1
|
Fuchigami T, Haywood T, Gowrishankar G, Anders D, Namavari M, Wardak M, Gambhir SS. Synthesis and Characterization of 9-(4-[ 18F]Fluoro-3-(hydroxymethyl)butyl)-2-(phenylthio)-6-oxopurine as a Novel PET Agent for Mutant Herpes Simplex Virus Type 1 Thymidine Kinase Reporter Gene Imaging. Mol Imaging Biol 2021; 22:1151-1160. [PMID: 32691392 DOI: 10.1007/s11307-020-01517-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE [18F]FHBG has been used as a positron emission tomography (PET) imaging tracer for the monitoring of herpes simplex virus type 1 thymidine kinase (HSV1-tk), a reporter gene for cell and gene therapy in humans. However, this tracer shows inadequate blood-brain barrier (BBB) penetration and, therefore, would be limited for accurate quantification of reporter gene expression in the brain. Here, we report the synthesis and evaluation of 9-(4-[18F]fluoro-3-(hydroxymethyl)butyl)-2(phenylthio)-6-oxopurine ([18F]FHBT) as a new PET tracer for imaging reporter gene expression of HSV1-tk and its mutant HSV1-sr39tk, with the aim of improved BBB penetration. PROCEDURES [18F]FHBT was prepared by using a tosylate precursor and [18F]KF. The cellular uptake of [18F]FHBT was performed in HSV1-sr39tk-positive (+) or HSV1-sr39tk-negative (-) MDA-MB-231 breast cancer cells. The specificity of [18F]FHBT to assess HSV1-sr39tk expression was evaluated by in vitro blocking studies using 1 mM of ganciclovir (GCV). Penetration of [18F]FHBT and [18F]FHBG across the BBB was assessed by dynamic PET imaging studies in normal mice. RESULTS The tosylate precursor reacted with [18F]KF using Kryptofix2.2.2 followed by deprotection to give [18F]FHBT in 10 % radiochemical yield (decay-corrected). The uptake of [18F]FHBT in HSV1-sr39tk (+) cells was significantly higher than that of HSV1-sr39tk (-) cells. In the presence of GCV (1 mM), the uptake of [18F]FHBT was significantly decreased, indicating that [18F]FHBT serves as a selective substrate of HSV1-sr39TK. PET images and time-activity curves of [18F]FHBT in the brain regions showed similar initial brain uptakes (~ 12.75 min) as [18F]FHBG (P > 0.855). Slower washout of [18F]FHBT was observed at the later time points (17.75 - 57.75 min, P > 0.207). CONCLUSIONS Although [18F]FHBT showed no statistically significant improvement of BBB permeability compared with [18F]FHBG, we have demonstrated that the 2-(phenylthio)-6-oxopurine backbone can serve as a novel scaffold for developing HSV1-tk/HSV1-sr39tk reporter gene imaging agents for additional research in the future.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.,Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Tom Haywood
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Gayatri Gowrishankar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - David Anders
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Mohammad Namavari
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Mirwais Wardak
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA. .,Department of Bioengineering and Materials Science & Engineering, Bio-X Program, Stanford University, 318 Campus Dr., Room E150 Stanford, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Robinson ER, Gowrishankar G, D'Souza AL, Kheirolomoom A, Haywood T, Hori SS, Chuang HY, Zeng Y, Tumbale SK, Aalipour A, Beinat C, Alam IS, Sathirachinda A, Kanada M, Paulmurugan R, Ferrara KW, Gambhir SS. Minicircles for a two-step blood biomarker and PET imaging early cancer detection strategy. J Control Release 2021; 335:281-289. [PMID: 34029631 DOI: 10.1016/j.jconrel.2021.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
Abstract
Early cancer detection can dramatically increase treatment options and survival rates for patients, yet detection of early-stage tumors remains difficult. Here, we demonstrate a two-step strategy to detect and locate cancerous lesions by delivering tumor-activatable minicircle (MC) plasmids encoding a combination of blood-based and imaging reporter genes to tumor cells. We genetically engineered the MCs, under the control of the pan-tumor-specific Survivin promoter, to encode: 1) Gaussia Luciferase (GLuc), a secreted biomarker that can be easily assayed in blood samples; and 2) Herpes Simplex Virus Type 1 Thymidine Kinase mutant (HSV-1 sr39TK), a PET reporter gene that can be used for highly sensitive and quantitative imaging of the tumor location. We evaluated two methods of MC delivery, complexing the MCs with the chemical transfection reagent jetPEI or encapsulating the MCs in extracellular vesicles (EVs) derived from a human cervical cancer HeLa cell line. MCs delivered by EVs or jetPEI yielded significant expression of the reporter genes in cell culture versus MCs delivered without a transfection reagent. Secreted GLuc correlated with HSV-1 sr39TK expression with R2 = 0.9676. MC complexation with jetPEI delivered a larger mass of MC for enhanced transfection, which was crucial for in vivo animal studies, where delivery of MCs via jetPEI resulted in GLuc and HSV-1 sr39TK expression at significantly higher levels than controls. To the best of our knowledge, this is the first report of the PET reporter gene HSV-1 sr39TK delivered via a tumor-activatable MC to tumor cells for an early cancer detection strategy. This work explores solutions to endogenous blood-based biomarker and molecular imaging limitations of early cancer detection strategies and elucidates the delivery capabilities and limitations of EVs.
