1
|
Tulik M, Jura-Morawiec J. An arrangement of secretory cells involved in the formation and storage of resin in tracheid-based secondary xylem of arborescent plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1268643. [PMID: 37731990 PMCID: PMC10508844 DOI: 10.3389/fpls.2023.1268643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
The evolution of the vascular system has led to the formation of conducting and supporting elements and those that are involved in the mechanisms of storage and defense against the influence of biotic and abiotic factors. In the case of the latter, the general evolutionary trend was probably related to a change in their arrangement, i.e. from cells scattered throughout the tissue to cells organized into ducts or cavities. These cells, regardless of whether they occur alone or in a cellular structure, are an important defense element of trees, having the ability to synthesize, among others, natural resins. In the tracheid-based secondary xylem of gymnosperms, the resin ducts, which consist of secretory cells, are of two types: axial, interspersed between the tracheids, and radial, carried in some rays. They are interconnected and form a continuous system. On the other hand, in the tracheid-based secondary xylem of monocotyledons, the resin-producing secretory cells do not form specialized structures. This review summarizes knowledge on the morpho-anatomical features of various types of resin-releasing secretory cells in relation to their: (i) location, (ii) origin, (iii) mechanism of formation, (iv) and ecological significance.
Collapse
Affiliation(s)
- Mirela Tulik
- Department of Forest Botany, Institute of Forest Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Joanna Jura-Morawiec
- Polish Academy of Sciences Botanical Garden - Centre for Biological Diversity Conservation in Powsin, Warsaw, Poland
| |
Collapse
|
2
|
Zhang Z, Wang H, Wu J, Jin Y, Xiao S, Li T, Liu X, Zhang H, Zhang Z, Su J, Liu J, Wang X, Gao Y, Ma X, Gu L. Comprehensive Transcriptome Analysis of Stem-Differentiating Xylem Upon Compression Stress in Cunninghamia Lanceolata. Front Genet 2022; 13:843269. [PMID: 35309135 PMCID: PMC8927042 DOI: 10.3389/fgene.2022.843269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
Compression wood (CW) in gymnosperm brings great difficulties to wood industry using wood as raw materials since CW presents special wood structure and have different physical and chemical properties from those of normal wood (NW). Chinese fir (Cunninghamia lanceolata) is widely distributed in China. However, global transcriptome profiling of coding and long non-coding RNA in response to compression stress has not been reported in the gymnosperm species. In this study, we revealed that CW in Chinese fir exhibited distinct morphology and cytology properties compared with those of NW, including high lignin content, thick and round tracheid cells. Furthermore, we combined both PacBio long-read SMRT sequencing (Iso-Seq) and Illumina short-read RNA-Seq to reveal the transcriptome in stem-differentiating xylem (SDX) under different time points (2, 26, and 74 h) upon compression stress in NW, CW, and OW (opposite wood), respectively. Iso-Seq was successfully assembled into 41,253 de-novo full-length transcriptome reference (average length 2,245 bp). Moreover, there were striking differences in expression upon compression stress, which were involved 13 and 7 key enzyme genes in the lignin and cellulose synthesis, respectively. Especially, we revealed 11 secondary growth-related transcription factors show differential expression under compression stress, which was further validated by qRT-PCR. Finally, the correlation between 6,533 differentially expressed coding genes and 372 differentially expressed long non-coding RNAs (lncRNAs) indicates that these lncRNAs may affect cell wall biogenesis and xyloglucan metabolism. In conclusion, our results provided comprehensive cytology properties and full-length transcriptome profiling of wood species upon compression stress. Especially we explored candidate genes, including both coding and long non-coding genes, and provided a theoretical basis for further research on the formation mechanism of CW in gymnosperm Chinese fir.
