1
|
Melnikova D, Khisravashirova C, Smotrina T, Skirda V. Interaction of Hyaluronan Acid with Some Proteins in Aqueous Solution as Studied by NMR. MEMBRANES 2023; 13:436. [PMID: 37103863 PMCID: PMC10141478 DOI: 10.3390/membranes13040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
According to actual literature data, hyaluronic acid (HA) that is presented in the extracellular matrix can interact with proteins and thereby affect several important functions of the cell membrane. The purpose of this work was to reveal the features of the interaction of HA with proteins using the PFG NMR method by sampling two systems: aqueous solutions of HA with bovine serum albumin (BSA) and aqueous solutions of HA with hen egg-white lysozyme (HEWL). It was found that the presence of BSA in the HA aqueous solution initiates a certain additional mechanism; as a result, the population of HA molecules in the gel structure increases to almost 100%. At the same time, for an aqueous solution of HA/HEWL, even in the range of low (0.01-0.2%) HEWL contents, strong signs of degradation (depolymerization) of some HA macromolecules were observed such that they lost the ability to form a gel. Moreover, lysozyme molecules form a strong complex with degraded HA molecules and lose their enzymatic function. Thus, the presence of HA molecules in the intercellular matrix, as well as in the state associated with the surface of the cell membrane, can, in addition to the known ones, perform one more important function: the function of protecting the cell membrane from the destructive action of lysozymes. The obtained results are important for understanding the mechanism and features of the interaction of extracellular matrix glycosaminoglycan with cell membrane proteins.
Collapse
Affiliation(s)
- Daria Melnikova
- Department of Molecular Physics, Institute of Physics, Kazan Federal University, Kazan 420011, Russia
| | - Catherine Khisravashirova
- Department of Molecular Physics, Institute of Physics, Kazan Federal University, Kazan 420011, Russia
| | - Tatiana Smotrina
- Department of Chemistry, Mari State University, Yoshkar-Ola 424002, Russia
| | - Vladimir Skirda
- Department of Molecular Physics, Institute of Physics, Kazan Federal University, Kazan 420011, Russia
| |
Collapse
|
2
|
Marchenkova MA, Kuranova IP, Timofeev VI, Boikova AS, Dorovatovskii PV, Dyakova YA, Ilina KB, Pisarevskiy YV, Kovalchuk MV. The binding of precipitant ions in the tetragonal crystals of hen egg white lysozyme. J Biomol Struct Dyn 2019; 38:5159-5172. [PMID: 31760865 DOI: 10.1080/07391102.2019.1696706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bonds between lysozyme molecules and precipitant ions in single crystals grown with chlorides of several metals are analysed on the basis of crystal structure data. Crystals of tetragonal hen egg lysozyme (HEWL) were grown with chlorides of several alkali and transition metals (LiCl, NaCl, KCl, NiCl2 and CuCl2) as precipitants and the three-dimensional structures were determined at 1.35 Å resolution by X-ray diffraction method. The positions of metal and chloride ions attached to the protein were located, divided into three groups and analysed. Some of them, in accordance with the recently proposed and experimentally confirmed crystal growth model, provide connections in protein dimers and octamers that are precursor clusters in the crystallization lysozyme solution. The first group, including Cu+2, Ni+2 and Na+1 cations, binds specifically to the protein molecule. The second group consists of metal and chloride ions bound inside the dimers and octamers. The third group of ions can participate in connections between the octamers that are suggested as building units during the crystal growth. The arrangement of chloride and metal ions associated with lysozyme molecule at all stages of the crystallization solution formation and crystal growth is discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Margarita A Marchenkova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Inna P Kuranova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Anastasiia S Boikova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | | | - Yulia A Dyakova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Kseniia B Ilina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Yury V Pisarevskiy