Collapse
Affiliation(s)
- Elise R Robinson
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gayatri Gowrishankar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aloma L D'Souza
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Azadeh Kheirolomoom
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tom Haywood
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sharon S Hori
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA; Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Spencer K Tumbale
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amin Aalipour
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Corinne Beinat
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Israt S Alam
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ataya Sathirachinda
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824., USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA; Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Katherine W Ferrara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA; Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA 94305, USA; Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, Williams J, Habte F, Wagner JR, Forman S, Brown C, Allen-Auerbach M, Czernin J, Tang W, Jensen MC, Badie B, Gambhir SS. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 2018; 9. [PMID: 28100832 DOI: 10.1126/scitranslmed.aag2196] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
High-grade gliomas are aggressive cancers that often become rapidly fatal. Immunotherapy using CD8+ cytotoxic T lymphocytes (CTLs), engineered to express both herpes simplex virus type 1 thymidine kinase (HSV1-TK) and interleukin-13 (IL-13) zetakine chimeric antigen receptor (CAR), is a treatment strategy with considerable potential. To optimize this and related immunotherapies, it would be helpful to monitor CTL viability and trafficking to glioma cells. We show that noninvasive positron emission tomography (PET) imaging with 9-[4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]FHBG) can track HSV1-tk reporter gene expression present in CAR-engineered CTLs. [18F]FHBG imaging was safe and enabled the longitudinal imaging of T cells stably transfected with a PET reporter gene in patients. Further optimization of this imaging approach for monitoring in vivo cell trafficking should greatly benefit various cell-based therapies for cancer.
Collapse
Affiliation(s)
- Khun Visith Keu
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States.,Division of Nuclear Medicine, Hôpital de la Cité-de-la-Santé de Laval, QC, H7M 3L9, Canada
| | - Timothy H Witney
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States.,Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Shahriar Yaghoubi
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States
| | - Jarrett Rosenberg
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States
| | - Anita Kurien
- Neurosurgery, City of Hope, Duarte, CA, 91010, United States
| | | | - John Williams
- Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, 90095, United States
| | - Frezghi Habte
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States
| | - Jamie R Wagner
- Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, United States
| | - Stephen Forman
- Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, United States
| | - Christine Brown
- Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, United States
| | | | - Johannes Czernin
- Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, 90095, United States
| | - Winson Tang
- Sangamo BioSciences Inc, Richmond, CA 94804, United States
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, 98145, United States
| | - Behnam Badie
- Neurosurgery, City of Hope, Duarte, CA, 91010, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States.,Department of Bioengineering, Department of Materials Science & Engineering, Bio-X, Stanford University, Palo Alto, CA, 94305, United States
| |
Collapse
|
4
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Halldin C, Gulyás BZ. PET probes for imaging pancreatic islet cells. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Kothari P, De BP, He B, Chen A, Chiuchiolo MJ, Kim D, Nikolopoulou A, Amor-Coarasa A, Dyke JP, Voss HU, Kaminsky SM, Foley CP, Vallabhajosula S, Hu B, DiMagno SG, Sondhi D, Crystal RG, Babich JW, Ballon D. Radioiodinated Capsids Facilitate In Vivo Non-Invasive Tracking of Adeno-Associated Gene Transfer Vectors. Sci Rep 2017; 7:39594. [PMID: 28059103 PMCID: PMC5216390 DOI: 10.1038/srep39594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/24/2016] [Indexed: 01/07/2023] Open
Abstract
Viral vector mediated gene therapy has become commonplace in clinical trials for a wide range of inherited disorders. Successful gene transfer depends on a number of factors, of which tissue tropism is among the most important. To date, definitive mapping of the spatial and temporal distribution of viral vectors in vivo has generally required postmortem examination of tissue. Here we present two methods for radiolabeling adeno-associated virus (AAV), one of the most commonly used viral vectors for gene therapy trials, and demonstrate their potential usefulness in the development of surrogate markers for vector delivery during the first week after administration. Specifically, we labeled adeno-associated virus serotype 10 expressing the coding sequences for the CLN2 gene implicated in late infantile neuronal ceroid lipofuscinosis with iodine-124. Using direct (Iodogen) and indirect (modified Bolton-Hunter) methods, we observed the vector in the murine brain for up to one week using positron emission tomography. Capsid radioiodination of viral vectors enables non-invasive, whole body, in vivo evaluation of spatial and temporal vector distribution that should inform methods for efficacious gene therapy over a broad range of applications.