Collapse
Affiliation(s)
- Zekun Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yandong Jin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengwu Xiao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuqinq Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingzao Liu
- Taining State-owned Forest Farm, Taining, China
| | | | - Yubang Gao
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Xiangqing Ma, ; Yubang Gao, ; Lianfeng Gu,
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Xiangqing Ma, ; Yubang Gao, ; Lianfeng Gu,
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Xiangqing Ma, ; Yubang Gao, ; Lianfeng Gu,
| |
Collapse
|
3
|
Janecka K, Kaczka RJ, Gärtner H, Harvey JE, Treydte K. Compression wood has a minor effect on the climate signal in tree-ring stable isotope records of montane Norway spruce. TREE PHYSIOLOGY 2020; 40:1014-1028. [PMID: 32268376 DOI: 10.1093/treephys/tpaa038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Compression wood (CW) is a common tissue present in the trunk, branches and roots of mechanically stressed coniferous trees. Its main role is to increase the mechanical strength and regain the vertical orientation of a leaning stem. Compression wood is thought to influence the climate signal in different tree-ring measures. Hence trees containing CW are mostly excluded from tree-ring studies reconstructing past climate variability. There is a large gap of systematic work testing the potential effect of CW on the strength of the climate signal in different tree-ring parameters, especially stable isotope records. Here we test for the first time the effect of CW contained in montane Norway spruce (Picea abies L. Karst) on both δ13C and δ18O tree-ring cellulose records by analyzing compression and opposite wood radii from several disturbed trees together with samples from undisturbed reference trees. We selected four trees tilted by geomorphic processes that were felled by wind and four undisturbed reference trees in the Tatra Mountains, Poland. We qualitatively classified the strength of CW using wood cell anatomical characteristics (tracheid shape, cell wall thickness and presence of intercellular spaces). Then we developed tree-ring width and δ13C and δ18O chronologies from the CW radii, from the opposite radii of the tilted trees and from the reference radii. We tested the effect of CW on tree-ring cellulose δ13C and δ18O variability and on the climate signal strength. We found only minor differences in the means of δ13C and δ18O of compression (δ13C: -22.81‰, δ18O: 28.29‰), opposite (δ13C: -23.02‰; δ18O: 28.05‰) and reference (δ13C: -22.78‰; δ18O: 27.61‰) radii. The statistical relationships between climate variables, δ13C and δ18O, remained consistent among all chronologies. Our findings suggest that moderately tilted trees containing CW can be used to reconstruct past geomorphic activity and for stable isotope-based dendroclimatology.
Collapse
Affiliation(s)
- Karolina Janecka
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
- Centre for Polar Studies KNOW (Leading National Research Centre), Faculty of Natural Sciences, University of Silesia, Sosnowiec, Poland
| | - Ryszard J Kaczka
- Faculty of Natural Sciences, University of Silesia, Sosnowiec, Poland
| | - Holger Gärtner
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jill E Harvey
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Canada
| | - Kerstin Treydte
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Peng H, Salmén L, Stevanic JS, Lu J. Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy. PLANTA 2019; 250:163-171. [PMID: 30953149 DOI: 10.1007/s00425-019-03158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Glucomannan was more strongly oriented, in line with the orientation of cellulose, than the xylan in both compression wood and normal wood of Chinese fir. Lignin in compression wood was somewhat more oriented in the direction of the cellulose microfibrils than in normal wood. The structural organization in compression wood (CW) is quite different from that in normal wood (NW). To shed more light on the structural organization of the polymers in plant cell walls, Fourier Transform Infrared (FTIR) microscopy in transmission mode has been used to compare the S2-dominated mean orientation of wood polymers in CW with that in NW from Chinese fir (Cunninghamia lanceolata). Polarized FTIR measurements revealed that in both CW and NW samples, glucomannan and xylan showed a parallel orientation with respect to the cellulose microfibrils. In both wood samples, the glucomannan showed a much greater degree of orientation than the xylan, indicating that the glucomannan has established a stronger interaction with cellulose than xylan. For the lignin, the absorption peak also indicated an orientation along the direction of the cellulose microfibrils, but this orientation was more pronounced in CW than in NW, indicating that the lignin is affected by the orientation of the cellulose microfibrils more strongly in CW than it is in NW.
Collapse
Affiliation(s)
- Hui Peng
- Research Institute of Wood Industry of Chinese Academy of Forestry, Hunan Collaborative Innovation Center for Effective Utilizing of Wood and Bamboo Resources, Beijing, 100091, People's Republic of China
| | | | | | - Jianxiong Lu
- Research Institute of Wood Industry of Chinese Academy of Forestry, Hunan Collaborative Innovation Center for Effective Utilizing of Wood and Bamboo Resources, Beijing, 100091, People's Republic of China.