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Mikhail V Kovalchuk
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation.,The Faculty of Physics, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
3
|
Kawamura S, Eto M, Imoto T, Ikemizu S, Araki T, Torikata T. Functional and Structural Effects of Mutagenic Replacement of Asn37 at Subsite F on the Lysozyme-catalyzed Reaction. Biosci Biotechnol Biochem 2014; 68:593-601. [PMID: 15056892 DOI: 10.1271/bbb.68.593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate the functional role of subsites E and F in lysozyme catalysis, Asn37 of hen egg-white lysozyme (HEL), which is postulated to participate in sugar residue binding at the right-sided subsite F through hydrogen bonding, was replaced by Ser or Gly by site-directed mutagenesis. The mutations of Asn37 neither significantly affected the binding constant for chitotriose nor the enzymatic activity toward the substrate glycol chitin. However, kinetic analysis with the substrate N-acetylglucosamine pentamer, (GlcNAc)(5), revealed that the conversion of Asn37 to Gly decreased the binding free energies for subsites E and F, while the conversion to Ser increased the substrate affinity at subsite F. It was further found that the rate constant of transglycosylation was reduced by these mutations. These results suggest that Asn37 is involved not only in substrate binding at subsite F but also in transglycosylation activity. No remarkable change in the tertiary structure except the side chain of the 37th residue was detected on X-ray analysis of the mutant proteins, indicating that the alterations in the enzymatic function between the wild type and mutant enzymes depend on limited structural change around the substitution site. It is thus speculated that the slight conformational difference in the side chain of position 37 may affect the substrate and acceptor binding at subsites E and F, leading to lower the efficiency of the transglycosylation activities of the mutant proteins.
Collapse
Affiliation(s)
- Shunsuke Kawamura
- Department of Bioscience, School of Agriculture, Kyushu Tokai University, Aso, Kumamoto, Japan.
| | | | | | | | | | | |
Collapse
|
4
|
Zhong Y, Patel S. Binding structures of tri-N-acetyl-β-glucosamine in hen egg white lysozyme using molecular dynamics with a polarizable force field. J Comput Chem 2013; 34:163-74. [PMID: 23109228 PMCID: PMC4214157 DOI: 10.1002/jcc.23109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 07/23/2012] [Accepted: 08/12/2012] [Indexed: 11/06/2022]
Abstract
Lysozyme is a well-studied enzyme that hydrolyzes the β-(1,4)-glycosidic linkage of N-acetyl-β-glucosamine (NAG)(n) oligomers. The active site of hen egg-white lysozyme (HEWL) is believed to consist of six subsites, A-F that can accommodate six sugar residues. We present studies exploring the use of polarizable force fields in conjunction with all-atom molecular dynamics (MD) simulations to analyze binding structures of complexes of lysozyme and NAG trisaccharide, (NAG)(3). MD trajectories are applied to analyze structures and conformation of the complex as well as protein-ligand interactions, including the hydrogen-bonding network in the binding pocket. Two binding modes (ABC and BCD) of (NAG)(3) are investigated independently based on a fixed-charge model and a polarizable model. We also apply molecular mechanics with generalized born and surface area (MM-GBSA) methods based on MD using both nonpolarizable and polarizable force fields to compute binding free energies. We also study the correlation between root-mean-squared deviation and binding free energies of the wildtype and W62Y mutant; we find that for this prototypical system, approaches using the MD trajectories coupled with implicit solvent models are equivalent for polarizable and fixed-charge models.
