1
|
Daâssi D, Qabil Almaghribi F. Petroleum-contaminated soil: environmental occurrence and remediation strategies. 3 Biotech 2022; 12:139. [PMID: 35646506 DOI: 10.1007/s13205-022-03198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Soil is an environmental matrix that carries life for all living things. With the rise of human activities and the acceleration of population, the soil has been exposed in part to pollution by the discharge of various xenobiotics and persistent pollutants into it. The disposal of toxic substances such as polycyclic aromatic hydrocarbons (PAHs) alters soil properties, affects microbial biodiversity, and damages objects. Considering the mutagenicity, carcinogenicity, and toxicity of petroleum hydrocarbons, the restoration and clean-up of PAH-polluted sites represents an important technological and environmental challenge for sustainable growth and development. Though several treatment methods to remediate PAH-polluted soils exist, interesting bacteria, fungi, and their enzymes receive considerable attention. The aim of the present review is to discuss PAHs' impact on soil properties. Also, this review illustrates physicochemical and biological remediation strategies for treating PAH-contaminated soil. The degradation pathways and contributing factors of microbial PAH-degradation are elucidated. This review also assesses the use of conventional microbial remediation compared to the application of genetically engineered microorganisms (GEM) that can provide a cost-effective and eco-friendly PAH-bioremediation strategy.
Collapse
Affiliation(s)
- Dalel Daâssi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatimah Qabil Almaghribi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Chandrasiri SKU, Liu YL, Huang JE, Samarakoon MC, Boonmee S, Calabon MS, Hu DM. Veronaeaaquatica sp. nov. (Herpotrichiellaceae, Chaetothyriales, Eurotiomycetes) from submerged bamboo in China. Biodivers Data J 2021; 9:e64505. [PMID: 34690510 PMCID: PMC8484195 DOI: 10.3897/bdj.9.e64505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022] Open
Abstract
Background Freshwater fungi are highly diverse and ecologically important in freshwater systems. In China, more than 1000 species of freshwater fungi are known. Here, we present a brown-spored hyphomycetes that was collected on a submerged decaying bamboo culm in a forest stream in China. New information Phylogenetic analyses of combined LSU, ITS and TUB2 sequences confirm the placement of our new strain in Veronaea (Herpotrichiellaceae), sister to V.japonica. Veronaeaaquatica sp. nov. differs from related taxa V.compacta and V.japonica in having longer conidiophores and cylindrical to pyriform or subclavate conidia with 0–2 septa. Veronaeaaquatica also has darker brown hyphae compared to V.japonica. A morphological description and detailed illustrations of V.aquatica are provided.
Collapse
Affiliation(s)
- Sajini K U Chandrasiri
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China College of Bioscience and Bioengineering, Jiangxi Agricultural University Nanchang 330045 China.,Jiangxi Environmental Engineering Vocational College, Ganzhou 341002, China Jiangxi Environmental Engineering Vocational College Ganzhou 341002 China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand Center of Excellence in Fungal Research, Mae Fah Luang University Chiang Rai 57100 Thailand.,School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand School of Science, Mae Fah Luang University Chiang Rai 57100 Thailand
| | - Yu-Lin Liu
- Jiangxi Environmental Engineering Vocational College, Ganzhou 341002, China Jiangxi Environmental Engineering Vocational College Ganzhou 341002 China
| | - Jun-En Huang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China College of Bioscience and Bioengineering, Jiangxi Agricultural University Nanchang 330045 China
| | - Milan C Samarakoon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand Center of Excellence in Fungal Research, Mae Fah Luang University Chiang Rai 57100 Thailand
| | - Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand Center of Excellence in Fungal Research, Mae Fah Luang University Chiang Rai 57100 Thailand.,School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand School of Science, Mae Fah Luang University Chiang Rai 57100 Thailand
| | - Mark S Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand Center of Excellence in Fungal Research, Mae Fah Luang University Chiang Rai 57100 Thailand.,School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand School of Science, Mae Fah Luang University Chiang Rai 57100 Thailand
| | - Dian-Ming Hu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China College of Bioscience and Bioengineering, Jiangxi Agricultural University Nanchang 330045 China.,Jiangxi Environmental Engineering Vocational College, Ganzhou 341002, China Jiangxi Environmental Engineering Vocational College Ganzhou 341002 China.,Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University Nanchang 330045 China
| |
Collapse
|
3
|
Basit A, Shah ST, Ullah I, Muntha ST, Mohamed HI. Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Arch Microbiol 2021; 203:5859-5885. [PMID: 34545411 DOI: 10.1007/s00203-021-02576-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 01/17/2023]
Abstract