Collapse
Affiliation(s)
- P. Kothari
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - B. P. De
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - B. He
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - A. Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - M. J. Chiuchiolo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - D. Kim
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - A. Nikolopoulou
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - A. Amor-Coarasa
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - J. P. Dyke
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - H. U. Voss
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - S. M. Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - C. P. Foley
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - S. Vallabhajosula
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - B. Hu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - S. G. DiMagno
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - D. Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - R. G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - J. W. Babich
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - D. Ballon
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York, USA
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
6
|
Mowday AM, Guise CP, Ackerley DF, Minton NP, Lambin P, Dubois LJ, Theys J, Smaill JB, Patterson AV. Advancing Clostridia to Clinical Trial: Past Lessons and Recent Progress. Cancers (Basel) 2016; 8:cancers8070063. [PMID: 27367731 PMCID: PMC4963805 DOI: 10.3390/cancers8070063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 01/19/2023] Open
Abstract
Most solid cancers contain regions of necrotic tissue. The extent of necrosis is associated with poor survival, most likely because it reflects aggressive tumour outgrowth and inflammation. Intravenously injected spores of anaerobic bacteria from the genus Clostridium infiltrate and selectively germinate in these necrotic regions, providing cancer-specific colonisation. The specificity of this system was first demonstrated over 60 years ago and evidence of colonisation has been confirmed in multiple tumour models. The use of "armed" clostridia, such as in Clostridium Directed Enzyme Prodrug Therapy (CDEPT), may help to overcome some of the described deficiencies of using wild-type clostridia for treatment of cancer, such as tumour regrowth from a well-vascularised outer rim of viable cells. Successful preclinical evaluation of a transferable gene that metabolises both clinical stage positron emission tomography (PET) imaging agents (for whole body vector visualisation) as well as chemotherapy prodrugs (for conditional enhancement of efficacy) would be a valuable early step towards the prospect of "armed" clostridia entering clinical evaluation. The ability to target the immunosuppressive hypoxic tumour microenvironment using CDEPT may offer potential for synergy with recently developed immunotherapy strategies. Ultimately, clostridia may be most efficacious when combined with conventional therapies, such as radiotherapy, that sterilise viable aerobic tumour cells.
Collapse
Affiliation(s)
- Alexandra M Mowday
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
| | - Christopher P Guise
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
| | - David F Ackerley
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| | - Nigel P Minton
- The Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC) School of Life Sciences, University of Nottingham, Nottingham NG72RD, UK.
| | - Philippe Lambin
- Maastro (Maastricht Radiation Oncology), GROW School for Oncology and Development Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Ludwig J Dubois
- Maastro (Maastricht Radiation Oncology), GROW School for Oncology and Development Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Jan Theys
- Maastro (Maastricht Radiation Oncology), GROW School for Oncology and Development Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Jeff B Smaill
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
| | - Adam V Patterson
- Translational Therapeutics Team, Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
7
|
Paproski RJ, Li Y, Barber Q, Lewis JD, Campbell RE, Zemp R. Validating tyrosinase homologue melA as a photoacoustic reporter gene for imaging Escherichia coli. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:106008. [PMID: 26502231 DOI: 10.1117/1.jbo.20.10.106008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
To understand the pathogenic processes for infectious bacteria, appropriate research tools are required for replicating and characterizing infections. Fluorescence and bioluminescence imaging have primarily been used to image infections in animal models, but optical scattering in tissue significantly limits imaging depth and resolution. Photoacoustic imaging, which has improved depth-to-resolution ratio compared to conventional optical imaging, could be useful for visualizing melA-expressing bacteria since melA is a bacterial tyrosinase homologue which produces melanin. Escherichia coli-expressing melA was visibly dark in liquid culture. When melA-expressing bacteria in tubes were imaged with a VisualSonics Vevo LAZR system, the signal-to-noise ratio of a 9×dilution sample was 55, suggesting that ∼20 bacteria cells could be detected with our system. Multispectral (680, 700, 750, 800, 850, and 900 nm) analysis of the photoacoustic signal allowed unmixing of melA-expressing bacteria from blood. To compare photoacoustic reporter gene melA (using Vevo system) with luminescent and fluorescent reporter gene Nano-lantern (using Bruker Xtreme In-Vivo system), tubes of bacteria expressing melA or Nano-lantern were submerged 10 mm in 1% Intralipid, spaced between <1 and 20 mm apart from each other, and imaged with the appropriate imaging modality. Photoacoustic imaging could resolve the two tubes of melA-expressing bacteria even when the tubes were less than 1 mm from each other, while bioluminescence and fluorescence imaging could not resolve the two tubes of Nano-lantern-expressing bacteria even when the tubes were spaced 10 mm from each other. After injecting 100-μL of melA-expressing bacteria in the back flank of a chicken embryo, photoacoustic imaging allowed visualization of melA-expressing bacteria up to 10-mm deep into the embryo. Photoacoustic signal from melA could also be separated from deoxy- and oxy-hemoglobin signal observed within the embryo and chorioallantoic membrane. Our results suggest that melA is a useful photoacoustic reporter gene for visualizing bacteria, and further work incorporating photoacoustic reporters into infectious bacterial strains is warranted.
