1
|
Zhong H, Wang S, Huang Y, Cui X, Ding X, Zhu L, Yuan M, Fu Y. Endomembrane trafficking driven by microtubule growth regulates stomatal movement in Arabidopsis. Nat Commun 2024; 15:7967. [PMID: 39261498 PMCID: PMC11391047 DOI: 10.1038/s41467-024-52338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Microtubule-based vesicle trafficking usually relies upon kinesin and dynein motors and few reports describe microtubule polymerisation driving directional vesicle trafficking. Here we show that Arabidopsis END BINDING1b (EB1b), a microtubule plus-end binding protein, directly interacts with SYP121, a SNARE protein that mediates the trafficking of the K+ channel KAT1 and its distribution to the plasma membrane (PM) in Arabidopsis guard cells. Knockout of AtEB1b and its homologous proteins results in a modest but significant change in the distribution of KAT1 and SYP121 in guard cells and consequently delays light-induced stomatal opening. Live-cell imaging reveals that a portion of SYP121-associated endomembrane compartments co-localise with AtEB1b at the growing ends of microtubules, trafficking along with the growth of microtubules for targeting to the PM. Our study reveals a mechanism of vesicle trafficking driven by microtubule growth, which is involved in the redistribution of PM proteins to modulate guard cell movement.
Collapse
Affiliation(s)
- Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaohui Huang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Spielmann J, Fanara S, Cotelle V, Vert G. Multilayered regulation of iron homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1250588. [PMID: 37841618 PMCID: PMC10570522 DOI: 10.3389/fpls.2023.1250588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development due to its role in crucial processes such as photosynthesis and modulation of the redox state as an electron donor. While Fe is one of the five most abundant metals in the Earth's crust, it is poorly accessible to plants in alkaline soils due to the formation of insoluble complexes. To limit Fe deficiency symptoms, plant have developed a highly sophisticated regulation network including Fe sensing, transcriptional regulation of Fe-deficiency responsive genes, and post-translational modifications of Fe transporters. In this mini-review, we detail how plants perceive intracellular Fe status and how they regulate transporters involved in Fe uptake through a complex cascade of transcription factors. We also describe the current knowledge about intracellular trafficking, including secretion to the plasma membrane, endocytosis, recycling, and degradation of the two main Fe transporters, IRON-REGULATED TRANSPORTER 1 (IRT1) and NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1). Regulation of these transporters by their non-Fe substrates is discussed in relation to their functional role to avoid accumulation of these toxic metals during Fe limitation.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Valérie Cotelle
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
3
|
Pertl-Obermeyer H, Wu XN, Schrodt J, Müdsam C, Obermeyer G, Schulze WX. Identification of Cargo for Adaptor Protein (AP) Complexes 3 and 4 by Sucrose Gradient Profiling. Mol Cell Proteomics 2016; 15:2877-89. [PMID: 27371946 DOI: 10.1074/mcp.m116.060129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo. We investigated the role of the adaptor protein complex 3 (AP-3) and adaptor protein complex 4 (AP-4) in this selection process by screening for AP-3 and AP-4 dependent cargo proteins. Specific cargo proteins are expected to be mis-targeted in knock-out mutants of adaptor protein complex components. Thus, we screened for altered distribution profiles across a density gradient of membrane proteins in wild type versus ap-3β and ap-4β knock-out mutants. In ap-3β mutants, especially proteins with transport functions, such as aquaporins and plasma membrane ATPase, as well as vesicle trafficking proteins showed differential protein distribution profiles across the density gradient. In the ap-4β mutant aquaporins but also proteins from lipid metabolism were differentially distributed. These proteins also showed differential phosphorylation patterns in ap-3β and ap-4β compared with wild type. Other proteins, such as receptor kinases were depleted from the AP-3 mutant membrane system, possibly because of degradation after mis-targeting. In AP-4 mutants, membrane fractions were depleted for cytochrome P450 proteins, cell wall proteins and receptor kinases. Analysis of water transport capacity in wild type and mutant mesophyll cells confirmed aquaporins as cargo proteins of AP-3 and AP-4. The combination of organelle density gradients with proteome analysis turned out as a suitable experimental strategy for large-scale analyses of protein trafficking.