The perception of phytoremediation is efficiently utilized as an eco-friendly practice of green plants combating and cleaning up the stressed environment without harming it. The industrial revolution was followed by the green revolution which fulfilled the food demands of the growing population caused an increase in yield per unit area in crop production, but it also increased the use of synthetic fertilizers in agriculture. Globally, the intensive use of inorganic fertilizers in agriculture has led to serious health problems and irreversible environmental damage. Biofertilizers improve the growth of the plant and can be applied as an alternative to chemical/synthetic fertilizers. Cyanobacteria, bacteria, and fungi are known as some of the principal microbe groups used to produce biofertilizers that form symbiotic associations with plants. Microorganisms perform a key role in phosphate solubilization and mobilization, nitrogen fixation, nutrient management, biotic elicitors and probiotics, and pollution management (biodegradation agents), specifically bacteria which also help in atmospheric nitrogen fixation and are thus available for the growth of the plant. Management or biodegradation of hazardous chemical residues and heavy metals produced by a huge number of large-scale industries should be given primary importance to be transformed by various bacterial strains, fungi, algae. Currently, modern omics technologies such as metagenomic, transcriptomic, and proteomic are being used to develop strategies for studying the ecology of microorganisms, as well as their use in environmental monitoring and bioremediation. This review briefly discusses some of the major groups of microorganisms that can perform different functions responsible for plant health, crop production, phytoremediation and also focus on the omics techniques reportedly used in environmental monitoring to tackle the pollution load.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Izhar Ullah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Sidra Tul Muntha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Ligninolytic enzymes production during polycyclic aromatic hydrocarbons degradation: effect of soil pH, soil amendments and fungal co-cultivation. Biodegradation 2021; 32:193-215. [PMID: 33725325 DOI: 10.1007/s10532-021-09933-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
Soil microorganisms play an important role in the degradation of PAHs and use various metabolic pathways for this process. The effect of soil pH, different soil amendments and the co-cultivation of fungi on the degradation of PAHs in soil and on the activity of ligninolytic enzymes was evaluated. For that purpose, three fungi were studied: Trichoderma viride, Penicillium chrysogenum and Agrocybe aegerita. Biodegradation assays with a mixture of 200 ppm PAHs (fluorene, pyrene, chrysene, and benzo[a]pyrene-50 ppm each) were set up at room temperature for 8 weeks. The maximum laccase activity by solid state fermentation-SSF (7.43 U/g) was obtained by A. aegerita on kiwi peels with 2 weeks and the highest manganese peroxidase activity (7.21 U/g) was reached in 4 weeks, both at pH 7. Fluorene, pyrene, and benzo[a]pyrene achieved higher degradation rates in soil at pH 5, while chrysene was more degradable at pH 7. About 85-90% of the PAHs were degraded by fungal remediation. The highest degradation of fluorene was achieved by co-cultivation of A. aegerita and P. chrysogenum, remaining 14% undegradable. Around 13% of pyrene stay undegradable by A. aegerita and T. viride and by A. aegerita and P. chrysogenum, both systems supported in kiwi peels, while 11% of chrysene remained in soil by the co-cultivation of these fungi, supported by peanut shells. Regarding benzo[a]pyrene, 13% remained in soil after treatment with A. aegerita. Despite the increase in degradation of some PAHs with co-cultivation, higher enzyme production during degradation was observed when fungi were cultivated alone.
Collapse
|
5
|
Bioprospecting and Applications of Fungi: A Game Changer in Present Scenario. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Dwivedi SA, Tomer A. Application of Mycobiocontrol Agent in Biodergradation and Pest Management. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Fungi in Remediation of Hazardous Wastes: Current Status and Future Outlook. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Fungal Secondary Metabolites for Bioremediation of Hazardous Heavy Metals. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Metabolic Capability of Penicillium oxalicum to Transform High Concentrations of Anti-Inflammatory and Analgesic Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics are two of the most employed drug groups around the world due to their use in the treatment of edema and pain. However, they also present an ecological challenge because they are considered as potential water pollutants. In this work, the biodegradation of four NSAIDs (diclofenac, ibuprofen, naproxen and ketoprofen) and one analgesic (acetaminophen) at 50 µM (initial concentration) by Penicillium oxalicum, at both flask and bioreactor bench scales, was evaluated. An important co-metabolic mechanism as part of the global bioremediation process for the elimination of these drugs was observed, as in some cases it was necessary to supplement glucose to achieve a 100% removal rate: both individually and as a complex mixture. Identical behavior in the implementation of a fluidized bench-scale batch bioreactor, inoculated with pellets of this fungus and the complex mix of the drugs, was observed. The role of the cytochrome P450 enzymes (CYP) in the biodegradation of the drugs mix were evidenced by the observation of hydroxylated by-products. The results on the reduction of toxicity (micro and phyto) were not conclusive; however, a reduction in phytotoxicity was detected.