Collapse
Affiliation(s)
- Yang Zhong
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
5
|
The role of Arg114 at subsites E and F in reactions catalyzed by hen egg-white lysozyme. Biosci Biotechnol Biochem 2008; 72:823-32. [PMID: 18323666 DOI: 10.1271/bbb.70694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To understand better the role of subsites E and F in lysozyme-catalyzed reactions, mutant enzymes, in which Arg114, located on the right side of subsites E and F in hen egg-white lysozyme (HEL), was replaced with Lys, His, or Ala, were prepared. Replacement of Arg114 with His or Ala decreased hydrolytic activity toward an artificial substrate, glycol chitin, while replacement with Lys had little effect. Kinetic analysis with the substrate N-acetylglucosamine pentamer, (GlcNAc)(5), revealed that the replacement for the Arg residue reduced the binding free energies of E-F sites and the rate constant of transglycosylation. The rate constant of transglycosylation for R114A was about half of that for the wild-type enzyme. (1)H-NMR analysis of R114H and R114A indicated that the structural changes induced by the mutations were not restricted to the region surrounding Arg114, but rather extended to the aromatic side chains of Phe34 and Trp123, of which the signals are connected with each other through nuclear Overhauser effect (NOE) in the wild-type. We speculate that such a conformational change causes differences in substrate and acceptor binding at subsites E and F, lowering the efficiency of glycosyl transfer reaction of lysozyme.
Collapse
|
6
|
Pinotsis N, Leonidas DD, Chrysina ED, Oikonomakos NG, Mavridis IM. The binding of beta- and gamma-cyclodextrins to glycogen phosphorylase b: kinetic and crystallographic studies. Protein Sci 2003; 12:1914-24. [PMID: 12930991 PMCID: PMC2323989 DOI: 10.1110/ps.03149503] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A number of regulatory binding sites of glycogen phosphorylase (GP), such as the catalytic, the inhibitor, and the new allosteric sites are currently under investigation as targets for inhibition of hepatic glycogenolysis under high glucose concentrations; in some cases specific inhibitors are under evaluation in human clinical trials for therapeutic intervention in type 2 diabetes. In an attempt to investigate whether the storage site can be exploited as target for modulating hepatic glucose production, alpha-, beta-, and gamma-cyclodextrins were identified as moderate mixed-type competitive inhibitors of GPb (with respect to glycogen) with K(i) values of 47.1, 14.1, and 7.4 mM, respectively. To elucidate the structural basis of inhibition, we determined the structure of GPb complexed with beta- and gamma-cyclodextrins at 1.94 A and 2.3 A resolution, respectively. The structures of the two complexes reveal that the inhibitors can be accommodated in the glycogen storage site of T-state GPb with very little change of the tertiary structure and provide a basis for understanding their potency and subsite specificity. Structural comparisons of the two complexes with GPb in complex with either maltopentaose (G5) or maltoheptaose (G7) show that beta- and gamma-cyclodextrins bind in a mode analogous to the G5 and G7 binding with only some differences imposed by their cyclic conformations. It appears that the binding energy for stabilization of enzyme complexes derives from hydrogen bonding and van der Waals contacts to protein residues. The binding of alpha-cyclodextrin and octakis (2,3,6-tri-O-methyl)-gamma-cyclodextrin was also investigated, but none of them was bound in the crystal; moreover, the latter did not inhibit the phosphorylase reaction.
Collapse
Affiliation(s)
- Nikos Pinotsis
- Institute of Physical Chemistry, National Center for Scientific Research "Demokritos," Athens, Greece
| | | | | | | | | |
Collapse
|
7
|
Schwalbe H, Grimshaw SB, Spencer A, Buck M, Boyd J, Dobson CM, Redfield C, Smith LJ. A refined solution structure of hen lysozyme determined using residual dipolar coupling data. Protein Sci 2001; 10:677-88. [PMID: 11274458 PMCID: PMC2373969 DOI: 10.1110/ps.43301] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A high resolution NMR structure of hen lysozyme has been determined using 209 residual 1H-15N dipolar coupling restraints from measurements made in two different dilute liquid crystalline phases (bicelles) in conjunction with a data set of 1632 NOE distance restraints, 110 torsion angle restraints, and 60 hydrogen bond restraints. The ensemble of 50 low-energy calculated structures has an average backbone RMSD of 0.50+/-0.13A to the mean structure and of 1.49+/-0.10A to the crystal structure of hen lysozyme. To assess the importance of the dipolar coupling data in the structure determination, the final structures are compared with an ensemble calculated using an identical protocol but excluding the dipolar coupling restraints. The comparison shows that structures calculated with the dipolar coupling data are more similar to the crystal structure than those calculated without, and have better stereochemical quality. The structures also show improved quality factors when compared with additional dipolar coupling data that were not included in the structure calculations, with orientation-dependent 15N chemical shift changes measured in the bicelle solutions, and with T1/T2 values obtained from 15N relaxation measurements. Analysis of the ensemble of NMR structures and comparisons with crystal structures, 15N relaxation data, and molecular dynamics simulations of hen lysozyme provides a detailed description of the solution structure of this protein and insights into its dynamical behavior.
