchymatous organs, especially the digestive system and immune system when the specific pathogen-free pigs were infected with porcine TTSuV2, hence, to some extent, it was not remarkable pathological agent for domestic pigs at least. So, porcine TTSuV2 could be an unrecognized pathogenic viral infectious etiology of swine. This study indicated a directly related description of lesions responsible for TTSuV2 infection in swine.
Collapse
|
32
|
Molecular detection of Torque teno virus in different breeds of swine. Virol J 2011; 8:503. [PMID: 22050715 PMCID: PMC3222624 DOI: 10.1186/1743-422x-8-503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/03/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Torque teno virus (TTV), of the Anelloviridae family, Iotatorquevirus genus, is a non-enveloped, single-stranded, and negative sense DNA (ssDNA) virus infecting human and many domestic animals including swines. Very little information is known about the investigations of TTV prevalence in different swine breeds so far. METHODS In this study, 208 serum samples collected from seven swine breeds (Rongchang pig, Chenghua pig, Zibet pig, Wild boar, Duroc, Landrace, Large Yorkshire) from two independent farms were detected to determine the prevalence of two swine TTV genogroups, TTV1 and TTV 2, by nested polymerase chain reaction methods, and to analyse prevalence difference among these breeds. RESULTS The results showed that the prevalence of TTV in the seven breeds was 92%-100%. No significant difference (p > 0.05) in TTV infection was observed between different breeds. Interestingly, significantly higher prevalence for TTV1 in Rongchang boars (90%) and for TTV2 in Rongchang sows (95%) were detected, while co-infection rate (43.8%) was lower than other breeds. Sequence analysis showed that the homology of TTV1 and TTV2 were over 90.9% and 86.4% in these breeds, respectively. CONCLUSIONS The results indicated that TTV was widely distributed in the seven swine breeds. The prevalence of both TTV genogroups associated with swine breeds and genders. This study also respented the first description of swine TTV prevalence in different swine breeds. It was vitally necessary to further study swine TTV pathogenicity.
Collapse
|
33
|
Liu H, Fu Y, Li B, Yu X, Xie J, Cheng J, Ghabrial SA, Li G, Yi X, Jiang D. Widespread horizontal gene transfer from circular single-stranded DNA viruses to eukaryotic genomes. BMC Evol Biol 2011; 11:276. [PMID: 21943216 PMCID: PMC3198968 DOI: 10.1186/1471-2148-11-276] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/26/2011] [Indexed: 11/19/2022] Open
Abstract
Background In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses) via horizontal gene transfer (HGT). It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. Results Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA) viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep)-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. Conclusions Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, P R China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhu CX, Cui L, Shan TL, Luo XN, Liu ZJ, Yuan CL, Lan DL, Zhao W, Liu ZW, Hua XG. Porcine torque teno virus infections in China. J Clin Virol 2010; 48:296-8. [PMID: 20554244 DOI: 10.1016/j.jcv.2010.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/05/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
|
35
|
Gallei A, Pesch S, Esking WS, Keller C, Ohlinger VF. Porcine Torque teno virus: determination of viral genomic loads by genogroup-specific multiplex rt-PCR, detection of frequent multiple infections with genogroups 1 or 2, and establishment of viral full-length sequences. Vet Microbiol 2009; 143:202-12. [PMID: 20031342 DOI: 10.1016/j.vetmic.2009.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/30/2009] [Accepted: 12/03/2009] [Indexed: 12/26/2022]
Abstract
Torque teno virus (TTV) is a non-enveloped virus with a circular, single-stranded DNA genome. TTV is currently classified in the unassigned genus Anellovirus, and distinct TTVs of tentative species-status infect a wide range of vertebrates. In domestic pigs and wild boars, porcine TTV occurs in two genogroups, TTV1 and TTV2, which are currently detected using only conventional PCR assays. To allow high-throughput testing, the present study describes development of a multiplex real-time (rt)-PCR assay for efficient simultaneous detection of TTV1 and TTV2. To demonstrate usefulness of this rt-PCR assay for large-scale testing, 203 serum samples from domestic pigs were screened for TTV infection. The detected rates of single TTV1, single TTV2, and double TTV1/TTV2 infections were 32, 17, and 32% and represent the first report on the occurrence of porcine TTV in Germany. In addition, 100 wild boar lung samples were tested that confirmed high prevalences of TTV infection. Moreover, establishment of genogroup-specific rt-PCR standards allowed the determination of mean viral genomic loads in sera from TTV-infected swine to about 10(4.5)/ml, respectively. To verify the specificity of the rt-PCR assay, conventional PCR assays that amplify genogroup-specific, size-distinguishable products from the TTV untranslated regions were designed. In total, 50 clones derived from 24 PCR products obtained from 19 TTV1 and TTV2 single- or double-infected animals were sequenced. Phylogenetic analyses of these sequences demonstrated the frequent occurrence of multiple infections with distinct porcine TTVs of the same genogroup. Moreover, two porcine TTV full-length sequences were established, one for each genogroup.
Collapse
Affiliation(s)
- Andreas Gallei
- BioScreen European Veterinary Disease Management Center GmbH, Mendelstrasse 11, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|