| |
Collapse
|
5
|
Zhang M, Chavan RR, Smith BG, McArdle BH, Harris PJ. Tracheid cell-wall structures and locations of (1 → 4)-β-D-galactans and (1 → 3)-β-D-glucans in compression woods of radiata pine (Pinus radiata D. Don). BMC PLANT BIOLOGY 2016; 16:194. [PMID: 27604684 PMCID: PMC5015220 DOI: 10.1186/s12870-016-0884-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/25/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Compression wood (CW) forms on the underside of tilted stems of coniferous gymnosperms and opposite wood (OW) on the upperside. The tracheid walls of these wood types differ structurally and chemically. Although much is known about the most severe form of CW, severe CW (SCW), mild CWs (MCWs), also occur, but less is known about them. In this study, tracheid wall structures and compositions of two grades of MCWs (1 and 2) and SCW were investigated and compared with OW in slightly tilted radiata pine (Pinus radiata) stems. RESULTS The four wood types were identified by the distribution of lignin in their tracheid walls. Only the tracheid walls of OW and MCW1 had a S3 layer and this was thin in MCW1. The tracheid walls of only SCW had a S2 layer with helical cavities in the inner region (S2i). Using immunomicroscopy, (1 → 4)-β-D-galactans and (1 → 3)-β-D-glucans were detected in the tracheid walls of all CWs, but in only trace amounts in OW. The (1 → 4)-β-D-galactans were located in the outer region of the S2 layer, whereas the (1 → 3)-β-D-glucans were in the inner S2i region. The areas and intensities of labelling increased with CW severity. The antibody for (1 → 4)-β-D-galactans was also used to identify the locations and relative amounts of these galactans in whole stem cross sections based on the formation of an insoluble dye. Areas containing the four wood types were clearly differentiated depending on colour intensity. The neutral monosaccharide compositions of the non-cellulosic polysaccharides of these wood types were determined on small, well defined discs, and showed the proportion of galactose was higher for CWs and increased with severity. CONCLUSION The presence of an S3 wall layer is a marker for very MCW and the presence of helical cavities in the S2 wall layer for SCW. The occurrence and proportions of (1 → 4)-β-D-galactans and (1 → 3)-β-D-glucans can be used as markers for CW and its severity. The proportions of galactose were consistent with the labelling results for (1 → 4)-β-D-galactans.
Collapse
Affiliation(s)
- Miao Zhang
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Ramesh R. Chavan
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Bronwen G. Smith
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Brian H. McArdle
- Department of Statistics, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Philip J. Harris
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
| |
Collapse
|
6
|
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew Chem Int Ed Engl 2016; 55:8164-215. [PMID: 27311348 PMCID: PMC6680216 DOI: 10.1002/anie.201510351] [Citation(s) in RCA: 796] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/28/2016] [Indexed: 12/23/2022]
Abstract
Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.
Collapse
Affiliation(s)
- Roberto Rinaldi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Matthew T Clough
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, and Department of Biochemistry, University of Wisconsin, Madison, WI, 53726, USA.
| | - Marco Kennema
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Pieter C A Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM. Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510351] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roberto Rinaldi
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ Großbritannien
| | - Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Matthew T. Clough
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, and Department of Biochemistry University of Wisconsin Madison WI 53726 USA
| | - Marco Kennema
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Pieter C. A. Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| |
Collapse
|
8
|
Donaldson LA, Nanayakkara B, Radotić K, Djikanovic-Golubović D, Mitrović A, Bogdanović Pristov J, Simonović Radosavljević J, Kalauzi A. Xylem parenchyma cell walls lack a gravitropic response in conifer compression wood. PLANTA 2015; 242:1413-1424. [PMID: 26287313 DOI: 10.1007/s00425-015-2381-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
Cell wall fluorescence and immunocytochemistry demonstrate that xylem parenchyma cell walls do not show changes in structure and composition related to gravitropic response comparable to those of tracheids, even when they have lignified secondary cell walls. Tracheid cell walls in compression wood have altered composition and structure which generates the strain responsible for correction of stem lean as part of the gravitropic response of woody plants. Xylem parenchyma cell walls vary among conifer species and can be lignified secondary walls (spruce) or unlignified primary walls (pine). It can be expected that xylem parenchyma with lignified secondary cell walls might show features of compression wood comparable to those of tracheids that have a similar type of cell wall. A comparison of xylem parenchyma cell walls in normal and compression wood in species with lignified and non-lignified parenchyma cell walls provides a unique opportunity to understand the process of reaction wood formation in conifers. Using both UV/visible fluorescence microscopy of cell wall fluorophores and immunocytochemistry of galactan and mannan epitopes, we demonstrate that xylem parenchyma cell walls do not show the changes in composition and structure typical of compression wood tracheids. Adjacent cells of different types but with similar cell wall structure can undergo cell wall developmental changes related to support or defence functions independent of their neighbours. Tracheids are sensitive to gravitropic signals while xylem parenchyma cells are not.
Collapse
Affiliation(s)
| | | | - K Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | | | - A Mitrović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - J Bogdanović Pristov
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | | | - A Kalauzi
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
|