Collapse
Affiliation(s)
- H Schwalbe
- Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, Oxford OX1 3QT, England
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Armstrong CG, Doherty MJ, Cohen PT. Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1. Biochem J 1998; 336 ( Pt 3):699-704. [PMID: 9841883 PMCID: PMC1219922 DOI: 10.1042/bj3360699] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deletion and mutational analyses of the rat liver glycogen-targeting subunit (GL) of protein phosphatase 1 (PP1) have identified three separate domains that are responsible for binding of PP1, glycogen and phosphorylase a. The glycogen-binding domain spans the centre of GL between residues 144 and 231 and appears to be distinct from the glycogen-binding (storage) site of phosphorylase. The regulatory high-affinity binding site for phosphorylase a lies in the 16 amino acids at the C-terminus of GL. The PP1-binding domain is deduced to comprise the -RVXF- motif [Egloff, Johnson, Moorhead, Cohen and Barford (1997) EMBO J. 16, 1876-1887] located at residues 61-64 of GL and preceding lysine residues at positions 56, 57 and 59. A possible approach for increasing glycogen synthesis in certain disorders is discussed.
Collapse
Affiliation(s)
- C G Armstrong
- Medical Research Council Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, Dundee DD15EH, Scotland, U.K.
| | | | | |
Collapse
|
9
|
Maenaka K, Matsushima M, Kawai G, Kidera A, Watanabe K, Kuroki R, Kumagai I. Structural and functional effect of Trp-62-->Gly and Asp-101-->Gly substitutions on substrate-binding modes of mutant hen egg-white lysozymes. Biochem J 1998; 333 ( Pt 1):71-6. [PMID: 9639564 PMCID: PMC1219557 DOI: 10.1042/bj3330071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to clarify the structural role of subsite B of hen egg-white lysozyme in hydrolytic activity towards a carbohydrate substrate, we analysed the structures of Trp-62-->Gly and Asp-101-->Gly mutant hen lysozymes, which have no side chain at positions 62 or 101, complexed with a substrate analogue, (N-acetyl-d-glucosamine)3 [(GlcNAc)3], using X-ray crystallography. The overall protein structures in the mutant lysozyme complexes were almost identical to those in the wild type. In the crystals of all the mutant complexes, the (GlcNAc)3 molecule, which is an inhibitor of wild-type lysozyme, had no inhibitory effect, but was hydrolysed as a substrate. One of the products, (GlcNAc)2, the reducing end of which is an alpha-anomer, was bound in an unproductive binding mode, protruding from the active-site cleft, and was able to act as an inhibitor. Hydrolysis of the synthetic substrate by the mutants occurred in a beta-anomer-retaining manner, and so the alpha-anomer product was converted from the beta-anomer product. Thus the interactions of Asp-101 and Trp-62 in subsite B are not essential for the catalytic mechanism, but co-operatively enhance the affinity of the substrate in the productive binding mode, other than the inhibitor in the unproductive mode.