Collapse
|
10
|
Bioremediation of Dichlorodiphenyltrichloroethane (DDT)-Contaminated Agricultural Soils: Potential of Two Autochthonous Saprotrophic Fungal Strains. Appl Environ Microbiol 2019; 85:AEM.01720-19. [PMID: 31444208 DOI: 10.1128/aem.01720-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
DDT (dichlorodiphenyltrichloroethane) was used worldwide as an organochlorine insecticide to control agricultural pests and vectors of several insect-borne human diseases. It was banned in most industrialized countries; however, due to its persistence in the environment, DDT residues remain in environmental compartments, becoming long-term sources of exposure. To identify and select fungal species suitable for bioremediation of DDT-contaminated sites, soil samples were collected from DDT-contaminated agricultural soils in Poland, and 38 fungal taxa among 18 genera were isolated. Two of them, Trichoderma hamatum FBL 587 and Rhizopus arrhizus FBL 578, were tested for tolerance in the presence of 1-mg liter-1 DDT concentration by using two indices based on fungal growth rate and biomass production (the tolerance indices Rt:Rc and TI), showing a clear tolerance to DDT. The two selected strains were studied to evaluate catabolic versatility on 95 carbon sources with or without DDT by using the Phenotype MicroArray system and to investigate the induced oxidative stress responses. The two strains were able to use most of the substrates provided, resulting in both high metabolic versatility and ecological functionality in the use of carbon sources, despite the presence of DDT. The activation of specific metabolic responses with species-dependent antioxidant enzymes to cope with the induced chemical stress has been hypothesized, since the presence of DDT promoted a higher formation of reactive oxygen species in fungal cells than the controls. The tested fungi represent attractive potential candidates for bioremediation of DDT-contaminated soil and are worthy of further investigations.IMPORTANCE The spread and environmental accumulation of DDT over the years represent not only a threat to human health and ecological security but also a major challenge because of the complex chemical processes and technologies required for remediation. Saprotrophic fungi, isolated from contaminated sites, hold promise for their bioremediation potential toward toxic organic compounds, since they might provide an environment-friendly solution to contamination. Once we verified the high tolerance of autochthonous fungal strains to high concentrations of DDT, we showed how fungi from different phyla demonstrate a high metabolic versatility in the presence of DDT. The isolates showed the singular ability to keep their functionality, despite the DDT-induced production of reactive oxygen species.
Collapse
|
11
|
Russo F, Ceci A, Maggi O, Siciliano A, Guida M, Petrangeli Papini M, Černík M, Persiani AM. Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24445-24461. [PMID: 31228071 DOI: 10.1007/s11356-019-05679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The study of the soil microbial community represents an important step in better understanding the environmental context. Therefore, biological characterisation and physicochemical integration are keys when defining contaminated sites. Fungi play a fundamental role in the soil, by providing and supporting ecological services for ecosystems and human wellbeing. In this research, 52 soil fungal taxa were isolated from in situ pilot reactors installed to a contaminated site in Czech Republic with a high concentration of hexachlorocyclohexane (HCH). Among the identified isolates, 12 strains were selected to evaluate their tolerance to different isomers of HCH by using specific indices (Rt:Rc; T.I.) and to test their potential in xenobiotic biotransformation. Most of the selected taxa was not significantly affected by exposure to HCH, underlining the elevated tolerance of all the tested fungal taxa, and different metabolic intermediates of HCH dechlorination were observed. The oxidative stress responses to HCH for two selected species, Penicillium simplicissimum and Trichoderma harzianum, were investigated in order to explore their toxic responses and to evaluate their potential functioning in bioremediation of contaminated environments. This research suggests that the isolated fungal species may provide opportunities for new eco-friendly, integrated and cost-effective solutions for environmental management and remediation, considering their efficient adaptation to stressful conditions.
