1
|
Domin H. Neuropeptide Y Y2 and Y5 receptors as potential targets for neuroprotective and antidepressant therapies: Evidence from preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110349. [PMID: 33991587 DOI: 10.1016/j.pnpbp.2021.110349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022]
Abstract
There is currently no effective treatment either for neurological illnesses (ischemia and neurodegenerative diseases) or psychiatric disorders (depression), in which the Glu/GABA balance is disturbed and accompanied by significant excitotoxicity. Therefore, the search for new and effective therapeutic strategies is imperative for these disorders. Studies conducted over the last several years indicate that the neuropeptide Y (NPY)-ergic system may be a potential therapeutic target for neuroprotective or antidepressant compounds. This review focuses on the neuroprotective roles of Y2 and Y5 receptors (YRs) in neurological disorders such as ischemia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and in psychiatric disorders such as depression. It summarizes current knowledge on the possible mechanisms underlying the neuroprotective or antidepressant-like actions of Y2R and Y5R ligands. The review also discusses ligands acting at Y2R and Y5R and their limitations as in vivo pharmacological tools. The results from the preclinical studies discussed here may be useful in developing effective therapeutic strategies to treat neurological diseases on the one hand and psychiatric disorders on the other, and may pave the way for the development of novel Y2R and Y5R ligands as candidate drugs for the treatment of these diseases.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland.
| |
Collapse
|
2
|
Bidirectional and context-dependent changes in theta and gamma oscillatory brain activity in noradrenergic cell-specific Hypocretin/Orexin receptor 1-KO mice. Sci Rep 2018; 8:15474. [PMID: 30341359 PMCID: PMC6195537 DOI: 10.1038/s41598-018-33069-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/21/2018] [Indexed: 11/08/2022] Open
Abstract
Noradrenaline (NA) and hypocretins/orexins (HCRT), and their receptors, dynamically modulate the circuits that configure behavioral states, and their associated oscillatory activities. Salient stimuli activate spiking of locus coeruleus noradrenergic (NALC) cells, inducing NA release and brain-wide noradrenergic signalling, thus resetting network activity, and mediating an orienting response. Hypothalamic HCRT neurons provide one of the densest input to NALC cells. To functionally address the HCRT-to-NA connection, we selectively disrupted the Hcrtr1 gene in NA neurons, and analyzed resulting (Hcrtr1Dbh-CKO) mice’, and their control littermates’ electrocortical response in several contexts of enhanced arousal. Under enforced wakefulness (EW), or after cage change (CC), Hcrtr1Dbh-CKO mice exhibited a weakened ability to lower infra-θ frequencies (1–7 Hz), and mount a robust, narrow-bandwidth, high-frequency θ rhythm (~8.5 Hz). A fast-γ (55–80 Hz) response, whose dynamics closely parallelled θ, also diminished, while β/slow-γ activity (15–45 Hz) increased. Furthermore, EW-associated locomotion was lower. Surprisingly, nestbuilding-associated wakefulness, inversely, featured enhanced θ and fast-γ activities. Thus HCRT-to-NA signalling may fine-tune arousal, up in alarming conditions, and down during self-motivated, goal-driven behaviors. Lastly, slow-wave-sleep following EW and CC, but not nestbuilding, was severely deficient in slow-δ waves (0.75–2.25 Hz), suggesting that HCRT-to-NA signalling regulates the slow-δ rebound characterizing sleep after stress-associated arousal.
Collapse
|
3
|
Abstract
Presynaptic receptors are sites at which transmitters, locally formed mediators or hormones inhibit or facilitate the release of a given transmitter from its axon terminals. The interest in the identification of presynaptic receptors has faded in recent years and it may therefore be justified to give an overview of their occurrence in the autonomic and central nervous system; this review will focus on presynaptic receptors in human tissues. Autoreceptors are presynaptic receptors at which a given transmitter restrains its further release, though in some instances may also increase its release. Inhibitory autoreceptors represent a typical example of a negative feedback; they are tonically activated by the respective endogenous transmitter and/or are constitutively active. Autoreceptors also play a role under pathophysiological conditions, e.g. by limiting the massive noradrenaline release occurring during congestive heart failure. They can be used for therapeutic purposes; e.g., the α2-adrenoceptor antagonist mirtazapine is used as an antidepressant and the inverse histamine H3 receptor agonist pitolisant has been marketed as a new drug for the treatment of narcolepsy in 2016. Heteroreceptors are presynaptic receptors at which transmitters from adjacent neurons, locally formed mediators (e.g. endocannabinoids) or hormones (e.g. adrenaline) can inhibit or facilitate transmitter release; they may be subject to an endogenous tone. The constipating effect of the sympathetic nervous system or of the antihypertensive drug clonidine is related to the activation of inhibitory α2-adrenoceptors on postganglionic parasympathetic neurons. Part of the stimulating effect of adrenaline on the sympathetic nervous system during stress is related to its facilitatory effect on noradrenaline release via β2-adrenoceptors.