Collapse
Affiliation(s)
- Robert J Paproski
- University of Alberta, Department of Electrical and Computer Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, Alberta T6G 1H9, CanadabUniversity of Alberta, Department of Oncology, Katz Group Centre, 114 Street & 87 Avenu
| | - Yan Li
- University of Alberta, Department of Chemistry, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Quinn Barber
- University of Alberta, Department of Electrical and Computer Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, Alberta T6G 1H9, Canada
| | - John D Lewis
- University of Alberta, Department of Oncology, Katz Group Centre, 114 Street & 87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| | - Robert E Campbell
- University of Alberta, Department of Chemistry, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Roger Zemp
- University of Alberta, Department of Electrical and Computer Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
8
|
Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors. Sci Rep 2014; 4:5329. [PMID: 24936769 PMCID: PMC4060505 DOI: 10.1038/srep05329] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/02/2014] [Indexed: 12/17/2022] Open
Abstract
Photoacoustic imaging is an emerging hybrid imaging technology capable of breaking through resolution limits of pure optical imaging technologies imposed by optical-scattering to provide fine-resolution optical contrast information in deep tissues. We demonstrate the ability of multi-wavelength photoacoustic imaging to estimate relative gene expression distributions using an inducible expression system and co-register images with hemoglobin oxygen saturation estimates and micro-ultrasound data. Tyrosinase, the rate-limiting enzyme in melanin production, is used as a reporter gene owing to its strong optical absorption and enzymatic amplification mechanism. Tetracycline-inducible melanin expression is turned on via doxycycline treatment in vivo. Serial multi-wavelength imaging reveals very low estimated melanin expression in tumors prior to doxycycline treatment or in tumors with no tyrosinase gene present, but strong signals after melanin induction in tumors tagged with the tyrosinase reporter. The combination of new inducible reporters and high-resolution photoacoustic and micro-ultrasound technology is poised to bring a new dimension to the study of gene expression in vivo.
Collapse
|
9
|
Abstract
The field of tumor immunology has seen an explosion of renewed interest over the last decade. With the FDA approval of new immunotherapies for prostate cancer and melanoma, as well as several exciting new drugs in clinical trials, tumor immunology is becoming an increasingly important topic in preclinical studies and patient care. However, the current methods for assessing the immune status of a patient and tumor are limited, which has led to the development of novel molecular imaging methods for assessing tumor immunology. From cell tracking for cellular therapeutics to assessing the tumor immune microenvironment, these imaging methods have the potential to further preclinical understanding of immunotherapies and potentially translate into clinically useful tests to predict and assess therapeutic response of these exciting new agents. In this review, we first discuss the recent advances in cancer immunotherapy, followed by a detailed review of the current state of molecular imaging for tumor immunology. Finally, we discuss opportunities for further development and innovation in this rapidly growing field.
Collapse
|
10
|
Abstract
OBJECTIVE The purposes of this article are to summarize the basic concept and the strategies of reporter imaging; introduce reporter genes frequently used in optical imaging, nuclear medicine, and MRI for in vivo application; and show typical examples of reporter gene imaging. CONCLUSION In molecular biology, many reporter genes have been developed for monitoring cellular processes. Development of controlled gene delivery systems promotes construction of various types of reporter genes for monitoring the level of a gene expression, promoter activity, and protein-protein interaction. When an imaging reporter gene is placed under the control of a promoter, the amount of reporter protein can be dynamically visualized in vivo. Instrumental advances in molecular imaging have increased the sensitivity and resolution of in vivo reporter imaging. Though several types of reporters and multimodal imaging instruments are currently available, more efficient multimodal reporter gene systems and detectors compatible with several imaging modalities are needed.
Collapse
|
11
|
Lyons SK, Patrick PS, Brindle KM. Imaging mouse cancer models in vivo using reporter transgenes. Cold Spring Harb Protoc 2013; 2013:685-99. [PMID: 23906907 DOI: 10.1101/pdb.top069864] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imaging mouse models of cancer with reporter transgenes has become a relatively common experimental approach in the laboratory, which allows noninvasive and longitudinal investigation of diverse aspects of tumor biology in vivo. Our goal here is to outline briefly the principles of the relevant imaging modalities, emphasizing particularly their strengths and weaknesses and what the researcher can expect in a practical sense from each of these techniques. Furthermore, we discuss how relatively subtle modifications in the way reporter transgene expression is regulated in the cell underpin the ability of reporter transgenes as a whole to provide readouts on such varied aspects of tumor biology in vivo.
Collapse
Affiliation(s)
- Scott K Lyons
- Department of Molecular Imaging, CRUK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | | | | |
Collapse
|
12
|
Pouliot F, Sato M, Jiang ZK, Huyn S, Karanikolas BD, Wu L. A molecular imaging system based on both transcriptional and genomic amplification to detect prostate cancer cells in vivo. Mol Ther 2012; 21:554-60. [PMID: 23247102 DOI: 10.1038/mt.2012.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An imaging modality that can accurately discern prostate cancer (PCa) foci would be useful to detect PCa early or guide treatment. We have engineered numerous adenoviral vectors (Ads) to carry out reporter gene-based imaging using specific promoters to express a potent transcriptional activator, which in turn activates the reporter gene in PCa. This two-step transcriptional amplification (TSTA) method can boost promoters' activity, while maintaining cell specificity. Here, we examined a dual TSTA (DTSTA) approach, which utilizes TSTA not only to express the imaging reporter, but also to direct viral genome replication of a conditionally replicating Ad (CRAd) to further augment the expression levels of the reporter gene by genomic amplification supported in trans by coadministered CRAd. In vitro studies showed up to 50-fold increase of the reporter genome by DTSTA. Compared with TSTA reporter alone, DTSTA application exhibited a 25-fold increase in imaging signal in PCa xenografts. DTSTA approach is also beneficial for a combination of two TSTA Ads with distinct promoters, although amplification is observed only when TSTA-CRAd can replicate. Consequently, the DTSTA approach is a hybrid method of transcriptional and genomic augmentation that can provide higher level reporter gene expression potentially with a lower dose of viral administration.