Collapse
Affiliation(s)
- K Maenaka
- Department of Biochemistry and Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai 980-77, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Watson KA, Schinzel R, Palm D, Johnson LN. The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase. EMBO J 1997; 16:1-14. [PMID: 9009262 PMCID: PMC1169608 DOI: 10.1093/emboj/16.1.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In animals, glycogen phosphorylase (GP) exists in an inactive (T state) and an active (R state) equilibrium that can be altered by allosteric effectors or covalent modification. In Escherichia coli, the activity of maltodextrin phosphorylase (MalP) is controlled by induction at the level of gene expression, and the enzyme exhibits no regulatory properties. We report the crystal structure of E. coli maltodextrin phosphorylase refined to 2.4 A resolution. The molecule consists of a dimer with 796 amino acids per monomer, with 46% sequence identity to the mammalian enzyme. The overall structure of MalP shows a similar fold to GP and the catalytic sites are highly conserved. However, the relative orientation of the two subunits in E. coli MalP is different from both the T and R state GP structures, and there are significant changes at the subunit-subunit interfaces. The sequence changes result in loss of each of the control sites present in rabbit muscle GP. As a result of the changes at the subunit interface, the 280s loop, which in T state GP acts as a gate to control access to the catalytic site, is held in an open conformation in MalP. The open access to the conserved catalytic site provides an explanation for the activity without control in this basic archetype of a phosphorylase.
Collapse
Affiliation(s)
- K A Watson
- Laboratory of Molecular Biophysics, Oxford, UK
| | | | | | | |
Collapse
|
11
|
Mushegian AR, Fullner KJ, Koonin EV, Nester EW. A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A 1996; 93:7321-6. [PMID: 8692991 PMCID: PMC38982 DOI: 10.1073/pnas.93.14.7321] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We describe a conserved family of bacterial gene products that includes the VirB1 virulence factor encoded by tumor-inducing plasmids of Agrobacterium spp., proteins involved in conjugative DNA transfer of broad-host-range bacterial plasmids, and gene products that may be involved in invasion by Shigella spp. and Salmonella enterica. Sequence analysis and structural modeling show that the proteins in this group are related to chicken egg white lysozyme and are likely to adopt a lysozyme-like structural fold. Based on their similarity to lysozyme, we predict that these proteins have glycosidase activity. Iterative data base searches with three conserved sequence motifs from this protein family detect a more distant relationship to bacterial and bacteriophage lytic transglycosylases, and goose egg white lysozyme. Two acidic residues in the VirB1 protein of Agrobacterium tumefaciens form a putative catalytic dyad, Each of these residues was changed into the corresponding amide by site-directed mutagenesis. Strains of A. tumefaciens that express mutated VirB1 proteins have a significantly reduced virulence. We hypothesize that many bacterial proteins involved in export of macromolecules belong to a widespread class of hydrolases and cleave beta-1,4-glycosidic bonds as part of their function.
Collapse
Affiliation(s)
- A R Mushegian
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
12
|
Qian M, Haser R, Payan F. Carbohydrate binding sites in a pancreatic alpha-amylase-substrate complex, derived from X-ray structure analysis at 2.1 A resolution. Protein Sci 1995; 4:747-55. [PMID: 7613472 PMCID: PMC2143103 DOI: 10.1002/pro.5560040414] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) that was soaked with the substrate maltopentaose showed electron density corresponding to two independent carbohydrate recognition sites on the surface of the molecule. Both binding sites are distinct from the active site described in detail in our previous high-resolution study of a complex between PPA and a carbohydrate inhibitor (Qian M, Buisson G, Duée E, Haser H, Payan F, 1994, Biochemistry 33:6284-6294). One of the binding sites previously identified in a 5-A-resolution electron density map, lies at a distance of 20 A from the active site cleft and can accommodate two glucose units. The second affinity site for sugar units is located close to the calcium binding site. The crystal structure of the maltopentaose complex was refined at 2.1 A resolution, to an R-factor of 17.5%, with an RMS deviation in bond distances of 0.007 A. The model includes all 496 residues of the enzyme, 1 calcium ion, 1 chloride ion, 425 water molecules, and 3 bound sugar rings. The binding sites are characterized and described in detail. The present complex structure provides the evidence of an increased stability of the structure upon interaction with the substrate and allows identification of an N-terminal pyrrolidonecarboxylic acid in PPA.