Collapse
Affiliation(s)
- Fabiana Russo
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
12
|
Bioremediation: New Prospects for Environmental Cleaning by Fungal Enzymes. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Evaluating the mycostimulation potential of select carbon amendments for the degradation of a model PAH by an ascomycete strain enriched from a superfund site. Biodegradation 2018; 29:463-471. [PMID: 30003496 DOI: 10.1007/s10532-018-9843-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/29/2018] [Indexed: 12/23/2022]
Abstract
Although ecological flexibility has been well documented in fungi, it remains unclear how this flexibility can be exploited for pollutant degradation, especially in the Ascomycota phylum. In this work, we assess three mycostimulation amendments for their ability to induce degradation in Trichoderma harzanium, a model fungus previously isolated from a Superfund site contaminated with polycyclic aromatic hydrocarbons. The amendments used in the present study were selected based on the documented ecological roles of ascomycetes. Chitin was selected to simulate the parasitic ecological role while cellulose and wood were selected to mimic bulk soil and wood saprobic conditions, respectively. Each amendment was tested in liquid basal medium in 0.1 and 1% (w/v) suspensions. Both chitin and cellulose amendments were shown to promote anthracene degradation in T. harzanium with the 0.1% chitin amendment resulting in over 90% removal of anthracene. None of the targets monitored for gene expression were found to be upregulated suggesting alternate pathways may be used in T. harzanium. Overall, our data suggest that mycostimulation amendments can be improved by understanding the ecological roles of indigenous fungi. However, further research is needed to better estimate specific amendment requirements for a broader group of target fungi and follow up studies are needed to determine whether the trends observed herein translate to more realistic soil systems.
Collapse
|
14
|
Alegbeleye OO, Opeolu BO, Jackson VA. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. ENVIRONMENTAL MANAGEMENT 2017; 60:758-783. [PMID: 28573478 DOI: 10.1007/s00267-017-0896-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 05/23/2017] [Indexed: 05/21/2023]
Abstract
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Collapse
Affiliation(s)
- Oluwadara Oluwaseun Alegbeleye
- Department of Environmental and Occupational Studies, Cape Peninsula University of Technology, Cape Town, Western Cape, South Africa.
| | - Beatrice Oluwatoyin Opeolu
- Extended Curriculum Programmes, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, Western Cape, South Africa
| | - Vanessa Angela Jackson
- Department of Biotechnology and Consumer Science, Cape Peninsula University of Technology, Cape Town, Western Cape, South Africa
| |
Collapse
|
15
|
Ong GH, Ho XH, Shamkeeva S, Manasha Savithri Fernando AS, Wong LS. Biosorption study of potential fungi for copper remediation from Peninsular Malaysia. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/rem.21531] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ghim Hock Ong
- Faculty of Health and Life Sciences, INTI International University; Malaysia
| | - Xin Han Ho
- Faculty of Health and Life Sciences, INTI International University; Malaysia
| | - Saikal Shamkeeva
- Faculty of Health and Life Sciences, INTI International University; Malaysia
| | | | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University; Malaysia
| |
Collapse
|
16
|
Awasthi AK, Pandey AK, Khan J. A preliminary report of indigenous fungal isolates from contaminated municipal solid waste site in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8880-8888. [PMID: 28204952 DOI: 10.1007/s11356-017-8472-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/16/2017] [Indexed: 04/15/2023]
Abstract
Municipal solid waste (MSW) containing harmful substances is a major concern in waste management and can cause adverse effects on diversity of fungi in soil. The main objective was to evaluate the fungal diversity inhabiting in the soil nearby MSW disposal site. The fungal strains were isolated in potato dextrose agar (PDA), media at temperatures 28 ± 1 °C by using standard serial dilution pour plate method, and appeared fungal colonies identified based on morphological characteristics. The overall most fungal diversity was found in soil sample collected from S5, followed by S4, S3, S1, and least in S2 site. A total of 24 fungal isolates recovered from the different MSW sites and Aspergillus sp., Fusarium sp., and Curvularia sp. genus has isolated from all the samples. In addition, the metal tolerance index performed because it needs to classify the fungus for their best use as potential agent for environmental protection. The metal tolerance outcomes revealed that both metals (cadmium and chromium) has appeared as the highest growth inhibitor for most strains and even fungal colonies did not propagate very well on the surface of media. Therefore, these findings suggest that the pre-adapted indigenous fungal isolates have proven remarkable tolerance ability to both metals. Furthermore, these highly metal-tolerant fungal strains are recommended for detail research or can use in pilot-scale bioremediation application to treat contaminated site.
Collapse
Affiliation(s)
- Abhishek Kumar Awasthi
- Mycological Research Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, (M.P.), India.