Collapse
Affiliation(s)
- Heidi Pertl-Obermeyer
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Xu Na Wu
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jens Schrodt
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Christina Müdsam
- ¶Molecular Plant Physiology, University of Erlangen, Staudtstraβe 5, 91058 Erlangen, Germany
| | - Gerhard Obermeyer
- §Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstraβe 11, 5020 Salzburg, Austria
| | - Waltraud X Schulze
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany;
| |
Collapse
|
4
|
Ichikawa M, Iwano M, Sato MH. Nuclear membrane localization during pollen development and apex-focused polarity establishment of SYP124/125 during pollen germination in Arabidopsis thaliana. PLANT REPRODUCTION 2015; 28:143-151. [PMID: 26111864 DOI: 10.1007/s00497-015-0265-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
Establishment of apex-polarity. Elongation of the pollen tube is a highly coordinated process involving polarized secretion of cell wall and membrane materials to the apical region. We investigated changes in the localization of soluble NSF attachment proteins (SNAREs) in developing pollen grains and the pollen tube for transgenic Arabidopsis expressing pollen-specific plasma-membrane Qa-SNAREs (SYP124, 125 and 131) fused with the green fluorescent protein (GFP). The expression of SYP124 and SYP125 was firstly detected in the microspore nuclear membrane during pollen mitosis II. Although SYP124, 125 and 131 accumulated throughout the cytosol in the mature pollen grain, GFP-SYP124 and GFP-SYP125 were highly concentrated in the apical or subapical regions of the elongating pollen tube with slightly different localization patterns, whereas GFP-SYP131 was uniformly localized to the plasma membrane of the pollen tube. The apex-focused polarity of GFP-SYP125 was established coincident with formation of a Ca(2+) gradient before pollen germination. These results suggest that SNAREs function differentially in the same cells and that at least two distinct membrane transport pathways are involved in the pollen development and the pollen tube germination and elongation.
Collapse
Affiliation(s)
- Mie Ichikawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0101, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan.
| |
Collapse
|
5
|
Szymanski WG, Zauber H, Erban A, Gorka M, Wu XN, Schulze WX. Cytoskeletal Components Define Protein Location to Membrane Microdomains. Mol Cell Proteomics 2015; 14:2493-509. [PMID: 26091700 PMCID: PMC4563731 DOI: 10.1074/mcp.m114.046904] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases.
Collapse
Affiliation(s)
- Witold G Szymanski
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Henrik Zauber
- §Max-Delbrück Center of Molecular Medicine, Robert-Rössle-Straβe 10, 13092 Berlin, Germany
| | - Alexander Erban
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Michal Gorka
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Xu Na Wu
- From the ‡Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Waltraud X Schulze
- ¶University of Hohenheim, Department of Plant Systems Biology, 70593 Stuttgart, Germany
| |
Collapse
|
6
|
Minami A, Tominaga Y, Furuto A, Kondo M, Kawamura Y, Uemura M. Arabidopsis dynamin-related protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development of freezing tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:501-14. [PMID: 26095877 DOI: 10.1111/tpj.12907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 05/24/2023]
Abstract
The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin-related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol-enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye-labelled plasma membrane, providing evidence that DRP1E localizes non-uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol-enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.
Collapse
Affiliation(s)
- Anzu Minami
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Yoko Tominaga
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Akari Furuto
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Mariko Kondo
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Yukio Kawamura
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| | - Matsuo Uemura
- Cryobiofrontier Research Center, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
7
|
Almagro L, Carbonell-Bejerano P, Belchí-Navarro S, Bru R, Martínez-Zapater JM, Lijavetzky D, Pedreño MA. Dissecting the transcriptional response to elicitors in Vitis vinifera cells. PLoS One 2014; 9:e109777. [PMID: 25314001 PMCID: PMC4196943 DOI: 10.1371/journal.pone.0109777] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/05/2014] [Indexed: 01/02/2023] Open
Abstract
The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production.