Collapse
Affiliation(s)
- Frédéric Pouliot
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Quantification of HSV-1-mediated expression of the ferritin MRI reporter in the mouse brain. Gene Ther 2012; 20:589-96. [PMID: 22996196 DOI: 10.1038/gt.2012.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of effective strategies for gene therapy has been hampered by difficulties verifying transgene delivery in vivo and quantifying gene expression non-invasively. Magnetic resonance imaging (MRI) offers high spatial resolution and three-dimensional views, without tissue depth limitations. The iron-storage protein ferritin is a prototype MRI gene reporter. Ferritin forms a paramagnetic ferrihydrite core that can be detected by MRI via its effect on the local magnetic field experienced by water protons. In an effort to better characterize the ferritin reporter for central nervous system applications, we expressed ferritin in the mouse brain in vivo using a neurotropic herpes simplex virus type 1 (HSV-1). We computed three-dimensional maps of MRI transverse relaxation rates in the mouse brain with ascending doses of ferritin-expressing HSV-1. We established that the transverse relaxation rates correlate significantly to the number of inoculated infectious particles. Our results are potentially useful for quantitatively assessing limitations of ferritin reporters for gene therapy applications.
Collapse
|
14
|
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012; 92:897-965. [PMID: 22535898 DOI: 10.1152/physrev.00049.2010] [Citation(s) in RCA: 729] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular imaging is revolutionizing the way we study the inner workings of the human body, diagnose diseases, approach drug design, and assess therapies. The field as a whole is making possible the visualization of complex biochemical processes involved in normal physiology and disease states, in real time, in living cells, tissues, and intact subjects. In this review, we focus specifically on molecular imaging of intact living subjects. We provide a basic primer for those who are new to molecular imaging, and a resource for those involved in the field. We begin by describing classical molecular imaging techniques together with their key strengths and limitations, after which we introduce some of the latest emerging imaging modalities. We provide an overview of the main classes of molecular imaging agents (i.e., small molecules, peptides, aptamers, engineered proteins, and nanoparticles) and cite examples of how molecular imaging is being applied in oncology, neuroscience, cardiology, gene therapy, cell tracking, and theranostics (therapy combined with diagnostics). A step-by-step guide to answering biological and/or clinical questions using the tools of molecular imaging is also provided. We conclude by discussing the grand challenges of the field, its future directions, and enormous potential for further impacting how we approach research and medicine.
Collapse
Affiliation(s)
- Michelle L James
- Molecular Imaging Program, Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
15
|
Abstract
PURPOSE We have generated transgenic mouse lines expressing the positron emission tomography (PET) reporter gene, sr39tk, under the control of the mouse insulin I promoter (MIP-sr39tk) to image endogenous islets using PET. PROCEDURES The MIP-sr39tk transgene was constructed using the 8.3 kb fragment of the mouse insulin I promoter and the sr39tk coding sequence from the mrfp-hrl-ttk trifusion construct. Expression of sr39TK in beta cells was confirmed by fluorescence immunohistochemistry of pancreatic sections. Histological sections were used to determine beta cell mass, islet area and islet number. Beta cell function was determined using intraperitoneal glucose tolerance tests. For ex vivo biodistrubution, mice were injected i.v. with 9.25 MBq [(18)F]fluorohydroxymethyl-butyl-guanine (FHBG), euthanized 1 h later and pancreata and other organs were collected and counted. For PET scans, mice were injected i.v. with 9.25 MBq [(18)F]FHBG, and dynamic scans were conducted for 1 h, followed by a 30 min static acquisition. To induce type 1 diabetes-like symptoms, MIP-sr39tk mice were injected i.p. with 40 mg/kg streptozotocin (STZ) once per day for five consecutive days, and biodistribution and PET scans were conducted thereafter. RESULTS Ex vivo quantification of [(18)F]FHBG uptake in the pancreas showed a 4.5-fold difference in transgenic vs. non-transgenics, confirming that expression of sr39TK results in the retention of the PET tracer. In STZ-treated MIP-sr39tk mice, impairments in glucose tolerance and decreases in beta cell mass correlated significantly with a diminishment in [(18)F]FHBG uptake before fasting hyperglycemia became apparent. CONCLUSIONS The MIP-sr39tk mouse demonstrates that PET imaging can detect changes in beta cell mass that precede the onset of diabetes.