- Department of Microbiology and Biotechnology, Veerangna Awanti Bai P.G. College, Chhatarpur, (M.P.), India.
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Akhilesh Kumar Pandey
- Mycological Research Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, (M.P.), India
- Madhya Pradesh Private University Regulatory Commission, Bhopal, (M.P.), India
| | - Jamaluddin Khan
- Mycological Research Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, (M.P.), India
| |
Collapse
|
17
|
Deshmukh R, Khardenavis AA, Purohit HJ. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J Microbiol 2016; 56:247-64. [PMID: 27407289 PMCID: PMC4920763 DOI: 10.1007/s12088-016-0584-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 04/12/2016] [Indexed: 11/30/2022] Open
Abstract
Bioremediation refers to cost-effective and environment-friendly method for converting the toxic, recalcitrant pollutants into environmentally benign products through the action of various biological treatments. Fungi play a major role in bioremediation owing to their robust morphology and diverse metabolic capacity. The review focuses on different fungal groups from a variety of habitats with their role in bioremediation of different toxic and recalcitrant compounds; persistent organic pollutants, textile dyes, effluents from textile, bleached kraft pulp, leather tanning industries, petroleum, polyaromatic hydrocarbons, pharmaceuticals and personal care products, and pesticides. Bioremediation of toxic organics by fungi is the most sustainable and green route for cleanup of contaminated sites and we discuss the multiple modes employed by fungi for detoxification of different toxic and recalcitrant compounds including prominent fungal enzymes viz., catalases, laccases, peroxidases and cyrochrome P450 monooxygeneses. We have also discussed the recent advances in enzyme engineering and genomics and research being carried out to trace the less understood bioremediation pathways.
Collapse
Affiliation(s)
- Radhika Deshmukh
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - Anshuman A. Khardenavis
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| | - Hemant J. Purohit
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020 India
| |
Collapse
|
18
|
Liu T, Li Y, Shen Q, Li H, Whalen JK. Soil nematode community response to fertilisation in the root-associated and bulk soils of a rice-wheat agroecosystem. NEMATOLOGY 2016. [DOI: 10.1163/15685411-00002988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The practice of growing agricultural crops in rows results in larger soil nematode populations in the root-associated soil than in the bulk soil between the rows. Fertilisers applied to improve grain yield generally increase the abundance of nematode communities in agricultural soils. The objective of this study was to compare total nematode density and four dominant genera in the root-associated and bulk soils of paddy rice and upland wheat receiving organic and mineral fertilisers. Dominant nematode genera accounted for 80% of all nematodes and represented four trophic groups. There was greater total nematode density and a higher enrichment index (EI) but less nematode diversity (H′) and a lower structure index (SI) in the root-associated soil than bulk soil of upland wheat. By contrast, nematode abundance, diversity and ecological indices were similar in the root-associated and bulk soils of the paddy rice. Soil nematode communities were affected significantly and consistently by fertilisation in upland wheat and paddy rice phases. More herbivoreHirschmanniellawere present with mineral fertiliser than in the non-fertilised control. Straw-based organic fertilisers increased the abundance of bacterivoreEucephalobus. The lack of interaction between rhizosphere effect and fertilisation indicated that crop-growing conditions (different species and water regimes) were more influential on nematode communities and not consistently impacted by short-term organic and mineral fertilisation in the rice-wheat agroecosystem.
Collapse
Affiliation(s)
- Ting Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Department of Natural Resource Sciences, McGill University, Montréal, Québec, Canada H9X 3V9
| | - Yong Li
- Soil and Fertilizer Technical guidance Station of Jintan City, Jintan 213200, P.R. China
| | - Qirong Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Joann K. Whalen
- Department of Natural Resource Sciences, McGill University, Montréal, Québec, Canada H9X 3V9
| |
Collapse
|
19
|
Stella T, Covino S, Burianová E, Filipová A, Křesinová Z, Voříšková J, Větrovský T, Baldrian P, Cajthaml T. Chemical and microbiological characterization of an aged PCB-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 533:177-186. [PMID: 26156136 DOI: 10.1016/j.scitotenv.2015.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes.
Collapse
Affiliation(s)
- T Stella
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague 2, Czech Republic
| | - S Covino
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - E Burianová
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - A Filipová
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Z Křesinová
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - J Voříšková
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - T Větrovský
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - P Baldrian
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - T Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague 2, Czech Republic.
| |
Collapse
|
20
|
Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Appl Microbiol Biotechnol 2015; 99:8815-29. [DOI: 10.1007/s00253-015-6872-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 01/11/2023]
|