1
|
Mies US, Hervé V, Kropp T, Platt K, Sillam-Dussès D, Šobotník J, Brune A. Genome reduction and horizontal gene transfer in the evolution of Endomicrobia-rise and fall of an intracellular symbiosis with termite gut flagellates. mBio 2024; 15:e0082624. [PMID: 38742878 PMCID: PMC11257099 DOI: 10.1128/mbio.00826-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Bacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum Elusimicrobiota that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study evolution of intracellular symbionts. We reconstructed 67 metagenome-assembled genomes (MAGs) of Endomicrobiaceae among more than 1,700 MAGs from the gut microbiota of a wide range of termites. Phylogenomic analysis confirmed a sister position of representatives from termites and ruminants, and allowed to propose eight new genera in the radiation of Endomicrobiaceae. Comparative genome analysis documented progressive genome erosion in the new genus Endomicrobiellum, which comprises all flagellate endosymbionts characterized to date. Massive gene losses were accompanied by the acquisition of new functions by horizontal gene transfer, which led to a shift from a glucose-based energy metabolism to one based on sugar phosphates. The breakdown of glycolysis and many anabolic pathways for amino acids and cofactors in several subgroups was compensated by the independent acquisition of new uptake systems, including an ATP/ADP antiporter, from other gut microbiota. The putative donors are mostly flagellate endosymbionts from other bacterial phyla, including several, hitherto unknown lineages of uncultured Alphaproteobacteria, documenting the importance of horizontal gene transfer in the convergent evolution of these intracellular symbioses. The loss of almost all biosynthetic capacities in some lineages of Endomicrobiellum suggests that their originally mutualistic relationship with flagellates is on its decline.IMPORTANCEUnicellular eukaryotes are frequently colonized by bacterial and archaeal symbionts. A prominent example are the cellulolytic gut flagellates of termites, which harbor diverse but host-specific bacterial symbionts that occur exclusively in termite guts. One of these lineages, the so-called Endomicrobia, comprises both free-living and endosymbiotic representatives, which offers the unique opportunity to study the evolutionary processes underpinning the transition from a free-living to an intracellular lifestyle. Our results revealed a progressive gene loss in energy metabolism and biosynthetic pathways, compensated by the acquisition of new functions via horizontal gene transfer from other gut bacteria, and suggest the eventual breakdown of an initially mutualistic symbiosis. Evidence for convergent evolution of unrelated endosymbionts reflects adaptations to the intracellular environment of termite gut flagellates.
Collapse
Affiliation(s)
- Undine S. Mies
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tom Kropp
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology LEEC, UR 4443, University Sorbonne Paris Nord, Villetaneuse, France
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czechia
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
The Necrobiome of Deadwood: The Life after Death. ECOLOGIES 2022. [DOI: 10.3390/ecologies4010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent decades, sustainable forest management has been increasingly recognized, promoting the diffusion of silvicultural practices aimed at considering all components of the forest system. Deadwood is an important component of the forest ecosystem. It plays a fundamental role in providing nutrients and habitats for a wide variety of saprotrophic and heterotrophic organisms and significantly contributes to soil formation and carbon storage. Deadwood is inhabited by a plethora of organisms from various kingdoms that have evolved the ability to utilize decaying organic matter. This community, consisting of both eukaryotic and prokaryotic species, can be defined as “necrobiome”. Through the interactions between its various members, the necrobiome influences the decay rates of deadwood and plays a crucial role in the balance between organic matter decomposition, carbon sequestration, and gas exchanges (e.g., CO2) with the atmosphere. The present work aims to provide an overview of the biodiversity and role of the microbial communities that inhabit deadwood and their possible involvement in greenhouse gas (CO2, N2O, and CH4) emissions.
Collapse
|
3
|
Arora J, Kinjo Y, Šobotník J, Buček A, Clitheroe C, Stiblik P, Roisin Y, Žifčáková L, Park YC, Kim KY, Sillam-Dussès D, Hervé V, Lo N, Tokuda G, Brune A, Bourguignon T. The functional evolution of termite gut microbiota. MICROBIOME 2022; 10:78. [PMID: 35624491 PMCID: PMC9137090 DOI: 10.1186/s40168-022-01258-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.
