1
|
Schvartzman C, Fresia P, Murchio S, Mujica MV, Dalla-Rizza M. RNAi in Piezodorus guildinii (Hemiptera: Pentatomidae): Transcriptome Assembly for the Development of Pest Control Strategies. FRONTIERS IN PLANT SCIENCE 2022; 13:804839. [PMID: 35432425 PMCID: PMC9011191 DOI: 10.3389/fpls.2022.804839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Red-banded stink bug Piezodorus guildinii (P. guildinii) has been described as the most damaging stink bug regarding soybean crops, leading to seed injury, low germination percentages, and foliar retention, at low population densities. In recent years, RNA interference (RNAi), a conserved eukaryote silencing mechanism has been explored to develop species-selective pesticides. In this work, we evaluated RNAi in P. guildinii to develop new pest-control strategies. For this, we assembled and annotated a P. guildinii transcriptome from a pool of all developmental stages. Analysis of this transcriptome led to the identification of 56 genes related to the silencing process encompassing siRNA, miRNA, and piRNA pathways. To evaluate the functionality of RNAi machinery, P. guildinii adults were injected with 28 ng/mg of body weight of double stranded RNA (dsRNA) targeting vATPase A. A mortality of 35 and 51.6% was observed after 7 and 14 days, respectively, and a downregulation of vATPase A gene of 84% 72 h post-injection. In addition, Dicer-2 and Argonaute-2 genes, core RNAi proteins, were upregulated 1.8-fold 48 h after injection. These findings showed for the first time that RNAi is functional in P. guildinii and the silencing of essential genes has a significant effect in adult viability. Taken together, the work reported here shows that RNAi could be an interesting approach for the development of red-banded stink bug control strategies.
Collapse
Affiliation(s)
- Claudia Schvartzman
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Pablo Fresia
- Unidad Mixta Pasteur + INIA (UMPI), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sara Murchio
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - María Valentina Mujica
- Unidad de Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Marco Dalla-Rizza
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| |
Collapse
|
2
|
Mehlhorn S, Hunnekuhl VS, Geibel S, Nauen R, Bucher G. Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control: a brief guide. Front Zool 2021; 18:60. [PMID: 34863212 PMCID: PMC8643023 DOI: 10.1186/s12983-021-00444-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
RNA interference (RNAi) has emerged as a powerful tool for knocking-down gene function in diverse taxa including arthropods for both basic biological research and application in pest control. The conservation of the RNAi mechanism in eukaryotes suggested that it should-in principle-be applicable to most arthropods. However, practical hurdles have been limiting the application in many taxa. For instance, species differ considerably with respect to efficiency of dsRNA uptake from the hemolymph or the gut. Here, we review some of the most frequently encountered technical obstacles when establishing RNAi and suggest a robust procedure for establishing this technique in insect species with special reference to pests. Finally, we present an approach to identify the most effective target genes for the potential control of agricultural and public health pests by RNAi.
Collapse
Affiliation(s)
- Sonja Mehlhorn
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Sven Geibel
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Ralf Nauen
- Crop Science Division, Bayer AG, R&D, Pest Control, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Falcicchia C, Trempat P, Binaschi A, Perrier-Biollay C, Roncon P, Soukupova M, Berthommé H, Simonato M. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors. PLoS One 2016; 11:e0150995. [PMID: 26954758 PMCID: PMC4783051 DOI: 10.1371/journal.pone.0150995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/21/2016] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.
Collapse
Affiliation(s)
- Chiara Falcicchia
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
- * E-mail:
| | - Pascal Trempat
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Anna Binaschi
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | | | - Paolo Roncon
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | - Marie Soukupova
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
| | - Hervé Berthommé
- Bioviron, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Michele Simonato
- Department of Medical Science, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Targeting of P-Element Reporters to Heterochromatic Domains by Transposable Element 1360 in Drosophila melanogaster. Genetics 2015; 202:565-82. [PMID: 26680659 DOI: 10.1534/genetics.115.183228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/10/2015] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin is a common DNA packaging form employed by eukaryotes to constitutively silence transposable elements. Determining which sequences to package as heterochromatin is vital for an organism. Here, we use Drosophila melanogaster to study heterochromatin formation, exploiting position-effect variegation, a process whereby a transgene is silenced stochastically if inserted in proximity to heterochromatin, leading to a variegating phenotype. Previous studies identified the transposable element 1360 as a target for heterochromatin formation. We use transgene reporters with either one or four copies of 1360 to determine if increasing local repeat density can alter the fraction of the genome supporting heterochromatin formation. We find that including 1360 in the reporter increases the frequency with which variegating phenotypes are observed. This increase is due to a greater recovery of insertions at the telomere-associated sequences (∼50% of variegating inserts). In contrast to variegating insertions elsewhere, the phenotype of telomere-associated sequence insertions is largely independent of the presence of 1360 in the reporter. We find that variegating and fully expressed transgenes are located in different types of chromatin and that variegating reporters in the telomere-associated sequences differ from those in pericentric heterochromatin. Indeed, chromatin marks at the transgene insertion site can be used to predict the eye phenotype. Our analysis reveals that increasing the local repeat density (via the transgene reporter) does not enlarge the fraction of the genome supporting heterochromatin formation. Rather, additional copies of 1360 appear to target the reporter to the telomere-associated sequences with greater efficiency, thus leading to an increased recovery of variegating insertions.