Collapse
Affiliation(s)
- M Qian
- LCCMB-CNRS, URA 1296, Université Aix-Marseille II, Faculté de Médecine Nord Bd Pierre Dramard, France
| | | | | |
Collapse
|
13
|
von Eichel-Streiber C, Sauerborn M, Kuramitsu HK. Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J Bacteriol 1992; 174:6707-10. [PMID: 1307487 PMCID: PMC207659 DOI: 10.1128/jb.174.20.6707-6710.1992] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The homologous C-terminal repeats of Clostridium difficile toxins (ToxA and ToxB) and streptococcal glucosyltransferases appear to mediate protein-carbohydrate interactions at cellular binding sites with sugar moieties as substrates. A consensus sequence of 134 repeating units from gram-positive bacteria indicates that these repeats have a modular design with (i) a stretch of aromatic amino acids proposed to be involved in the primary carbohydrate-protein interaction, (ii) an amplification of this interaction by repetition of the respective sequences, and (iii) a second domain, not characterized, that is responsible for carbohydrate specificity.
Collapse
Affiliation(s)
- C von Eichel-Streiber
- Institut für Medizinische Mikrobiologie, Johannes-Gutenberg-Universität, Mainz, Federal Republic of Germany
| | | | | |
Collapse
|
14
|
McCarter JD, Adam MJ, Withers SG. Binding energy and catalysis. Fluorinated and deoxygenated glycosides as mechanistic probes of Escherichia coli (lacZ) beta-galactosidase. Biochem J 1992; 286 ( Pt 3):721-7. [PMID: 1417731 PMCID: PMC1132963 DOI: 10.1042/bj2860721] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Kinetic parameters for the hydrolysis of a series of deoxy and deoxyfluoro analogues of 2',4'-dinitrophenyl beta-D-galactopyranoside by Escherichia coli (lacZ) beta-galactosidase have been determined and rates found to be two to nine orders of magnitude lower than that for the parent compound. These large rate reductions result primarily from the loss of transition-state binding interactions due to the replacement of sugar hydroxy groups, and such interactions are estimated to contribute at least 16.7 kJ (4 kcal).mol-1 to binding at the 3, 4 and 6 positions and more than 33.5 kJ (8 kcal).mol-1 at the 2 position. The existence of a linear free-energy relationship between log(kcat./Km) for these compounds and the logarithm of the first-order rate constant for their spontaneous hydrolysis demonstrates that electronic effects are also important and provides direct evidence for oxocarbonium ion character in the enzymic transition state. A covalent intermediate which turns over only extremely slowly (t1/2 = 45 h) accumulates during hydrolysis of the 2-deoxyfluorogalactoside, and kinetic parameters for its formation have been determined. This intermediate is nonetheless catalytically competent, since it re-activates much more rapidly in the presence of the transglycosylation acceptors methanol or glucose, thereby providing support for the notion of a covalent intermediate during hydrolysis of the parent substrates.
Collapse
Affiliation(s)
- J D McCarter
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
15
|
Barford D, Johnson LN. The molecular mechanism for the tetrameric association of glycogen phosphorylase promoted by protein phosphorylation. Protein Sci 1992; 1:472-93. [PMID: 1304350 PMCID: PMC2142214 DOI: 10.1002/pro.5560010403] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The allosteric transition of glycogen phosphorylase promoted by protein phosphorylation is accompanied by the association of a pair of functional dimers to form a tetramer. The conformational changes within the dimer that lead to the creation of a protein recognition surface have been analyzed from a comparison of the crystal structures of T-state dimeric phosphorylase b and R-state tetrameric phosphorylase a. Regions of the structure that participate in the tetramer interface are situated within structural subdomains. These include the glycogen storage subdomain, the C-terminal subdomain and the tower helix. The subdomains undergo concerted conformational transitions on conversion from the T to the R state (overall r.m.s. shifts between 1 and 1.7 A) and, together with the quaternary conformational change within the functional dimer, create the tetramer interface. The glycogen storage subdomain and the C-terminal subdomain are distinct from those regions that contribute to the dimer interface, but shifts in the subdomains are correlated with the allosteric transitions that are mediated by the dimer interface. The structural properties of the tetramer interface are atypical of an oligomeric protein interface and are more similar to protein recognition surfaces observed in protease inhibitors and antibody-protein antigen complexes. There is a preponderance of polar and charged residues at the tetramer interface and a high number of H-bonds per surface area (one H-bond per 130 A2). In addition, the surface area made inaccessible at the interface is relatively small (1,142 A2 per subunit on dimer to tetramer association compared with 2,217 A2 per subunit on monomer-to-dimer association).