Collapse
Affiliation(s)
- Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
- * E-mail:
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Complejo Científico Tecnológico, Logroño, Spain
| | - Sarai Belchí-Navarro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Roque Bru
- Department of Agrochemistry and Biochemistry, Faculty of Sciences, University of Alicante, Alicante, Spain
| | - José M. Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Complejo Científico Tecnológico, Logroño, Spain
| | - Diego Lijavetzky
- Instituto de Biología Agrícola de Mendoza (CONICET-Universidad Nacional de Cuyo), Facultad de Ciencias Agrarias, Mendoza, Argentina
| | - María A. Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
8
|
Kania U, Fendrych M, Friml J. Polar delivery in plants; commonalities and differences to animal epithelial cells. Open Biol 2014; 4:140017. [PMID: 24740985 PMCID: PMC4043115 DOI: 10.1098/rsob.140017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although plant and animal cells use a similar core mechanism to deliver proteins
to the plasma membrane, their different lifestyle, body organization and
specific cell structures resulted in the acquisition of regulatory mechanisms
that vary in the two kingdoms. In particular, cell polarity regulators do not
seem to be conserved, because genes encoding key components are absent in plant
genomes. In plants, the broad knowledge on polarity derives from the study of
auxin transporters, the PIN-FORMED proteins, in the model plant
Arabidopsis thaliana. In animals, much information is
provided from the study of polarity in epithelial cells that exhibit basolateral
and luminal apical polarities, separated by tight junctions. In this review, we
summarize the similarities and differences of the polarization mechanisms
between plants and animals and survey the main genetic approaches that have been
used to characterize new genes involved in polarity establishment in plants,
including the frequently used forward and reverse genetics screens as well as a
novel chemical genetics approach that is expected to overcome the limitation of
classical genetics methods.
Collapse
Affiliation(s)
- Urszula Kania
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | | | | |
Collapse
|
9
|
ABCG Transporters and Their Role in the Biotic Stress Response. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-319-06511-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Bouhidel K. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view. FRONTIERS IN PLANT SCIENCE 2014; 5:735. [PMID: 25566303 PMCID: PMC4273610 DOI: 10.3389/fpls.2014.00735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/03/2014] [Indexed: 05/21/2023]
Abstract
In order to ensure their physiological and cellular functions, plasma membrane (PM) proteins must be properly conveyed from their site of synthesis, i.e., the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.
Collapse
Affiliation(s)
- Karim Bouhidel
- UMR1347 Agroécologie AgroSup/INRA/uB, ERL CNRS 6300, Université de Bourgogne , Dijon, France
| |
Collapse
|
11
|
Mulet JM, Llopis-Torregrosa V, Primo C, Marqués MC, Yenush L. Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Curr Genet 2013; 59:207-30. [PMID: 23974285 DOI: 10.1007/s00294-013-0401-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 12/30/2022]
Abstract
The relative concentrations of ions and solutes inside cells are actively maintained by several classes of transport proteins, in many cases against their concentration gradient. These transport processes, which consume a large portion of cellular energy, must be constantly regulated. Many structurally distinct families of channels, carriers, and pumps have been characterized in considerable detail during the past decades and defects in the function of some of these proteins have been linked to a growing list of human diseases. The dynamic regulation of the transport proteins present at the cell surface is vital for both normal cellular function and for the successful adaptation to changing environments. The composition of proteins present at the cell surface is controlled on both the transcriptional and post-translational level. Post-translational regulation involves highly conserved mechanisms of phosphorylation- and ubiquitylation-dependent signal transduction routes used to modify the cohort of receptors and transport proteins present under any given circumstances. In this review, we will summarize what is currently known about one facet of this regulatory process: the endocytic regulation of alkali metal transport proteins. The physiological relevance, major contributors, parallels and missing pieces of the puzzle in mammals, yeast and plants will be discussed.
Collapse
Affiliation(s)
- José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, 46022, Valencia, Spain
| | | | | | | | | |
Collapse
|
12
|
Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc Natl Acad Sci U S A 2012; 109:8322-7. [PMID: 22556266 DOI: 10.1073/pnas.1200824109] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cross-talk between plant cells and their surroundings requires tight regulation of information exchange at the plasma membrane (PM), which involves dynamic adjustments of PM protein localization and turnover to modulate signal perception and solute transport at the interface between cells and their surroundings. In animals and fungi, turnover of PM proteins is controlled by reversible ubiquitylation, which signals endocytosis and delivery to the cell's lytic compartment, and there is emerging evidence for related mechanisms in plants. Here, we describe the fate of Arabidopsis PIN2 protein, required for directional cellular efflux of the phytohormone auxin, and identify cis- and trans-acting mediators of PIN2 ubiquitylation. We demonstrate that ubiquitin acts as a principal signal for PM protein endocytosis in plants and reveal dynamic adjustments in PIN2 ubiquitylation coinciding with variations in vacuolar targeting and proteolytic turnover. We show that control of PIN2 proteolytic turnover via its ubiquitylation status is of significant importance for auxin distribution in root meristems and for environmentally controlled adaptations of root growth. Moreover, we provide experimental evidence indicating that PIN2 vacuolar sorting depends on modification specifically by lysine(63)-linked ubiquitin chains. Collectively, our results establish lysine(63)-linked PM cargo ubiquitylation as a regulator of polar auxin transport and adaptive growth responses in higher plants.
Collapse
|