Collapse
Affiliation(s)
- Jigyasa Arora
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Yukihiro Kinjo
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Aleš Buček
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Crystal Clitheroe
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Petr Stiblik
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Yves Roisin
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Lucia Žifčáková
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Yung Chul Park
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Ki Yoon Kim
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - David Sillam-Dussès
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, Villetaneuse, France
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gaku Tokuda
- Tropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Thomas Bourguignon
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Dahlsjö CAL, Stiblik P, Jaklová J, Zídek M, Wicman Huaycama J, Lojka B, Houška J. The local impact of macrofauna and land‐use intensity on soil nutrient concentration and exchangeability in lowland tropical Peru. Biotropica 2020. [DOI: 10.1111/btp.12676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Petr Stiblik
- Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague 6 Czech Republic
| | - Jana Jaklová
- Department of Soil Science and Soil Protection Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague 6 Czech Republic
| | - Matěj Zídek
- Department of Crop Sciences and Agroforestry Faculty of Tropical AgriSciences Czech University of Life Sciences Prague 6 Czech Republic
| | | | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry Faculty of Tropical AgriSciences Czech University of Life Sciences Prague 6 Czech Republic
| | - Jakub Houška
- Department of Soil Science and Soil Protection Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague 6 Czech Republic
| |
Collapse
|
5
|
Dahlsjö CAL, Valladares Romero CS, Espinosa Iñiguez CI. Termite Diversity in Ecuador: A Comparison of Two Primary Forest National Parks. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5698565. [PMID: 31916581 PMCID: PMC6950023 DOI: 10.1093/jisesa/iez129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Termites are one of the key ecosystem engineers in tropical forests where they play a major role in decomposition rates, both above and belowground. The interest in termite ecology and biogeography has increased in the last few decades; however, the lack of comparable data has limited the wider impact of termite research. For Ecuador, termite studies are relatively rare and comparable data that are collected using standardized sampling methods are missing. In this study, we aim to 1) provide comparable data of termite species and feeding-group diversity from two primary forests in Ecuador and 2) explore the differences in termite species and feeding-group diversity between the two forest sites. Sampling took place in the national parks of Yasuní and Podocarpus where three belt transects (100 × 2 m) following Jones and Eggleton (2000) were conducted in each forest. We found that termite species richness was higher in Yasuní (56 species) than in Podocarpus (24 species) and that 57% of the sampled termite genera had never previously been recorded in Ecuador. The inter-site species dissimilarity was almost complete (Bray Curtis (±SD), 0.91 ± 0.01), which may have been linked to the difference in tree density and species richness in the two forests. Termite feeding-groups diversity was significantly higher in Yasuní than in Podocarpus with the exception of soil-feeding termites which may have been due to competition between humus- and soil-feeding species.
Collapse
Affiliation(s)
- Cecilia A L Dahlsjö
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, United Kingdom
| | | | | |
Collapse
|
6
|
Genome Analysis of Endomicrobium proavitum Suggests Loss and Gain of Relevant Functions during the Evolution of Intracellular Symbionts. Appl Environ Microbiol 2017. [PMID: 28646115 DOI: 10.1128/aem.00656-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial endosymbionts of eukaryotes show progressive genome erosion, but detailed investigations of the evolutionary processes involved in the transition to an intracellular lifestyle are generally hampered by the lack of extant free-living lineages. Here, we characterize the genome of the recently isolated, free-living Endomicrobium proavitum, the second member of the Elusimicrobia phylum brought into pure culture, and compare it to the closely related "Candidatus Endomicrobium trichonymphae" strain Rs-D17, a previously described but uncultured endosymbiont of termite gut flagellates. A reconstruction of the metabolic pathways of Endomicrobium proavitum matched the fermentation products formed in pure culture and underscored its restriction to glucose as the substrate. However, several pathways present in the free-living strain, e.g., for the uptake and activation of glucose and its subsequent fermentation, ammonium assimilation, and outer membrane biogenesis, were absent or disrupted in the endosymbiont, probably lost during the massive genome rearrangements that occurred during symbiogenesis. While the majority of the genes in strain Rs-D17 have orthologs in Endomicrobium proavitum, the endosymbiont also possesses a number of functions that are absent from the free-living strain and may represent adaptations to the intracellular lifestyle. Phylogenetic analysis revealed that the genes encoding glucose 6-phosphate and amino acid transporters, acetaldehyde/alcohol dehydrogenase, and the pathways of glucuronic acid catabolism and thiamine pyrophosphate biosynthesis were either acquired by horizontal gene transfer or may represent ancestral traits that were lost in the free-living strain. The polyphyletic origin of Endomicrobia in different flagellate hosts makes them excellent models for future studies of convergent and parallel evolution during symbiogenesis.IMPORTANCE The isolation of a free-living relative of intracellular symbionts provides the rare opportunity to identify the evolutionary processes that occur in the course of symbiogenesis. Our study documents that the genome of "Candidatus Endomicrobium trichonymphae," which represents a clade of endosymbionts that have coevolved with termite gut flagellates for more than 40 million years, is not simply a subset of the genes present in Endomicrobium proavitum, a member of the ancestral, free-living lineage. Rather, comparative genomics revealed that the endosymbionts possess several relevant functions that were either prerequisites for colonization of the intracellular habitat or might have served to compensate for genes losses that occurred during genome erosion. Some gene sets found only in the endosymbiont were apparently acquired by horizontal transfer from other gut bacteria, which suggests that the intracellular bacteria of flagellates are not entirely cut off from gene flow.