Collapse
Affiliation(s)
| | - Thomas Feuerstein
- Sektion Neuroelektronische Systeme, Klinik für Neurochirurgie, Universität Freiburg, Germany
| |
Collapse
|
4
|
Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol 2016; 6:1239-78. [PMID: 27347892 DOI: 10.1002/cphy.c150037] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Hakan S Orer
- Department of Pharmacology, Koc University School of Medicine, Istanbul, Turkey
| | - Susan M Barman
- Department of Pharmacology &Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Vidal-Torres A, Fernández-Pastor B, Carceller A, Vela JM, Merlos M, Zamanillo D. Effects of the selective sigma-1 receptor antagonist S1RA on formalin-induced pain behavior and neurotransmitter release in the spinal cord in rats. J Neurochem 2014; 129:484-94. [PMID: 24384038 DOI: 10.1111/jnc.12648] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/03/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022]
Abstract
We have previously shown that the selective sigma-1 receptor (σ1 R) antagonist S1RA (E-52862) inhibits neuropathic pain and activity-induced spinal sensitization in various pre-clinical pain models. In this study we characterized both the behavioral and the spinal neurochemical effects of S1RA in the rat formalin test. Systemic administration of S1RA produced a dose-related attenuation of flinching and lifting/licking behaviors in the formalin test. Neurochemical studies using concentric microdialysis in the ipsilateral dorsal horn of awake, freely moving rats revealed that the systemic S1RA-induced antinociceptive effect occurs concomitantly with an enhancement of noradrenaline levels and an attenuation of formalin-evoked glutamate release in the spinal dorsal horn. Intrathecal pre-treatment with idazoxan prevented the systemic S1RA antinociceptive effect, suggesting that the S1RA antinociception depends on the activation of spinal α2 -adrenoceptors which, in turn, could induce an inhibition of formalin-evoked glutamate release. When administered locally, intrathecal S1RA inhibited only the flinching behavior, whereas intracerebroventricularly or intraplantarly injected also attenuated the lifting/licking behavior. These results suggest that S1RA supraspinally activates the descending noradrenergic pain inhibitory system, which may explain part of its antinociceptive properties in the formalin test; however, effects at other central and peripheral sites also account for the overall effect. Formalin-induced nociceptive effect occurs concomitantly with an enhancement of glutamate (Glu) level in the dorsal horn spinal cord. The selective σ1 receptor antagonist S1RA results in inhibition of formalin-evoked Glu release, no modification of GABA levels, and enhancement of noradrenaline (NA) levels. This increased spinal NA activates spinal α2-adrenoceptors producing the attenuation of the formalin-induced pain behaviour.
Collapse
Affiliation(s)
- Alba Vidal-Torres
- Drug Discovery and Preclinical Development, Laboratorios Esteve. Parc Científic Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
6
|
The hypocretin/orexin system: implications for drug reward and relapse. Mol Neurobiol 2012; 45:424-39. [PMID: 22430644 DOI: 10.1007/s12035-012-8255-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/01/2012] [Indexed: 12/14/2022]
Abstract
Hypocretins (also known as orexins) are hypothalamic neuropeptides involved in the regulation of sleep/wake states and feeding behavior. Recent studies have also demonstrated an important role for the hypocretin/orexin system in the addictive properties of drugs of abuse, consistent with the reciprocal innervations between hypocretin neurons and brain areas involved in reward processing. This system participates in the primary reinforcing effects of opioids, nicotine, and alcohol. Hypocretins are also involved in the neurobiological mechanisms underlying relapse to drug-seeking behavior induced by drug-related environmental stimuli and stress, as mainly described in the case of psychostimulants. Based on these preclinical studies, the use of selective ligands targeting hypocretin receptors could represent a new therapeutical strategy for the treatment of substance abuse disorders. In this review, we discuss and update the current knowledge about the participation of the hypocretin system in drug addiction and the possible neurobiological mechanisms involved in these processes regulated by hypocretin transmission.