Collapse
|
5
|
The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses 2015; 7:820-43. [PMID: 25690800 PMCID: PMC4353918 DOI: 10.3390/v7020820] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/10/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed.
Collapse
|
6
|
Elgin SCR, Reuter G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol 2013; 5:a017780. [PMID: 23906716 DOI: 10.1101/cshperspect.a017780] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Position-effect variegation (PEV) results when a gene normally in euchromatin is juxtaposed with heterochromatin by rearrangement or transposition. When heterochromatin packaging spreads across the heterochromatin/euchromatin border, it causes transcriptional silencing in a stochastic pattern. PEV is intensely studied in Drosophila using the white gene. Screens for dominant mutations that suppress or enhance white variegation have identified many conserved epigenetic factors, including the histone H3 lysine 9 methyltransferase SU(VAR)3-9. Heterochromatin protein HP1a binds H3K9me2/3 and interacts with SU(VAR)3-9, creating a core memory system. Genetic, molecular, and biochemical analysis of PEV in Drosophila has contributed many key findings concerning establishment and maintenance of heterochromatin with concomitant gene silencing.
Collapse
Affiliation(s)
- Sarah C R Elgin
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
7
|
Gullerova M, Proudfoot NJ. Convergent transcription induces transcriptional gene silencing in fission yeast and mammalian cells. Nat Struct Mol Biol 2012; 19:1193-201. [PMID: 23022730 PMCID: PMC3504457 DOI: 10.1038/nsmb.2392] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/27/2012] [Indexed: 01/03/2023]
Abstract
We show that convergent transcription induces transcriptional gene silencing (TGS) in trans for both fission yeast and mammalian cells. This method has advantages over existing strategies to induce gene silencing. Previous studies in fission yeast have characterized TGS as a cis-specific process involving RNA interference that maintains heterochromatic regions such as centromeres. In contrast, in mammalian cells, gene silencing is known to occur through a post-transcriptional mechanism that uses exogenous short interfering RNAs or endogenous microRNAs to inactivate mRNA. We now show that the introduction of convergent transcription plasmids into either Schizosaccharomyces pombe or mammalian cells allows the production of double-stranded RNA from inserted gene fragments, resulting in TGS of endogenous genes. We predict that using convergent transcription to induce gene silencing will be a generally useful strategy and allow for a fuller molecular understanding of the biology of TGS.
Collapse
Affiliation(s)
- Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | | |
Collapse
|
8
|
Graze RM, Novelo LL, Amin V, Fear JM, Casella G, Nuzhdin SV, McIntyre LM. Allelic imbalance in Drosophila hybrid heads: exons, isoforms, and evolution. Mol Biol Evol 2012; 29:1521-32. [PMID: 22319150 DOI: 10.1093/molbev/msr318] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unraveling how regulatory divergence contributes to species differences and adaptation requires identifying functional variants from among millions of genetic differences. Analysis of allelic imbalance (AI) reveals functional genetic differences in cis regulation and has demonstrated differences in cis regulation within and between species. Regulatory mechanisms are often highly conserved, yet differences between species in gene expression are extensive. What evolutionary forces explain widespread divergence in cis regulation? AI was assessed in Drosophila melanogaster-Drosophila simulans hybrid female heads using RNA-seq technology. Mapping bias was virtually eliminated by using genotype-specific references. Allele representation in DNA sequencing was used as a prior in a novel Bayesian model for the estimation of AI in RNA. Cis regulatory divergence was common in the organs and tissues of the head with 41% of genes analyzed showing significant AI. Using existing population genomic data, the relationship between AI and patterns of sequence evolution was examined. Evidence of positive selection was found in 30% of cis regulatory divergent genes. Genes involved in defense, RNAi/RISC complex genes, and those that are sex regulated are enriched among adaptively evolving cis regulatory divergent genes. For genes in these groups, adaptive evolution may play a role in regulatory divergence between species. However, there is no evidence that adaptive evolution drives most of the cis regulatory divergence that is observed. The majority of genes showed patterns consistent with stabilizing selection and neutral evolutionary processes.
Collapse
Affiliation(s)
- R M Graze
- Department of Molecular Genetics and Microbiology, University of Florida, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Habayeb MS, Ekström JO, Hultmark D. Nora virus persistent infections are not affected by the RNAi machinery. PLoS One 2009; 4:e5731. [PMID: 19478998 PMCID: PMC2684621 DOI: 10.1371/journal.pone.0005731] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/01/2009] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster is widely used to decipher the innate immune system in response to various pathogens. The innate immune response towards persistent virus infections is among the least studied in this model system. We recently discovered a picorna-like virus, the Nora virus which gives rise to persistent and essentially symptom-free infections in Drosophila melanogaster. Here, we have used this virus to study the interaction with its host and with some of the known Drosophila antiviral immune pathways. First, we find a striking variability in the course of the infection, even between flies of the same inbred stock. Some flies are able to clear the Nora virus but not others. This phenomenon seems to be threshold-dependent; flies with a high-titer infection establish stable persistent infections, whereas flies with a lower level of infection are able to clear the virus. Surprisingly, we find that both the clearance of low-level Nora virus infections and the stability of persistent infections are unaffected by mutations in the RNAi pathways. Nora virus infections are also unaffected by mutations in the Toll and Jak-Stat pathways. In these respects, the Nora virus differs from other studied Drosophila RNA viruses.
Collapse
Affiliation(s)
| | | | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Institute of Medical Technology, University of Tampere, Tampere, Finland
- * E-mail:
| |
Collapse
|