Collapse
|
16
|
Xu Y, Liu H, Cheng Z. Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging. J Nucl Med 2011; 52:2009-18. [PMID: 22080446 DOI: 10.2967/jnumed.111.092965] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past several years, nuclear imaging modalities such as PET and SPECT have received much attention because they have been instrumental not only in preclinical cancer research but also in nuclear medicine. Yet nuclear imaging is limited by high instrumentation cost and subsequently low availability to basic researchers. Cerenkov radiation, a relativistic physical phenomenon that was discovered 70 years ago, has recently become an intriguing subject of study in molecular imaging because of its potential in augmenting nuclear imaging, particularly in preclinical small-animal studies. The intrinsic capability of radionuclides emitting luminescent light from decay is promising because of the possibility of bridging nuclear imaging with optical imaging-a modality that is much less expensive, is easier to use, and has higher throughput than its nuclear counterpart. Thus, with the maturation of this novel imaging technology using Cerenkov radiation, which is termed Cerenkov luminescence imaging, it is foreseeable that advances in both nuclear imaging and preclinical research involving radioisotopes will be significantly accelerated in the near future.
Collapse
Affiliation(s)
- Yingding Xu
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
17
|
Abstract
Cell-based therapies, such as adoptive immunotherapy and stem-cell therapy, have received considerable attention as novel therapeutics in oncological research and clinical practice. The development of effective therapeutic strategies using tumor-targeted cells requires the ability to determine in vivo the location, distribution, and long-term viability of the therapeutic cell populations as well as their biological fate with respect to cell activation and differentiation. In conjunction with various noninvasive imaging modalities, cell-labeling methods, such as exogenous labeling or transfection with a reporter gene, allow visualization of labeled cells in vivo in real time, as well as monitoring and quantifying cell accumulation and function. Such cell-tracking methods also have an important role in basic cancer research, where they serve to elucidate novel biological mechanisms. In this Review, we describe the basic principles of cell-tracking methods, explain various approaches to cell tracking, and highlight recent examples for the application of such methods in animals and humans.
Collapse
|
18
|
Eriksson O, Alavi A. Imaging the islet graft by positron emission tomography. Eur J Nucl Med Mol Imaging 2011; 39:533-42. [PMID: 21932118 DOI: 10.1007/s00259-011-1928-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
Clinical islet transplantation is being investigated as a permanent cure for type 1 diabetes mellitus (T1DM). Currently, intraportal infusion of islets is the favoured procedure, but several novel implantation sites have been suggested. Noninvasive longitudinal methodologies are an increasingly important tool for assessing the fate of transplanted islets, their mass, function and early signs of rejection. This article reviews the approaches available for islet graft imaging by positron emission tomography and progress in the field, as well as future challenges and opportunities.
Collapse
Affiliation(s)
- Olof Eriksson
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
19
|
Pouliot F, Karanikolas BDW, Johnson M, Sato M, Priceman SJ, Stout D, Sohn J, Satyamurthy N, deKernion JB, Wu L. In vivo imaging of intraprostatic-specific gene transcription by PET. J Nucl Med 2011; 52:784-91. [PMID: 21498525 DOI: 10.2967/jnumed.110.084582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Better intraprostatic cancer imaging techniques are needed to guide clinicians in prostate cancer treatment decisions. Because many genes are specifically overexpressed in cancer cells, one strategy to improve prostate cancer detection is to image intraprostatic cancer-specific transcriptional activity. Because of the obstacles of weak cancer- or tissue-specific promoter activity and bladder clearance of many PET tracers, intraprostatic PET of gene transcriptional activity has not been previously reported. METHODS The two-step transcriptional amplification (TSTA) system that amplifies the prostate-specific antigen promoter activity was used for PET imaging of the reporter gene herpes simplex virus type-1 sr39 thymidine kinase (HSV1-sr39tk). The TSTA-sr39tk system was injected directly into prostates or prostatic tumors as a replication-incompetent adenovirus (AdTSTA-sr39tk) and imaged using PET. RESULTS AdTSTA-sr39tk was able to image prostate-specific antigen promoter transcriptional activity by 9-(4-(18)F-fluoro-3-[hydroxymethyl]butyl)guanine PET, in both mouse and canine prostates in vivo. Ex vivo small-animal PET images, scintigraphic counts, and sr39tk expression analysis confirmed the specificity of the observed signal. CONCLUSION Here, by combining the TSTA-amplified signal with a protocol for tracer administration, we show that in vivo PET detection of transcriptional activity is possible in both mouse and immunocompetent canine prostates. These results suggest that imaging applications using transcription-based tumor-specific promoters should be pursued to better visualize cancer foci that escape detection by conventional biopsies.
Collapse
Affiliation(s)
- Frédéric Pouliot
- Institute of Urologic Oncology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cotugno G, Aurilio M, Annunziata P, Capalbo A, Faella A, Rinaldi V, Strisciuglio C, Di Tommaso M, Aloj L, Auricchio A. Noninvasive repetitive imaging of somatostatin receptor 2 gene transfer with positron emission tomography. Hum Gene Ther 2011; 22:189-96. [PMID: 20825281 DOI: 10.1089/hum.2010.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Noninvasive in vivo imaging of gene expression is desirable to monitor gene transfer in both animal models and humans. Reporter transgenes with low endogenous expression levels are instrumental to this end. The human somatostatin receptor 2 (hSSTR2) has low expression levels in a variety of tissues, including muscle and liver. We tested the possibility of noninvasively and quantitatively monitoring hSSTR2 transgene expression, following adeno-associated viral (AAV) vector-mediated gene delivery to murine muscle and liver by positron emission tomography (PET) using (68)gallium-DOTA-Tyr(3)-Thr(8)-octreotate ((68)Ga-DOTATATE) as a highly specific SSTR2 ligand. Repetitive PET imaging showed hSSTR2 signal up to 6 months, which corresponds to the last time point of the analysis, after gene delivery in both transduced tissues. The levels of tracer accumulation measured in muscle and liver after gene delivery were significantly higher than in control tissues and correlated with the doses of AAV vector administered. As repetitive, quantitative, noninvasive imaging of AAV-mediated SSTR2 gene transfer to muscle and liver is feasible and efficient using PET, we propose this system to monitor the expression of therapeutic genes coexpressed with SSTR2.