Collapse
|
7
|
|
8
|
Multiple targets of μ-opioid receptor-mediated presynaptic inhibition at primary afferent Aδ- and C-fibers. J Neurosci 2011; 31:1313-22. [PMID: 21273416 DOI: 10.1523/jneurosci.4060-10.2011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Agonists at μ-opioid receptors (MORs) represent the gold standard for the treatment of severe pain. A key element of opioid analgesia is the depression of nociceptive information at the first synaptic relay in spinal pain pathways. The underlying mechanisms are, however, largely unknown. In spinal cord slices with dorsal roots attached prepared from young rats, we determined the inhibitory effect of the selective MOR agonist [d-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) on monosynaptic Aδ- and C-fiber-evoked EPSCs in lamina I neurons. DAMGO depressed presynaptically Aδ- and C-fiber-mediated responses, indicating that MORs are expressed on central terminals of both fiber types. We next addressed the mechanisms of presynaptic inhibition. The effect of DAMGO at both Aδ- and C-fiber terminals was mainly mediated by an inhibition of N-type voltage-dependent Ca(2+) channels (VDCCs), and to a lesser extent of P/Q-type VDCCs. Inhibition by DAMGO was not reduced by K(+) channel blockers. The rate of miniature EPSCs was reduced by DAMGO in a dose-dependent manner. The opioid also reduced Ca(2+)-dependent, ionomycin-induced EPSCs downstream of VDCCs. DAMGO had no effect on the kinetics of vesicle exocytosis in C-fiber terminals, but decreased the rate of unloading of Aδ-fiber boutons moderately, as revealed by two-photon imaging of styryl dye destaining. Together, these results suggest that binding of opioids to MORs reduces nociceptive signal transmission at central Aδ- and C-fiber synapses mainly by inhibition of presynaptic N-type VDCCs. P/Q-type VDCCs and the transmitter release machinery are targets of opioid action as well.
Collapse
|
9
|
Activity-dependent regulation of synapses by retrograde messengers. Neuron 2009; 63:154-70. [PMID: 19640475 DOI: 10.1016/j.neuron.2009.06.021] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/19/2009] [Accepted: 06/26/2009] [Indexed: 01/01/2023]
Abstract
Throughout the brain, postsynaptic neurons release substances from their cell bodies and dendrites that regulate the strength of the synapses they receive. Diverse chemical messengers have been implicated in retrograde signaling from postsynaptic neurons to presynaptic boutons. Here, we provide an overview of the signaling systems that lead to rapid changes in synaptic strength. We consider the capabilities, specializations, and physiological roles of each type of signaling system.
Collapse
|
10
|
Klisch C, Inyushkin A, Mordel J, Karnas D, Pévet P, Meissl H. Orexin A modulates neuronal activity of the rodent suprachiasmatic nucleusin vitro. Eur J Neurosci 2009; 30:65-75. [DOI: 10.1111/j.1460-9568.2009.06794.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Parmentier R, Kolbaev S, Klyuch BP, Vandael D, Lin JS, Selbach O, Haas HL, Sergeeva OA. Excitation of histaminergic tuberomamillary neurons by thyrotropin-releasing hormone. J Neurosci 2009; 29:4471-83. [PMID: 19357273 PMCID: PMC3198719 DOI: 10.1523/jneurosci.2976-08.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/21/2022] Open
Abstract
The histaminergic tuberomamillary nucleus (TMN) controls arousal and attention, and the firing of TMN neurons is state-dependent, active during waking, silent during sleep. Thyrotropin-releasing hormone (TRH) promotes arousal and combats sleepiness associated with narcolepsy. Single-cell reverse-transcription-PCR demonstrated variable expression of the two known TRH receptors in the majority of TMN neurons. TRH increased the firing rate of most (ca 70%) TMN neurons. This excitation was abolished by the TRH receptor antagonist chlordiazepoxide (CDZ; 50 mum). In the presence of tetrodotoxin (TTX), TRH depolarized TMN neurons without obvious change of their input resistance. This effect reversed at the potential typical for nonselective cation channels. The potassium channel blockers barium and cesium did not influence the TRH-induced depolarization. TRH effects were antagonized by inhibitors of the Na(+)/Ca(2+) exchanger, KB-R7943 and benzamil. The frequency of GABAergic spontaneous IPSCs was either increased (TTX-insensitive) or decreased [TTX-sensitive spontaneous IPSCs (sIPSCs)] by TRH, indicating a heterogeneous modulation of GABAergic inputs by TRH. Facilitation but not depression of sIPSC frequency by TRH was missing in the presence of the kappa-opioid receptor antagonist nor-binaltorphimine. Montirelin (TRH analog, 1 mg/kg, i.p.) induced waking in wild-type mice but not in histidine decarboxylase knock-out mice lacking histamine. Inhibition of histamine synthesis by (S)-alpha-fluoromethylhistidine blocked the arousal effect of montirelin in wild-type mice. We conclude that direct receptor-mediated excitation of rodent TMN neurons by TRH demands activation of nonselective cation channels as well as electrogenic Na(+)/Ca(2+) exchange. Our findings indicate a key role of the brain histamine system in TRH-induced arousal.
Collapse
Affiliation(s)
- Regis Parmentier
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
- Inserm, U628, Physiologie Intégrée du Système d'Éveil, 69373 Lyon Cedex 08, France
| | - Sergej Kolbaev
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Boris P. Klyuch
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - David Vandael
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Jian-Sheng Lin
- Inserm, U628, Physiologie Intégrée du Système d'Éveil, 69373 Lyon Cedex 08, France
| | - Oliver Selbach
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Helmut L. Haas
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Olga A. Sergeeva
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| |
Collapse
|