Collapse
|
7
|
Ikeda-Ohtsubo W, Strassert JFH, Köhler T, Mikaelyan A, Gregor I, McHardy AC, Tringe SG, Hugenholtz P, Radek R, Brune A. ‘Candidatus
Adiutrix intracellularis’, an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria
and a putative homoacetogen. Environ Microbiol 2016; 18:2548-64. [DOI: 10.1111/1462-2920.13234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Jürgen F. H. Strassert
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
- Institute of Biology/Zoology, Free University of Berlin; Königin-Luise-Strasse 1-3 14195 Berlin Germany
| | - Tim Köhler
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Aram Mikaelyan
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Ivan Gregor
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Inhoffenstraße 7 38124 Braunschweig Germany
- Department of Algorithmic Bioinformatics; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Alice C. McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Inhoffenstraße 7 38124 Braunschweig Germany
- Department of Algorithmic Bioinformatics; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | | | - Phil Hugenholtz
- Department of Energy Joint Genome Institute; Walnut Creek; CA 94598 USA
- Australian Centre for Ecogenomics, The University of Queensland; Brisbane QLD 4072 Australia
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin; Königin-Luise-Strasse 1-3 14195 Berlin Germany
| | - Andreas Brune
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| |
Collapse
|
8
|
Brune A, Dietrich C. The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution. Annu Rev Microbiol 2015. [DOI: 10.1146/annurev-micro-092412-155715] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; ,
| | - Carsten Dietrich
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; ,
| |
Collapse
|
9
|
Zheng H, Dietrich C, Thompson CL, Meuser K, Brune A. Population structure of Endomicrobia in single host cells of termite gut flagellates (Trichonympha spp.). Microbes Environ 2015; 30:92-8. [PMID: 25739443 PMCID: PMC4356469 DOI: 10.1264/jsme2.me14169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/04/2015] [Indexed: 01/21/2023] Open
Abstract
The gut microbiota of many phylogenetically lower termites is dominated by the cellulolytic flagellates of the genus Trichonympha, which are consistently associated with bacterial symbionts. In the case of Endomicrobia, an unusual lineage of endosymbionts of the Elusimicrobia phylum that is also present in other gut flagellates, previous studies have documented strict host specificity, leading to the cospeciation of "Candidatus Endomicrobium trichonymphae" with their respective flagellate hosts. However, it currently remains unclear whether one Trichonympha species is capable of harboring more than one Endomicrobia phylotype. In the present study, we selected single Trichonympha cells from the guts of Zootermopsis nevadensis and Reticulitermes santonensis and characterized their Endomicrobia populations based on internal transcribed spacer (ITS) region sequences. We found that each host cell harbored a homogeneous population of symbionts that were specific to their respective host species, but phylogenetically distinct between each host lineage, corroborating cospeciation being caused by vertical inheritance. The experimental design of the present study also allowed for the identification of an unexpectedly large amount of tag-switching between samples, which indicated that any high-resolution analysis of microbial community structures using the pyrosequencing technique has to be interpreted with great caution.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Str. 10, 35043 MarburgGermany
| | - Carsten Dietrich
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Str. 10, 35043 MarburgGermany
| | - Claire L. Thompson
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg35043 MarburgGermany
| | - Katja Meuser
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Str. 10, 35043 MarburgGermany
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Str. 10, 35043 MarburgGermany
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg35043 MarburgGermany
| |
Collapse
|
10
|
|
11
|
Schauer C, Thompson C, Brune A. Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLoS One 2014; 9:e85861. [PMID: 24454939 PMCID: PMC3893267 DOI: 10.1371/journal.pone.0085861] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/03/2013] [Indexed: 01/05/2023] Open
Abstract