Collapse
Affiliation(s)
- Gabriella Cotugno
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jiang H, Cheng Z, Tian M, Zhang H. In vivo imaging of embryonic stem cell therapy. Eur J Nucl Med Mol Imaging 2010; 38:774-84. [PMID: 21107558 DOI: 10.1007/s00259-010-1667-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/01/2010] [Indexed: 12/11/2022]
Abstract
Embryonic stem cells (ESCs) have the most pluripotent potential of any stem cell. These cells, isolated from the inner cell mass of the blastocyst, are "pluripotent," meaning that they can give rise to all cell types within the developing embryo. As a result, ESCs have been regarded as a leading candidate source for novel regenerative medicine therapies and have been used to derive diverse cell populations, including myocardial and endothelial cells. However, before they can be safely applied clinically, it is important to understand the in vivo behavior of ESCs and their derivatives. In vivo analysis of ESC-derived cells remains critically important to define how these cells may function in novel regenerative medicine therapies. In this review, we describe several available imaging modalities for assessing cell engraftment and discuss their strengths and limitations. We also analyze the applications of these modalities in assessing the utility of ESCs in regenerative medicine therapies.
Collapse
Affiliation(s)
- Han Jiang
- Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | | | | | | |
Collapse
|
22
|
Liu H, Ren G, Liu S, Zhang X, Chen L, Han P, Cheng Z. Optical imaging of reporter gene expression using a positron-emission-tomography probe. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:060505. [PMID: 21198146 PMCID: PMC3003718 DOI: 10.1117/1.3514659] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/17/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
Reporter gene∕reporter probe technology is one of the most important techniques in molecular imaging. Lately, many reporter gene∕reporter probe systems have been coupled to different imaging modalities such as positron emission tomography (PET) and optical imaging (OI). It has been recently found that OI techniques could be used to monitor radioactive tracers in vitro and in living subjects. In this study, we further demonstrate that a reporter gene∕nuclear reporter probe system [herpes simplex virus type-1 thymidine kinase (HSV1-tk) and 9-(4-(18)F-fluoro-3-[hydroxymethyl] butyl) guanine ([(18)F]FHBG)] could be successfully imaged by OI in vitro and in vivo. OI with radioactive reporter probes will facilitate and broaden the applications of reporter gene∕reporter probe techniques in medical research.
Collapse
Affiliation(s)
- Hongguang Liu
- Stanford University, Department of Radiology and Bio-X Program, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Likar Y, Zurita J, Dobrenkov K, Shenker L, Cai S, Neschadim A, Medin JA, Sadelain M, Hricak H, Ponomarev V. A new pyrimidine-specific reporter gene: a mutated human deoxycytidine kinase suitable for PET during treatment with acycloguanosine-based cytotoxic drugs. J Nucl Med 2010; 51:1395-403. [PMID: 20810757 PMCID: PMC4405132 DOI: 10.2967/jnumed.109.074344] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED In this article, we describe a series of new human-derived reporter genes based on human deoxycytidine kinase (dCK) suitable for clinical PET. METHODS Native dCK and its mutant reporter genes were tested in vitro and in vivo for their phosphorylation of pyrimidine- and acycloguanosine-based radiotracers including 2'-deoxy-2'-fluoroarabinofuranosylcytosine, 2'-fluoro-2'-deoxyarabinofuranosyl-5-ethyluracil (FEAU), penciclovir, and 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine (FHBG) and clinically applied antiviral and anticancer drugs. RESULTS Cells transduced with dCK mutant reporter genes showed high in vitro and in vivo uptake of pyrimidine-based radiopharmaceuticals ((18)F-FEAU) comparable to that of herpes simplex virus type-1 thymidine kinase (HSV1-tk)-transduced cells. These mutants did not phosphorylate acycloguanosine-based radiotracers ((18)F-FHBG) or antiviral drugs (ganciclovir). Furthermore, the mutants displayed suicidal activation of clinically used pyrimidine-based prodrugs (cytarabine, gemcitabine). CONCLUSION The mutants of human dCK can be used as pyrimidine-specific PET reporter genes for imaging with (18)F-FEAU during treatment with acycloguanosine-based antiviral drugs. Additionally, the prosuicidal activity of these reporters with pyrimidine-based analogs will allow for the safe elimination of transduced cells.