Collapse
Affiliation(s)
- D Barford
- Laboratory of Molecular Biophysics, University of Oxford, UK
| | | |
Collapse
|
16
|
Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RA. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 1991; 55:303-15. [PMID: 1886523 PMCID: PMC372816 DOI: 10.1128/mr.55.2.303-315.1991] [Citation(s) in RCA: 421] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several types of domain occur in beta-1, 4-glycanases. The best characterized of these are the catalytic domains and the cellulose-binding domains. The domains may be joined by linker sequences rich in proline or hydroxyamino acids or both. Some of the enzymes contain repeated sequences up to 150 amino acids in length. The enzymes can be grouped into families on the basis of sequence similarities between the catalytic domains. There are sequence similarities between the cellulose-binding domains, of which two types have been identified, and also between some domains of unknown function. The beta-1, 4-glycanases appear to have arisen by the shuffling of a relatively small number of progenitor sequences.
Collapse
Affiliation(s)
- N R Gilkes
- Department of Microbiology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
17
|
Rivera-Sagredo A, Solis D, Diaz-Mauriño T, Jiménez-Barbero J, Martín-Lomas M. Studies on the molecular recognition of synthetic methyl beta-lactoside analogs by ricin, a cytotoxic plant lectin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:217-28. [PMID: 2015822 DOI: 10.1111/j.1432-1033.1991.tb15902.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The binding of methyl beta-lactoside and of all possible monodeoxy derivatives of methyl beta-lactoside to the galactose-specific highly cytotoxin lectin ricin, has been investigated. The distribution of low-energy conformers of the disaccharide structures has been first determined using molecular-mechanics calculations and high-resolution NMR spectroscopy. The nuclear Overhauser enhancements and specific deshieldings observed are in agreement with a similar distribution of low-energy conformers for all studied compounds which may be described by a major conformer defined by phi (H1'-C1'-O1'-C4) and psi (C1'-O1'-C4-H4) torsion angles of 49 degrees and 5 degrees, respectively, with contribution of conformers with angles phi/psi 24 degrees/-59 degrees, 22 degrees/-32 degrees and 6 degrees/-44 degrees. Assuming that the disaccharides bind to the lectin in these preferred conformations, the apparent dissociation constants for the ricin-disaccharide complexes have been interpreted in terms of specific polar and nonpolar interactions. In agreement with X-ray data, the hydroxyl groups at positions 3, 4 and 6 of the beta-D-galactopyranose moiety appear as key polar groups in the interaction with ricin. These results are in contrast to previous results which have established that position 6 is not involved in lectin binding. An important nonpolar interaction involving position 3 of the beta-D-glucopyranose moiety, seems to be operative. The distribution of low-energy conformers of these disaccharide structures permits this interaction to take place with the hydroxyl group at this position intramolecularly bonded, thus rendering this region of the molecule more lipophylic in character for acceptance into nonpolar regions of the combining site.
Collapse
Affiliation(s)
- A Rivera-Sagredo
- Instituto de Química Orgánica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Svensson B, Jespersen H, Sierks MR, MacGregor EA. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J 1989; 264:309-11. [PMID: 2481445 PMCID: PMC1133580 DOI: 10.1042/bj2640309] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- B Svensson
- Department of Chemistry, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | | | |
Collapse
|