1
|
Abdalrahman T, Checa S. On the role of mechanical signals on sprouting angiogenesis through computer modeling approaches. Biomech Model Mechanobiol 2022; 21:1623-1640. [PMID: 36394779 PMCID: PMC9700567 DOI: 10.1007/s10237-022-01648-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022]
Abstract
Sprouting angiogenesis, the formation of new vessels from preexisting vasculature, is an essential process in the regeneration of new tissues as well as in the development of some diseases like cancer. Although early studies identified chemical signaling as the main driver of this process, many recent studies have shown a strong role of mechanical signals in the formation of new capillaries. Different types of mechanical signals (e.g., external forces, cell traction forces, and blood flow-induced shear forces) have been shown to play distinct roles in the process; however, their interplay remains still largely unknown. During the last decades, mathematical and computational modeling approaches have been developed to investigate and better understand the mechanisms behind mechanically driven angiogenesis. In this manuscript, we review computational models of angiogenesis with a focus on models investigating the role of mechanics on the process. Our aim is not to provide a detailed review on model methodology but to describe what we have learnt from these models. We classify models according to the mechanical signals being investigated and describe how models have looked into their role on the angiogenic process. We show that a better understanding of the mechanobiology of the angiogenic process will require the development of computer models that incorporate the interactions between the multiple mechanical signals and their effect on cellular responses, since they all seem to play a key in sprout patterning. In the end, we describe some of the remaining challenges of computational modeling of angiogenesis and discuss potential avenues for future research.
Collapse
|
2
|
Guidolin D, Marinaccio C, Tortorella C, Ruggieri S, Rizzi A, Maiorano E, Specchia G, Ribatti D. A fractal analysis of the spatial distribution of tumoral mast cells in lymph nodes and bone marrow. Exp Cell Res 2015; 339:96-102. [PMID: 26358232 DOI: 10.1016/j.yexcr.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/30/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022]
Abstract
The spatial distribution of mast cells inside the tumor stroma has been little investigated. In this study, we have evaluated tumor mast cells distribution through the analysis of the morphological features of the spatial patterns generated by these cells, including size, shape, and architecture of the cell pattern. We have compared diffuse large B cells lymphoma (DLBCL) and systemic mastocytosis in two different anatomical localizations (lymph nodes for DLBCL and, respectively, bone marrow for mastocytosis). Results have indicated that, despite the high difference in size exhibited by the mast cells patterns in the two conditions, the spatial relationship between the mast cells forming the aggregates resulted similar, characterized by a significant tendency of the mast cells to self-organize in clusters.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Molecular Medicine, University of Padova Medical School, University of Padova, Italy
| | - Christian Marinaccio
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Cinzia Tortorella
- Department of Molecular Medicine, University of Padova Medical School, University of Padova, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Eugenio Maiorano
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124 Bari, Italy; National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
3
|
Shamloo A, Mohammadaliha N, Heilshorn SC, Bauer AL. A Comparative Study of Collagen Matrix Density Effect on Endothelial Sprout Formation Using Experimental and Computational Approaches. Ann Biomed Eng 2015; 44:929-41. [DOI: 10.1007/s10439-015-1416-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
|
4
|
Guidolin D, Fede C, Albertin G, De Caro R. Investigating in vitro angiogenesis by computer-assisted image analysis and computational simulation. Methods Mol Biol 2015; 1214:197-214. [PMID: 25468606 DOI: 10.1007/978-1-4939-1462-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro assays that stimulate the formation of capillary-like structures by EC have become increasingly popular, because they allow the study of the EC's intrinsic ability to self-organize to form vascular-like patterns. Here we describe a widely applied protocol involving the use of basement membrane matrix (Matrigel) as a suitable environment to induce an angiogenic phenotype in cultured EC. EC differentiation on basement membrane matrix is a highly specific process, which recapitulates many steps in blood vessel formation and for this reason it is presently considered as a reliable in vitro tool to identify factors with potential antiangiogenic or pro-angiogenic properties. The morphological features of the obtained cell patterns can also be accurately quantified by computer-assisted image analysis and the main steps of such a procedure will be here outlined and discussed. The dynamics of in vitro EC self-organization is a complex biological process, involving a network of interactions between a high number of cells. For this reason, the combined use of in vitro experiments and computational modeling can represent a key approach to unravel how mechanical and chemical signaling by EC coordinates their organization into capillary-like tubes. Thus, a particularly helpful approach to modeling is also briefly described together with examples of its application.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Molecular Medicine, Section of Anatomy, University of Padova, via Gabelli 65, 35121, Padova, Italy,
| | | | | | | |
Collapse
|
5
|
van Oers RFM, Rens EG, LaValley DJ, Reinhart-King CA, Merks RMH. Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput Biol 2014; 10:e1003774. [PMID: 25121971 PMCID: PMC4133044 DOI: 10.1371/journal.pcbi.1003774] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/20/2014] [Indexed: 12/14/2022] Open
Abstract
In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.
Collapse
Affiliation(s)
- René F. M. van Oers
- Life Sciences group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Netherlands Consortium for System Biology - Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Elisabeth G. Rens
- Life Sciences group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Netherlands Consortium for System Biology - Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Danielle J. LaValley
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Roeland M. H. Merks
- Life Sciences group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Netherlands Consortium for System Biology - Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Boas SEM, Merks RMH. Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation. J R Soc Interface 2014; 11:20131049. [PMID: 24430123 PMCID: PMC3899873 DOI: 10.1098/rsif.2013.1049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A key step in blood vessel development (angiogenesis) is lumen formation: the hollowing of vessels for blood perfusion. Two alternative lumen formation mechanisms are suggested to function in different types of blood vessels. The vacuolation mechanism is suggested for lumen formation in small vessels by coalescence of intracellular vacuoles, a view that was extended to extracellular lumen formation by exocytosis of vacuoles. The cell–cell repulsion mechanism is suggested to initiate extracellular lumen formation in large vessels by active repulsion of adjacent cells, and active cell shape changes extend the lumen. We used an agent-based computer model, based on the cellular Potts model, to compare and study both mechanisms separately and combined. An extensive sensitivity analysis shows that each of the mechanisms on its own can produce lumens in a narrow region of parameter space. However, combining both mechanisms makes lumen formation much more robust to the values of the parameters, suggesting that the mechanisms may work synergistically and operate in parallel, rather than in different vessel types.
Collapse
Affiliation(s)
- Sonja E M Boas
- Life Sciences Group, Centrum Wiskunde and Informatica (CWI), , Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Daub JT, Merks RMH. A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull Math Biol 2013; 75:1377-99. [PMID: 23494144 PMCID: PMC3738846 DOI: 10.1007/s11538-013-9826-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 02/11/2013] [Indexed: 12/23/2022]
Abstract
Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.
Collapse
Affiliation(s)
- Josephine T Daub
- Centrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, The Netherlands.
| | | |
Collapse
|