Collapse
Affiliation(s)
- Yury Likar
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Juan Zurita
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Konstantin Dobrenkov
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Larissa Shenker
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Shangde Cai
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Anton Neschadim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey A. Medin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Michel Sadelain
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
24
|
Lan X, Liu Y, He Y, Wu T, Zhang B, Gao Z, An R, Zhang Y. Autoradiography study and SPECT imaging of reporter gene HSV1-tk expression in heart. Nucl Med Biol 2010; 37:371-80. [DOI: 10.1016/j.nucmedbio.2009.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 01/26/2023]
|
25
|
Translational advances and novel therapies for pancreatic ductal adenocarcinoma: hope or hype? Expert Rev Mol Med 2009; 11:e34. [PMID: 19919723 DOI: 10.1017/s1462399409001240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biological complexity, inaccessible anatomical location, nonspecific symptoms, lack of a screening biomarker, advanced disease at presentation and drug resistance epitomise pancreatic ductal adenocarcinoma (PDA) as a poor-prognosis, lethal disease. Twenty-five years of research (basic, translational and clinical) have barely made strides to improve survival, mainly because of a fundamental lack of knowledge of the biological processes initiating and propagating PDA. However, isolation of pancreas cancer stem cells or progenitors, whole-genome sequencing for driver mutations, advances in functional imaging, mechanistic dissection of the desmoplastic reaction and novel targeted therapies are likely to shed light on how best to treat PDA. Here we summarise current knowledge and areas where the field is advancing, and give our opinion on the research direction the field should be focusing on to better deliver promising therapies for our patients.
Collapse
|
26
|
Hooker JM. Modular strategies for PET imaging agents. Curr Opin Chem Biol 2009; 14:105-11. [PMID: 19880343 DOI: 10.1016/j.cbpa.2009.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 12/14/2022]
Abstract
In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.
Collapse
Affiliation(s)
- Jacob M Hooker
- Brookhaven National Laboratory, Medical Department, Building 555, Upton, NY 11973-5000, USA.
| |
Collapse
|
27
|
Non-invasive molecular imaging of prostate cancer lymph node metastasis. Trends Mol Med 2009; 15:254-62. [PMID: 19482514 DOI: 10.1016/j.molmed.2009.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/14/2009] [Accepted: 04/14/2009] [Indexed: 11/20/2022]
Abstract
Imaging in medicine has been classically based on the anatomical description of organs. In the past 15 years, new imaging techniques based on gene expression that characterize a pathological process have been developed. Molecular imaging is the use of such molecules to image cell-specific characteristics. Here, we review recent advances in molecular imaging, taking as our prime example lymph node (LN) metastasis in prostate cancer. We describe the new techniques and compare their accuracy in detecting LN metastasis in prostate cancer. We also present new molecular strategies for improving tumor detection using adenoviruses, molecular promoters and amplification systems. Finally, we present the concept of 'in vivo pathology', which envisages using molecular imaging to accurately localize metastatic lesions based on the molecular signature of the disease.
Collapse
|
28
|
Brader P, Kelly K, Gang S, Shah JP, Wong RJ, Hricak H, Blasberg RG, Fong Y, Gil Z. Imaging of lymph node micrometastases using an oncolytic herpes virus and [F]FEAU PET. PLoS One 2009; 4:e4789. [PMID: 19274083 PMCID: PMC2651472 DOI: 10.1371/journal.pone.0004789] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 02/02/2009] [Indexed: 12/11/2022] Open
Abstract
Background In patients with melanoma, knowledge of regional lymph node status provides important information on outlook. Since lymph node status can influence treatment, surgery for sentinel lymph node (SLN) biopsy became a standard staging procedure for these patients. Current imaging modalities have a limited sensitivity for detection of micrometastases in lymph nodes and, therefore, there is a need for a better technique that can accurately identify occult SLN metastases. Methodology/Principal Findings B16-F10 murine melanoma cells were infected with replication-competent herpes simplex virus (HSV) NV1023. The presence of tumor-targeting and reporter-expressing virus was assessed by [18F]-2′-fluoro-2′-deoxy-1-β-D-β-arabinofuranosyl-5-ethyluracil ([18F]FEAU) positron emission tomography (PET) and confirmed by histochemical assays. An animal foot pad model of melanoma lymph node metastasis was established. Mice received intratumoral injections of NV1023, and 48 hours later were imaged after i.v. injection of [18F]FEAU. NV1023 successfully infected and provided high levels of lacZ transgene expression in melanoma cells. Intratumoral injection of NV1023 resulted in viral trafficking to melanoma cells that had metastasized to popliteal and inguinal lymph nodes. Presence of virus-infected tumor cells was successfully imaged with [18F]FEAU-PET, that identified 8 out of 8 tumor-positive nodes. There was no overlap between radioactivity levels (lymph node to surrounding tissue ratio) of tumor-positive and tumor-negative lymph nodes. Conclusion/Significance A new approach for imaging SLN metastases using NV1023 and [18F]FEAU-PET was successful in a murine model. Similar studies could be translated to the clinic and improve the staging and management of patients with melanoma.
Collapse
Affiliation(s)
- Peter Brader
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Department of Radiology, Medical University Graz, Graz, Austria
| | - Kaitlyn Kelly
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Sheng Gang
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Jatin P. Shah
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ronald G. Blasberg
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ziv Gil
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- The Laboratory for Applied Cancer Research, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|