Although blattid cockroaches and termites share a common ancestor, their diets are distinctly different. While termites consume a highly specialized diet of lignocellulose, cockroaches are omnivorous and opportunistic feeders. The role of the termite gut microbiota has been studied intensively, but little is known about the cockroach gut microbiota and its function in digestion and nutrition, particularly the adaptation to different diets. Our analyses of the bacterial gut microbiota of the blattid cockroach Shelfordella lateralis combining terminal restriction fragment length polymorphism of their 16S rRNA genes with physiological parameters (microbial metabolites, hydrogen and methane emission) indicated substantial variation between individuals but failed to identify any diet-related response. Subsequent deep-sequencing of the 16S rRNA genes of the colonic gut microbiota of S. lateralis fed either a high- or a low-fiber diet confirmed the absence of bacterial taxa that responded to diet. Instead, we found a small number of abundant phylotypes that were consistently present in all samples and made up half of the community in both diet groups. They varied strongly in abundance between individual samples at the genus but not at the family level. The remaining phylotypes were inconsistently present among replicate batches. Our findings suggest that S. lateralis harbors a highly dynamic core gut microbiota that is maintained even after fundamental dietary shifts, and that any dietary effects on the gut community are likely to be masked by strong individual variations.
Collapse
Affiliation(s)
- Christine Schauer
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Claire Thompson
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
- School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Zheng H, Bodington D, Zhang C, Miyanaga K, Tanji Y, Hongoh Y, Xing XH. Comprehensive phylogenetic diversity of [FeFe]-hydrogenase genes in termite gut microbiota. Microbes Environ 2013; 28:491-4. [PMID: 24240187 PMCID: PMC4070709 DOI: 10.1264/jsme2.me13082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic diversity of [FeFe]-hydrogenase (HydA) in termite guts was assessed by pyrosequencing PCR amplicons obtained using newly designed primers. Of 8,066 reads, 776 hydA phylotypes, defined with 97% nucleotide sequence identity, were recovered from the gut homogenates of three termite species, Hodotermopsis sjoestedti, Reticulitermes speratus, and Nasutitermes takasagoensis. The phylotype coverage was 92–98%, and the majority shared only low identity with database sequences. It was estimated that 194–745 hydA phylotypes existed in the gut of each termite species. Our results demonstrate that hydA gene diversity in the termite gut microbiota is much higher than previously estimated.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Chemical Engineering, Tsinghua University
| | | | | | | | | | | | | |
Collapse
|
13
|
Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME JOURNAL 2011; 6:1302-13. [PMID: 22189498 DOI: 10.1038/ismej.2011.194] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although it is well documented that the lack of nitrogen in the diet of wood-feeding termites is compensated by the nitrogen-fixing capacity of their gut microbiota, the bacteria responsible for this activity are largely unknown. Here, we analyzed the diversity and expression of nitrogenase genes (homologs of nifH) in four species of dry-wood termites (Kalotermitidae), which thrive on a particularly nitrogen-poor resource. Although each species harbored a highly diverse suite of termite-specific homologs in their microliter-sized hindgut, only a core set related to nifH genes of Treponema and Azoarcus spp., 'Azobacteroides pseudotrichonymphae', the first member of the Bacteroidales identified as a diazotroph, and termite-gut-specific anfH genes of hitherto unknown origin were preferentially expressed. Transcription patterns corroborated that the populations of active diazotrophs differ fundamentally between termite genera. Capillary-picked suspensions of the flagellates Devescovina arta and Snyderella tabogae revealed that their bacterial ectosymbionts each possess two paralogs of nifH, which apparently have been acquired consecutively during evolution of Bacteroidales, but only one of them (anfH) is actively expressed. Transcription patterns correlated neither with the molybdenum content of the diet nor with intestinal hydrogen concentrations, measured with microsensors. We propose that the nitrogen-fixing community in different dry-wood termites is shaped by the symbionts of their specific flagellate populations. Our findings suggest that the diazotrophic nature of 'Armantifilum devescovinae' has an important role in the nitrogen metabolism of dry-wood termites and is the driving force of co-evolution with its flagellate host.
Collapse
|